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ABSTRACT 

'A sensitive test of the theory of quantum electrodynamics as 

applied to muons is analyzed in this paper. The test consists of 

photoproducing mu-pa.irs in hydrogen such that the negative muon is 

produced at small angles with respect to the incident photon and 

with nearly all of the available energy. The positive muon and 

the recoil proton are not detected. The cross section is calculated 

from the Bethe-Heitler amplitude treating proton recoil exactly. The 

effect of proton structure is analyzed in terms of the two form factors 

measured by elastic electron-proton scattering. These form factors 

are approximated by a power series in the invariant four momentum q2 

transferred to the nucleus. 

Radiative corrections appropriate for the experimental resolution 

are calculated and are shown to reduce the Bethe-Heitler cross section 

by about five per cent. The cross section for muon pairs from the 

decay of known heavy vector resonances is found to be negligible. 

The flux of negative muons from the decay of a photoproduced JI- is 

calculated and is shown to be a limiting factor in choosing the 

energy resolution of an experiment. 



I. INTRODUCTION 

In the pa.& few ycare, the results of eeveral experlmentn have 

cast doubt upon the validity of quantum electrodynamics at small 
. . 

distances. 1,2 A new test of quantum electrodynamics as applied to 

muons has been proposed by Drell 3 in which muon pairs are photo- 

produced in an extremely asymmetric kinematic condition. In this 

paper, a detailed analysis of this proposed experiment is made. 

In the asymmetric kinematic configuration, the negative muon 

is produced in hydrogen at small angles with respect to the incident 

photon and with almost all of the available energy. The positive 

muon and the recoil proton are not observed. This arrangement is 

advantageous to electron linear accelerators since these machines 

produce intense beams of electrons and photons concentrated in very 

short pulses. This makes coincidence experiments much more difficult 

than single-particle counting experiments. We choose to detect the 

negative muon since, in the absence of neutrons in the target, the 

threshold for producing a high energy u- by the reaction 

+ 
y+p-tfl -+ll +p 

L p- + Fp 

is approximately 40 MeV below the threshold for the reaction 

Y+P -y.i + p+ + p. Thus, if the energy resolution of the detection 

apparatus is restricted to a 40 MeV region below the p-pair threshold, 

any CL- detected is guaranteed to be one member of a pair. The 
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production of a single p- or n- from hydrogen is excluded by charge 

conservation. If the energy resolution of the experiment is larger 

than b0 MeV, a correction must be! made to the obeerved counting rate 

to allow for muons from pion decay. 

The prediction of quantum electrodynamics for the muon pair 

photoproduction cross section is calculated in the usual way from 

the matrix elements corresponding to the two Feynman diagrams in 

Fig. 1. This experiment probes quantum electrodynamics at small 

distances since the virtual muon in Fig. l(b) is forced to be far 

off its mass shell. If the undetected P+ is non-relativistic, 

the mass of this virtual muon is M (2mk) 112 . The virtual muon in 

Fig. l(a) is much closer to the mass shell with 

(k - pm)2 - m2 = - m2 (1 + ee2k2/m2) . 

However, in transverse gauge in the laboratory, both diagrams are 

found to give approximately equal contributions. Thus, if the muon 

propagator differs from that predicted by the present theory of 

quantum electrodynamics forPmuons far off their mass shell, the 

experimental cross section will be different from the cross section 

calculated in this paper. 

The effect of proton structure in first Born approximation 

can be completely and unambiguously accounted for in terms of the 

two invariant form factors measured in elastic electron-proton 

scattering, GE and GM, which depend only on the invariant momentum 
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2 
trnnsfer,q l 

This is a consequence of the vector nature of the 

exchanged virtual photon and of electroma@etic current conservation. 

Besides approximating the form factore by a power series in q2, no 

other approximations are made in calculating the pair production 

cross section to lowest order in (31. The method of integration over 

the unobserved muon and proton is such that the expansion of the 

form factors can be made as accurate as desired by adding higher 

powers of q2. 

The expression for the pair production cross section in lowest 

order in 01 isderived in Section II. In Section III, radiative 

corrections appropriate for the proposed experimental situation 

are calculated, keeping terms of order 4-n (w-/m) relative to 

unity. These corrections reduce the cross section by # 5 per cent 

for photon energies of z 15 GeV and an evergy resolution of # 200 

MeV. In Section IV,. 8.n analysis is made of the contribution of 

virtual Compton terms such as the photoproduction of vector resonances 

with their subsequent decay into a muon pair. In Section V, we 

estimate the flux of negative pions photoproduced in the target. 

