
LINGO, A DYNAMIC SYNTAX DIRECTED COMPILER*

Edward A. Burfine

Stanford Linear Accelerator Center
Stanford, California

ABSTRACT

LINGO is a table driven syntax directed compiler which translates

:-

sentences in a simple precedence phrase structure progra

to symbolic code. The tables which direct translation from language

text to symbolic code can be modified during translation. Table modi-

.._ fication is directed by meta-language text. Many blocks of language

text, where each block is composed of sentences of a different simple

precedence phrase structure prograr$ng lanvge, can be translated
q

at one time. This is done by changing tables between the translation

of blocks of language text.

(Submitted to Communications of the XC?vI)

*
Work supported by the U. S . Atomic Energy Commission.

-l-

1. Introduction

Syntax directed compilers translate language text in a pro

to symbolic code or machine code. The prograqng language m

each translation, but it is fixed during the translation.

LLrc:GO a.llows the progra language to change during the translation.

This is done by changing the tables which control language text to symbolic code

translation. The number of changes and the position in the language text where

the changes occur are left to the programgr. With a fixed environment, i.e. ,

the memory of the digital computer, these tables define a simple precedence

phrase structure progra%ng language. A change in these tables changes the
e-8

program$ig language.
&-

Changes in the tables may 1) extend the program.@ language to include new
+=s

data spaces or grammatical constructs, 2) remove the definition of certain &a
‘. ., ‘.. .A,_ -i ._ . . (. ‘7% -,-* s ,.... .._.%.r,..‘~J.p~:‘l-:.,.;;~,~ .j

spaces or grammatical constructs fr.om the prdgra
.,.-*. .-

*g gji!y~~ . ..yr... 3 +=tate

a previously defined programing language.
- ..: ..‘.,.. j:,,

,~ - -‘. ..
@bm

using LINGO defines the language he wants to use by meta-

-. . . , IIe then writes sentences in that progr language until. a

modification of the progra language is necessary for efficient progr

He then modifies the definition of the progra language using meta-language

text, and proceeds to write sentences in the new progrqg language. This
-en

modification process can be repeated as often as necessary.

In some ways this work parallels the work of Wijngaarden and deBakker. I,2,3

It differs in three major respects, however, which are: 1) A more gene&

method of defining languages by syntactic rules and semantic interpretation rules

is presented. 2) The meta-language in LINGO is a simple precedence phrase

structure progra . g language which is parsed in the same way as the progra

-2-

. .

.,,

.I .,

‘/ ‘..

languages. The semantic interpretation rules for the meta-language are fixed
:

and represent operations on the tables which drive the compiler. 3) The compiler

is as efficient as the programzr makes it. There is no pyramid of definitions,

as in the method of recursive definitions of Wijngaardenl and deBakker. 3

2. Phrase Structure Programing Languages

Using the notation of Wirth and Weber4, a phrase structure progra .

language ,Lp (V, G, B, A, %, E) is completely specified by

1. V the vocabulary,

2. @ the finite set of syntactic rules,

3. -8. the set of terminal symbols,

4. A the initial non-terminal symbol,

5. $ the set of interpretation ruIes, and

6. g the environment for elements of

The environment & for language text in LINGO is fixed and is the memory

of the digital computer. The initial non-terminal symbol A for the language is

fixed at < PE@GwM> . !- :: _.“.)‘. r;+‘,. 4,.

In a context free grammar, the vocabulary ti and the set of termid &&ols

‘&3 may be obtained from Q; . Thus, with E and A fixed, ?Lp is defined by +

and \k.

9 may be thought of as a set of syntactic rules in Backus Normal Form and

Ik as a set of partial programs in an assembly language. Let T be a translation

which adds to, removes, or changes rules in @ and adds to, removes or changes
, . . ,_ I ’

the corresponding partial programs in 9 .

