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ABSTRACT 

The high-energy large-angle limit of the completely differ- 

ential cross section for the process e- + z + e- + ef + e- + z 

(or for the process with all or some of the particles replaced by 

p-mesons) is computed for arbitrary helicities of incident and 

final particles. This process is interesting as a test of electro- 

dynamics and of the statistics of the p-meson. The formula is 

short and perhaps suitable for numerical integrations. 
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I. INTRODUCTION 

Trident production, i. e. , electron-positron pair production by incident elec- 

trons of hydrogen (or the analogous process for p-mesons), has been discussed 

in the past by different authors as a test of quantum electrodynamics at small 

distances. 192 For the case of the p-meson, this process also may provide a 

test of the statistics of the p-meson. In this article we present the differential .‘. 

cross section for the trident process for definite helicities of incident and outgoing 

leptons, in the limit of vanishing lepton mass. Although such a process is unlikely 

to be measured directly, the expression for the cross section is reasonably com- 

pact and amenable to machine integration and summation over the unobserved 

variables. 

In Section II, the calculation is described and the result is given in Section~IH. 

II. THE MATRIX ELEMENT 

The eight diagrams are shown in Fig. I. The matrix element of diagram (1) 

is 9 by the usual Feynman rule, 3 

All the notations are summarized in the Appendix. The method we use is to cal- 

culate directly the amplitude for each graph, sum the amplitudes, and then square. 

To calculate the amplitude explicitly, we multiply and divide the first square 

bracket by 

7 (P+, A+) ;v” utP2 9 h2) I I 

it?, 
= A1 e 

i0I 
= A1 e (2) 
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and the second square bracket by 

;@,A) r” uQl,hl) = lAgI e 
ie2 i82 

=A2e l (3) 

The numerators and denominators after multiplication can be put into invariant 

form by the use of spin projection operators4 and the usual trace method. 

The invariant spin projection operator Oh for positive energy states, de- 

fined by Oh u@, h’) = ahh, u(p) A’), is reduced to Oh = $1 + hr5) inthe 

limit of zero mass. It is then easily verified that for diagrams of any order, so 

long as mass is neglected, the matrix element vanishes unless the fermion lines 

entering and leaving the diagram have the same chiralityS5 This asserts that only 

one spin projection operator is needed in summing the spins of the spinors. Thus 

the first bracket may be written k 

1 
c 

A elel y*1 
u(p,4vf* +*l* r” c 

1 2--m Ai= *1 
v@+., A+) 3P+9 A+) Oh2 u(P2, A; ) . 

1 

This will be simplified by the usual energy state projection operator and trace 

method, and then becomes 

1 ’ 
= . - 

A ,I’1 2m2 @-pI-p2)2-m2. 
is+* ‘P2’ (P-PI-P,) * e P2 * $+ 

1 

- F+ a @-PI-P,) P2’ 6 + ih2 @-PI). ep2 P+ (4) 

where I ABCD 1 is a short notation for the determinant formed by the components 
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of the four vectors: 

I = I ABCD 

and g+ = (Es -++b 

A0 B” Co Do 

A1 B1 C1 D1 

A2 B2 C2 D2 

A3 B3 C3 D3 

The quantity A1 may be computed explicitly by multiplying by the complex 

conjugate and then using spin and energy projection operators as before; thus 

The second bracket of (1) may be treated in the same manner, and found 

to be 

1 1 1 
X- 

2m2 
i82 

Elp* E + Epl* E - eop’pl + ix1 ,A;=- 
2m2 p1 

l P (6) 
A e 

2 

It is then only a matter of putting (4), (5) ) and (6) into (1) to obtain the full matrix 
‘ 

element. The matrix elements of the remaining seven diagrams may be obtained 

from Ml by interchange of parameters. The results are summarized in the 

next section. 

We note that the phase factor 0 1 is the same for diagrams (1) to (4) and 

6 2 the same for diagrams (5) to (8). If A = hl f X2, only diagrams (1) to (4) 

contribute, and the phase factors have no effect to the cross section. If, on the 

other hand, h = A2 $ Xl, only diagrams (5) to (8) contribute, and the phase 
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factors have no effect either. The phase factors are important only if A = AI = A2 . 

In this case all eight diagrams contribute, but only the relative phase 0 need to 

be computed. From the definitions of (2) and (3), 8 can again be evaluated by 

means of trace techniques. The result is given in the next section. 

III. THE CROSS SECTION 

We may write down the differential cross section 
I 

+ 6P %L 
F5+ F6+F7+F 8 

2 J P, * l?I P2 l G 

FI+ F2+ F3+F4 

P+*P2.15. 5 

L 

i0 8 * dEI dE2 dS$ dQ2 da+ ii (? 

In the above expression, dp is the signature of identical particles in the final 

state, and in our case 6p = -1 if the’ fermions obey Fermi-Dirac statistics and 

6P 
= + I were they to obey Bose-Einstein statistics. The function FI is given by 

1 
Fl@>~1,~2,~++A2) = 

(P-P,)2 [(P-P,-P2)2-m2] 

. 

[ 

2p+. ir”z(-E2p 0 PI+ Elp .P~+EPI*P~) -5+P(E+El~1.P2-E2~‘pl) 

+ ;+e pl, (E+EIP . p2 --E2p. PI) + E+P l PI(~~I* ad,+ * $,) 

- iAl ‘jP+- bwy2P2J 

+ iA2[(E+El))PPlP~+~ - PI/ (P-P,)7 P$+!\ 

E+ pl* ‘p+ PO P+ 

- hl$ E2 plop2 P* p2 

E--El P . pl -P* Pl 
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The other functions 

following exchange: 

F2 to F8 are obtained from F1(p p1,p2,p+, hl, A2) by the 

F2 = -F&P, P,/ P,, pz> Al, --AZ, , 

Fg = -F+-P+, p2, -P, pl, h2, -Al)‘, 

F4= Fl(-p+t pz, pl, -P> Q -AlI s 

and F5, F 6, F7 and F8 are obtained from F1, F2, F3, and F4 respectively 

by the interchange pl - p2, Al - $. The relative phase 8 is given by 

8 = tan-l 
A 1Pli;+Pzzl 

PI * S,Pz*i; +P1.PP2* z+- PI’ p,“p.:, 
(9) 

Our calculation assumes a static Coulomb field with 2 = 1. Practical con- 

siderations will probably force targets of Z > 1, e. g. , carbon. For the elastic 

trident production (no nuclear excitation) Eq. (7) need by modified only by inclu- 

sion of an extra factor [ZF(q’)]’ ) with F(q2) the charge form factor measured 

in elastic electron scattering. Higher orders in Z are of course neglected in 

this Born approximation calculation. 
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APPENDIX 

p, pl, p2 and p, are four-momenta of incoming ~1~ @+), two outgoingp-(p+) 

and one IL+@-). E and p are energy and three momentum, etc. A, Al, AZ, and h+ 

are the chiralities of these particles, and take the value +1 when the particle is 

right handed or antiparticle left handed. A four vector with a tilde is related to its !.” 

original vector by changing the sign of the space momentum, e. g. D if p = (E, p)$ .WU 

then 5 = (E, --. q’ is a unit four vector with o-th component only. p =k= 

magnitude of space momentum. da1 , dO2, and dQ+ are solid angles of corresponding 

particles. 
1 

cy=137 

q ‘b - PI - P2 - P, 
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FIG. l--Diagrams for trident production. 547-l-A 