These particles can produce a spurious background of muons, and 

their presence imposes an upper limit on the energy resolution of 
I 

an experiment. 
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II. DETAILS OF THE PAIR PRODUCTION CALCULATION 

c The general formula for muon pair production in the first Born 

approximation has been derived by Drell and Walecka. 4 
Their formula 

includes all nuclear effects. . . The set of six invariants which were 

chosen for that pa,per were not convenient for the asymmetric kinematic 

configuration and a new set shown below was chosen for this paper. 

If hydrogen is used as the nuclear target, there are only five inde- 

pendent invariants since the invariant mass of the final nuclear 

state is the same as that of the initial nuclear state. 

Table I defines a.11 symbols used in this pa.per. We chose the 

five independent scalars to be 

y1 = 2k*p- , 

y2 = 2k*q , 

y3 = 2k*P , 

y4 = 2P*z , 

y5 =q2 , 

0) 

where z =p - k. In addition we define x2 = y2 - yl = 2k*p+. 

The prediction of quantum electrodynamics for the cross section 

for muon pair production can be evaluated by standard technique6 

using the two Feynman diagrams of Fig. 1. One find6 

,3 d3p- d3p+ d3P' 
da=-- -E' -+ & S4(k+P-PI-p+-p ) Wuv tiv , n2 20 2"+ (?I 

9 

-4- 



where 

wiv M@ = ; W1(Y5) 

1 +- - 
I 2Y 

2 
x2 5 

l-x2+ [f1y5+%] 

1 
+ 2 

x2 
1 f5 Y5 

+ f3 Y5 + fJ+ 1 
+f 6 II 

(3) 

+bw(Y) yl 2 5 (-$x2+[f7y5+f8] 

+L f 
[I x2 g y 52 + flo Y5 + fll I 

1 +2f 
[ 12 Y5 + f13 

II 
9 

x2 

and where 

w2(s2) = 
M2 

l- q2/4z 
GM2h2) . 

I 

(4) 

(5) 

GE and GM are the usual electric and magnetic form factors for 

the proton. In order to do the final phase space integrals for the 

positive muon and the recoil proton in closed form, we approximate 

Wl and W2 as follows : 

w&q21 IY s2($ c12 + Bl q2 + Cl s4) 

w,(q2) z MY 1+B2q2+C2q4) . 

(6) 

(7) 
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The constants fl,,.13 are functions of the fixed kinematic 

variables and are listed below in units of the muon mass (m = 1). 

1 
f1 p2 r;;-’ ( > 
f2 = 4f, + 4 

f4 = 8 

f5 = - f3 

42 2 

f8 =$- 

03) 
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The positive muon and the recoil proton are not observed so the 

phase space integrals for p+ and P' must be carried out. Since the 

proton form factors are functions only of q2, it is advantageous to 

change integration variables so that the invariant q2 becomes one of 

the new integration variables. In this way the double differential 

cross section d2c/dQ dw can be written as an indefinite integral - - 
2 in q . The value of the cross section is then obtained by evaluating 

the indefinite integral at the kinematical maximum and minimum of q2 

as determined from ko, co , and 8 . Approximating the "form factors" 

by a power series in q2 permits one to do the integrals in closed 

form. 

In terms of the new integration variables, the phase space 

int!!t{rals may be written a.6 

J d3P+ d3p’ 
&k+P-P'-p+-p-) = (9) 

where V 
9 

is the azimuthal angle of q with respect to 2 = p - k. ru N- 

The invariant x2 = y2 - yl is the only invariant which depends on 

(P and is of the form x2 = d - e cos rP where d and e are functions 
Q 9 

of q2. 

Finally we may write (for the laboratory system) 

where 

d2a 
dR du, - - F (CL) - ‘(<in)] 9 (I-O) 
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The indefinite integral c(x) has been evaluated and is shown below. 

c(x) - ” (fl- 
'1 I g) x + (f;! - h) & x - 25 + f310 + f 4 I 
J. I 

-1 + 

+ fsJo + f6J-1 
1 

4Bl +- 
Yl I 

(fl - g) $f f (f2 - h) x - 212 + f311 + f410 + 

+ f3Jl + f6Jo 
I 

4cl +- 
yl I 

(fl - g) $ + (f2 - h) $ - 213 + f312 + f411 + 

+ fsJ2 + f6Jl 
I 

01) 