If T4?o = Gl, and T9, = 91 then

-iPwl’
Gl, ES,, A+, EJ = ‘Lp (V(T +o), Tao, BCMO), A,Teo,E) ,

where V(T+o) = Vi and @(Tao) = Bl .

-3-

Thus, a new phrase structure programpg language may be formed from
.I ,!

the old one by performing a transformation on @ and $. To maintain a pre-

I-
;.

cedence phrase structure progra g language, the transformation T must be

restricted such that the resulting language L P is a precedence phrase structure

progra language. If this restriction is violated, LINGO will terminate
“.’

translation and give an error message.

The transformation T is represented in LINGO by meta-language test.

3. Translators

LINGO is composed of two translators.

The first translator is used for the translation of language text in a particular
--.:.

language to symbolic code. It is driven by a set of tables which can

be modified. This translator is written as an.ALGOL procedure called COMPILER.

The second translator accepts text which directs the modification of the tables

in COMPILER,. It is also driven by tables. In this case the tables are fixed and

define the meta-language when the environment is the tables in COMPILER. This

translator is written as an ALGOL procedure called METACOMPILER.

Some of the tables in COMPILER are modified directly by METACOkPTLER,

while others are recalculated using an ALGOL procedure SYNTAXPROCESSOR

and the algorithm of Floyd. 5 Parsing is directed by the precedence functiorz of

Floyd and is accomplished by the algorithm of Wirth and Weber. 4

4. Tables

Every table in METACORIPILER is fixed. In COMPILER, every table is

treated as data and can be changed during translation. There are six types of

tables in LINGO. They are:

1. A symbol table containing the vocabulary ‘9. This table is subdivided

into B and W - B, _

-4 -

COMPILER

Push -Down
Stack for
Tables

1

Tables Parsing
Algorithm - Symbolic Code

. . I

Source Code:

it
Meta-language text .-‘:

Fig. l--Translators and Data Flow in LINGO ~.
..- ,. -__-. - .r _ _ - _

2. A table of syntactic rules (in numeric form).

C

3. A master table which relates symbols in the symbol table to syntactic rules,
1

4. The two precedence functions F and G of Floyd. 5
1 : : t--JL. i - i B

5. A table containing syntactic rules of ~.&+&$z~ -~T--:~.-;Llbxn.

6. A table containing the corresponding semantic interpretation rules of @

such that there is a one-to-one correspondence between semantic tier-

pretation rules and syntactic rules.

Tables of type 1 through 4 are found in both COMPILER and METACOMPILER .

Tables of type 5 and 6 are only found in COMPILER.
. .

5. Table Modification

Meta-language text translated by METACO~YIPILER directs modification in

tables of types 5 and 6 by adding, changing, defining, or deleting syntactic rules

anal thuir associated semantic interpretation rules. Thus the meta-language

is itself a simple precedence phrase structure progra language where the

semantic interpretation rule for each meta-linguistic equation is an operation on

tables of type 5 and 6 or a signal to SYXTAXPROCESSOR to form tables of types

1 through 4.

6. Control of the Source Code

The Source Code is composed of both blocks of language text and blocks of

meta-language text. At the beginning of the translation, the text is assumed to be

language text and is processed by COMPILER.

When the word delimiter SAVE is encountered the tables in COMPILER and

the local pushdown stack (state of COMPILER) are saved in a pushdown store and

control is passed to METACOMPILER. In Fig. 1 this may be thought of as

placing the switch in the down position. This is implimented as a procedure call

of METACOMPILER by COMPILER, -

METACOMPILER processes one block of meta-language text. This block

must be syntactically correct. When parsing of the block is complete, a procedure

call of COMPILER by METACOMPILER is executed. In Fig. 1 this is represented

by placing the switch in the up position. This recursion allows LINGO to move up

and down a tree of languages in a recursive manner. When COMPILER is called,

language text in the new language is translated.