+!t!f 
5 I 

(f7 - i g) &n x - (fa - $ h) $ + f910 + flOIyl+ fllI-2 + 

4M2B2 
+- 

5 

+ f12J-l + f13J-2 
I 

(f7 - ; @;) x + (fs - i'h) tn x + f911 + f& + flll-l + 

+ 52JO + f13J-l 
I 

4I&, 
+- 

5 I 
(f7 - ; d $ + (f8 - ; h) x + f I + flOIl + fllIO + 9 2 

+ f12Jl + f13Jo ' 
1 
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where 

(d2 - e2) 
l/2 

P (a.q4 + b q2 
112 

+ 4 9 

In s 
J 

x" dx 

( ax2+bx+c) l/2 ' 

Jn = J (g x + h) x" dx 

( ax2+bx+c) 312 l 

The values of tax and are respectively the two roots of 

the following quadratic equation in q2: 

If necessary, one may easily extend the definition of C(x) to 

include higher terms in the expansion of Wl and W2. This expansion 

is the only approximation made in calculating d2c/dn dm to the - - 

lowest order in (r. 
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A computer program has been written in SUBALGOL for the Stanford 

IBM 7090 to tabulate d2a/dR dw for arbitrary values of ko, u , - - 

and 8 . 
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III. RADIATIVE CORRECTIONS 

In this section, we calculate the radiative corrections to aB H 

due to both real and virtual photons. These corrections fall into 

two categories: and infrared term containing a resolution logarithm 

&(,/AE) and a remainder term not depending on the resolution loga- 

rithm. The infrared term consists of a factor multiplying the Bethe- 

Heitler matrix element. In this term, proton recoil and proton 

structure corrections are retained. The remainder terms are small 

(of the order of one per cent) and we have neglected proton structure 

and proton recoil in these terms. 

The calculation was divided into three parts. In (A), following 

Yennie, Frautschi, and Suura,5 we isolate that part of both the real 

and virtual radiative corrections which contains an infrared diver- 

gence. The sum of these two parts is independent of the 'hhoton mass" 

and is of order CY %I(co_/m)&(Lu_/nE)cB-R. In (B) the remainder of the 

virtual photon terms are calculated, and in (C) the remainder of the 

real photon terms are calculated. 

A. Infrared Terms' 

Of the fourteen virtual photon diagrams in Fig. 2, only diagrams\ 
\i 

5v, 6v, 7v, Bv, llv, and 12~ contain infrared divergences. The matrix 

elements corresponding to diagrams 11V and 12V may be written as 

? 
rem 
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where 

M1lv 
*4 1 

IR=$T J 
d4& x 

t2-A +ifz 2 

i 
VP---e,* VP+4 

x (~2+,.~)(.e2+2p+.Q ) 1 G(P-) 
1 

e*Y p y 
-' - k*y - m a*y \ (13) 

The remainder term 

+ a*y 1 
-p+*y + key - m E'Y V(P+) l 

I 

is not infrared divergent. 
rem 

If we now examine the expression 

cqj~~ ‘/ d4& PP--Ql-r PP++Qp 

8n -e2 - A2 
(14) 

+ ie (424?P-*&) + (42+2p+*L) 

we see that one can write 

6 TV + M6v + M.rv + %v a%-H ' 

where S-H is the matrix element for the two Bethe-Heitler diagrams 

in Fig. 1. 

S-H = + %?-) E'Y p ,y _ key 
9 I - 

_ m aoy 

+ a-y 1 
-p;7 + key - m e*' I v(P+) 

The integral CCB is not ultraviolet divergent. Since ( 
5 

v + Msv 

+ Yv + %v) is ultraviolet divergent and (MllV + M12V) is not ultra- 

violet divergent, the term M ( 11v + M12V)rem must now contain the 

ultraviolet divergence necessary to cancel the divergence from dia- 

grams lV, 2V, 3V, 4V, 9V, and. 1OV. We shall later see explicitly 

05) 
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that this is true. 

Of the six real photon diagrams in Fig. 3, only diagrams lR, 3R, 

l+R, and 6R contain infrared divergences. As in the virtual photon 

case, we may write 

(Mm + M3R +M4R+ht&= M~+"3R+M4R+%RIR 
i 1 

lR + M3R + M4R ' 

where 

Mm + M3R + M4R + M6R = IR 

=e 

1 
“7 p,*y - k.7 - m aoy 

+ a.7 1 
-p+.y + k*7 - m (16) 

This term is gauge invariant in both photons and T) is the polari- 

zation four vector of the soft photon in the final state. 

The contribution of the real photon infrared terms to the cross 

section is found by squaring the matrix element and integrating over 

the appropriate final phase space. If we cut off the phase space inte- 

gral for & at trnax = 43 and sum over the polarizations of the final 

state photon using c vVqV = -gVCL, we get 
PO1 

&$[ &$#R + M3~ + M4R + M6R)IR(2 = GkB-Hi2 > (17) 
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where . . 

The contribution of the virtual photon infrared term to the cross 

section is given by 2CC31MR-H)2. Adding the contribution from both the 

real and virtual infrared terms, we get a correction of 

a(infrared) = ti(i + Re B)cB H . 

This quantity is independent of the photon mass h and is given by' 

This formula contains only the leading logarithmic terms under the 
2 

condition 2p;p, >> m . 

B. Virtual Photon Terms 

The remaining virtual photon matrix elements were evaluated, 

keeping only those terms which contribyted to order Q: &(m-/m)u, II. 

The matrix elements Mgv, MIOV, M,L3V, and Mlbv were calculated sepa- 

rately; MIV, M3V' and MllV rem 
( ) 

were calculated together over a common 

denominator as were Ma, Mhv, and M12V 
( ) 

. Diagrams ?V,~V,?V, and 8v 
rem 

were considered in part A of this section. The matrix elements 

listed below were evaluated assuming 

2k*p+ = 2p+*p- >> -q* >> 2k*p- = m2 + 

-14- 



The divergent integrals were evaluated using a large cutoff mass A 

on the photon propagator. 

L ^“;(p-) Myv = 7 ,2 a*7 -p+.y +lk.7 _ m “7 v(p+) 

t 

- $ b-i (~)h-~ { a’7 -p+.7 +lk.r _ m “7 ] dp+) 

a2 
MIOV Xn ’ u(P ) E-7 p 7 -lkS7 _ i a-7 v(p+) =7”2- -0 

i I 

M13v 
=o 

94v = O 
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I 

The terms 

?PJ '* v(P+) 
+ 

and 

?P,) .y&$y V(P+) 

may be replaced by 

U(P-) c-7 I 1 1 
-p;7 + k*7 - m s-7 + E'7 

P-*7 - k'7 - m 

introducing errors of order m/k. We may thus write the non-infrared 

virtual photon radiative correction matrix element as 

1 1 
Mv 

=- -p;7 + k-7 - m E'7 + E'7 
P-.7 - k-7 - m a-7 vb,) X 

I 
(21) 

The lowest order radiative correction resulting from the non- 

infrared virtual photons is given by the interference of Mv with sVH. 

One obtains 

u(virtua1) = & 
ii 

+P l P-) 
* - (22) 
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C. Real Photon Terms 

The remaining real photon matrix elements were calculated by 

combining the non-infrared parts of diagrams lR, 3R, 4R, and 6R 

with diagrams 2R and 5R into two matrix elements,each of which was 

gauge invariant in both photons. The non-infrared real photon 
6 

radiative corrections were found to be 

u(rea1) = !!Y$ &, (G),& [$ (k-o--m)3 + m(kiu-)&-a--m)] (23) 
x 

after integrating over the appropriate final phase space for both 

the unobserved positive muon and the soft photon. 

In addition to the terms mentioned above, several terms of 

order 0. &2(cU-/m)oB-H appeared in both virtual and real radiative 

cross sections but cancelled out of the total radiative correction. 

The total radiative correction is the sum of Eqs. (lg), (22), and 

(23). 
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IV. COMPl'ON CORIUXTIONS 

Besides the Bethe-Heitler process for producing muon pairs, 

it is possible that the incident photon can be scattered by a virtual 

Compton process with the resulting tlma-like photon decaying into 

a II+ - p- pair. If the invariant mass of the final muon pair is 

close to that of a. heavy photon resonance (e.g. p" or o), we expect 

an enhancement of the cross section for muon pair production at 

that energy. If the p- is detected at small angles (6- ,< m/k) 

and with essentially all of the incident photon energy, the invariant 

mass of the final muon pair is M (2km) 112 . Therefore, we expect 

this process to be most significant for k z mv 2pm. 

In the following sections we calculate the production of 

rr111-'1 pirs via vector resonance channels. In (A) the vector 

resonance is produced by a one-pion-exchange (OPE) model and in 

(B) a diffraction model is used. 