A return through the recursion is performed when the word delimiter RETURN

is encountered in COMPILER. At this time the language text in the present

language is parsed to completion. If no syntax error occurs, the tables and local

pushdown stack which define the previous language and the previous state of

COMPILER are restored. A procedure return from COMPILER through META-

COMPILER to COMPILER is then executed.

-6-

7. The Meta-language

The meta-language is based on a structure composed of a single block.

A block is composed of sentences of the form

< operator > < syntax > IS < semantic interpretation rule > ;

The block may contain as many sentences as necessary to define the new language.

The initial language in LINGO is quite simple and is defined only to give the

language to operate on with meta-language text.

It is

<program > : : = <block >

< block > : : =<blockbody>

<block bocty > : : = < identifier >

In a production compiler, the initial language would be an ALGOL-like

language.

There are four meta-language operators. They are

1. DEFINE define a new metalinguistic variable with a metalinguistic

equation and a semantic interpretation rule,

_ 2. APPEND add to the definition of a previously defined metalinguistic

variable by appending the right-hand side of the given

metalinguistic equation to a previous equation and appending

the given semantic interpretation rule,

3. CHANGE delete all previous definitions of the metalinguistic variable

and define it as in 1 ,

4. DELETE delete the definition of the metalinguistic variable from

the grammar.
. .

Syntax is defined in a modified Bachus Normal Form. Word delimiters and

delimiters are enclosed in quotations to differentiate them from metalinguistic

delimiters.
-7-

Semantic interpretation rules are represented by machine language code.

The symbol + , used as an address in the symbolic code, represents the identifier

which was last seen by the parsing procedure. Identifiers are stored by the

parsing algorithm in a pushdown stack and removed as used.

Several examples of sentences in the meta-language will help to clarify this

discussion. Consider the sentences

DE FHNE < statement > +- 9DENT”. It - ‘I. < leftpart >. “;*’ IS STO*;

DE FINE < Ieftpart > - <expression > IS EMPTY;

The equivalent Backus Normal Form for the syntactic rules is

<statement > : : = <identifier > - < leftpart > ;

‘. -. . < leftpart > : : = <expression >

The semantic interpretation rules are

ST0 * : Store the value of the stack in the location
-

specified by the last identifier seen in the parsing algorithm,

EMPTY : Null operation.

a. An Example of Language Translation in LINGO

In the following example; numbers -are used to represent blocks of text to be
; t 2 Pc‘i” -‘.

discussed. In some cases the block is a single word delimiter.

Initially, language text is translated by COMPILER in the basic language of

LINGO.

1. The first identifier encountered by COMPILER is SAVE. The tables

defining the basic language and the state of COMPILER are stored in

-
the pushdown stack and METACOMPILER is called.

2. The block of meta-language text from START to FINISH is translated by

METACOMPILER and a new language is defined. Sentences of this

language are ALGOL-like statements with the righ$patifl#a simple

arithmetic expression using only addition.

-8-

..,

11. Bibliography

1. WIJNGAARDEN, A. VAN. “Generalized Algol , ” Annual Review in

Automatic Programing, Vol. 3, pp. 1’7-26.

2. WLTNGAARDEN, A. VAN. “Recursive Definition of Syntax and Semantics I”

; ,.‘,. _ .IFIP Working Conference on “Formal Language Inscription Languages ? ”

Vienna, 1964.

3. deBAKKER, J. W. “Formal Definition of Algorithmic Languages : ”

Mathematisch Centrum, MR -74, Amsterdam, 1964.

4. WIRTH, NIKLAUS, and WEBER, HELMUT. ~X’uler: A Generalization

of ALGOL and its Formal Definition, ” Part I and Part II, C. A. C. ;liI. ,

pp. 11-23, January, 1966, andpp. 89-99., Februari, 1966.

5. FLOYD, ROBERT W. f%yntax Analysis and Operator Precedence, If

J. A. C. M. Vol. 10, pp. 316-333, July, 1963.
.

-