A. One-Pion-Exchange 

Let us assume the incident photon is coupled to the vector 

resonance and the nucleon as shown in Fig. 4. 7 The 7nvl vertex 

has a unique (up to a form factor) gauge invariant form 6f 

f 
7nv1 

- cabcd ~'(7) kb(r) +) kd(vl) l ’ m x 
(24) 

With this vertex, the coupling constant is normalized to the partial 
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width of the process v 1 +y+n. 

We also assume that the vector resonance couples to photons with 

the coupling 

The inverse coupling constant l/2 7 is 
v1 

decay width of the vector resonance by 

r 
3 

related to the leptonic 

4 

+,3- l ( I v1 

(26) 

(27) 

Near resonance (k M m v:i2m) and for 8 +O, and w -+k, .the 

cross section as calculated with the OPE model is 

2 where gfiN/4n = 14 is the nucleon coupling constant. 

B. Diffraction 

The present data on the photoproduction of vector resonances 

such as the p" seems to be inconsistent with the OPE.model while a 
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diffrartion model seems much more consistent. 0 In order to estimate 

the cross section for muon pairs In a diffraction model, we use the 

Amati, Fubini, Stanghellini' model of diffraction scattering to 

relate the vector resonance photoproduction to observed rc-N 

diffraction measurements. Using this model, we repla.ce%.the top 

rung of a ladder graph for n-N diffraction with a y-v rung as in 

Fig. 5. 

The V~IIV~ vertex has a unique gauge invariant form of 

f 
vllTv2 E 
m abed ~'by) kb(v,) h2) kd(v2) l 

If 

In Ref. 7, the top rung of Fig. 5(b) was approximated by 

f ylrw fpncu 
2 ( &(P> l 

m 
E(7)) [; “p”] ’ 

ll 

with v 1 
= w, v2 = p, and mvl = mv2 = mo . Under similar conditions 

but with arbitrary vector mesons (note that the G parity of v1 and 

v2 must be different), this rung can be approximated by 

(29) 

f f 
7nv1 vlfiv2 

2 ( +q * ~(7)) i 
m 3l [ 

mf m; + m: - - 
2 1 mt; 1 

The top rung of Fig. 5(a) can be approximated in the forward 

direction by 

(30) 

(31) 

(32) 
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where 

1 e: xn 
r ( > 

3 
v3 -+nn -12 -CT-- I J+m 2 

1 --f- 

v3 

312 

t 

m 
v3 l 

J 

Using Eqs. (31) and (32), we may relate muon pair production 

through a diffraction process to the total x-nucleon diffraction 

(33) 

scattering cross section by 

At present, the most likely candidates for the vector resonances 

are v 1 = p, v2 =w, and v3 = p. Since m z rnLo 
P M 780 MeV, the resonance 

photon energy is approximately 2.9 GeV. At this energy, using 
r 2 -4 0 

PRY 
w 0.13 MeV, I' 

w --yl+p- 

10 I; , f2 ump/4 IT fil 0.4, and 7fN z 27 mb, 

the contribution of the diffraction channel is about one percent of 

the Bethe-Heitler cross section. 
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v. PION BACKGROUND 

Another possible source of high energy muons is through the 

reactions 

7+p-+rr- + (anything) 

L p- 4Tp . 

There are several possible processes by which it is possible to 

photoproduce a. high energy rl-. The two most likely candidates are 

peripheral one-pion-exchange as in Fig. 6(a) and diffraction pro- 

duction of a. p" with its subsequent decay into a fl+ ni- pair as in 

Fig. 6(b). 

The cross section for producing negative pions at energy 

0 >>rn II and angle 6 < rn*/w via ‘a peripheral one-pion-exchange ,- 

mechanism was shown by Drell 10 to be 

d*o 
d.Q do - - 

a sin *0 ~(k-w) 
=- 

8n2 (1 - @- cos e-)* k3 - 
uT (k 

fi4P 
-4 . 

This formula assumes k - ~1 >> mrr so that the velocity of the r[+ 

in the scattering n 4 + +p-+n 4 p is near unity. To correct for 

this, we multiply U T 

fifP 
by 

(35) 

v = (k - cue)* - rnn2 '/*/(k - a-) . 
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Thus, near threshold, the cross section is 

d*o sin2 8 
2 l/2 

CY me 
dRdw =- 

(k-w_)* - mrs ] 

- - 8n2 (1 - B cos 8 )* k3 
UT (k-a-). 

f14P 
(36) 

This formula. reduces to Drell's original formula for k - w >> m IT' 

Muons from the deca.y of these photoproduced pions could enter 

the detection apparatus of an experiment and would be indistinguishable 

from muons from the Bethe-Heitler process. The difference in the 

threshold energy for muons and for pions is approximately 40 MeV. 

If the energy resolution of the detection apparatus is restricted 

to this 40 MeV region, muons from pion decay are kinematically for- 

bidden. As one goes below the threshold for pions, the cross section 

in Eq. (36) quickly becomes larger than the Bethe-Heitler cross 

section. The pion cross section is especially large in the region 

of the 3,3 resonance for the n4p system. If the energy resolution 

of the detection apparatus is too large, the number of spurious 

muons will be an appreciable fraction of the number of Bethe-Heitler 

muons. Thus, the presence of muons from pion decay puts an upper 

limit on the energy resolution of an experiment. 

The pion flux from o" decay can be calculated as follows. The 

present experimental data. on p" photoproduction indicates that 

there is a sharp diffraction peak in the forward direction. In 
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fact,. the cross section can be written as 8 

where t is the invariant momentum transfer t = (k - I po)' and 

B z 9.5 (AeV/c)-*. If this p" then decays into a pion pair with 

the negative pion produced at small angles and with all except a 

few hundred MeV of the available energy, t will be near its minimum 

value 

cross 

is in 

t min c - (m,*/2k)*. We 

section by its value at 

overestimating the pion 

ma.y then approximate the p" production 

OO. The error is this approximation ' 

flux. We then let the p" propagate 

to the porn vertex with a propagator 

[ 

2 
(P+ + P-) - mp2 + im I? 1 -1 

PP - 

The pion decay vertex is given by gprrTI. (p - p ) l 

+cL 

After integration over the phase space available to the r(' 

consistent with the p" propagator, we find 

2 * *e 

2n 
YP 

3 p- ,“;” - x 

_ k P 
(37) 

C tan -1 

2 2 - 
4u40 -mp+2mn 

m* 
4 tan" ' 

- 

X 

*cu+o (l-B+) - 2mz 
mT‘ 

PP 
m r 

PP 1 
forEi_Lm,/kandk-o, al-4mn. 
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.For k z 15 GeV, 8- ,< m,,/k, and k - w- ,< 4mR, this cross section 

is smaller than that of the peripheral model discussed above by at 

least an order of magnitude. At energies and angles larger than 

these, the p” decay process is even more negligible. 

As an example of how the pion background limits the energy 

resolution of an experiment, let us consider an experiment at k = 15 GeV 

and 8 = o.*O. The cross sections for fi- photoproduction [Eq. (36)] 

and for P- photoproduction [Eq. (lo)] are plotted in Fig. 7. 

At 15 GeV, a fi- will travel approximately 800 meters before 

it decays into a P- (assuming a lifetime of 2.5 x 10 -8 sec.). Since 

the detection apparatus is unlikely to be more than ten per cent 

of this deca.y distance from the target, only a few per cent of the 

photoproduced pions will decay in time for the decay muon to enter 

the detector. It is relatively easy to discriminate between pions 

and muons at the detector. 

As one can see from Fig. 7, the pion cross section is an order 

of magnitude larger than the muon cross section for cu M 14.66 GeV. 

!L'hus, if the energy resolution of the detector extends from threshold 

(t z 14.88 GeV) to the region of the peak in the rt- cross section, 

at least several per cent of the muons which are detected will come 

from II- decay. If the energy resolution is restricted to approximately 

100 MeV below threshold, only about one per cent of the muons will be 

from fl- decay. 

Thus, in order to do an accurate experiment, the energy resolution 

must be large enough to obtain a resonable counting rate and small 

enough to limit the number of muons from pion decay. 
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VI. CONCLUSION 

In this paper we have analyzed a proposal for a new experimental 

test of muon quantum electrodynamics. Such an experiment is now 

being conducted at the Stanford HEFL electron linac at 800 MeV 11 

and another experiment is being planned for SLAC at 15-20 GeV. 12 

An expression for the pair-production cross section has been 

derived and the ra.diative corrections estimated. The effect of 

virtual Compton processes has been shown to be negligible at the 

energies of interest to the two experiments above. The spurious 

background of muons from the deca.y of pions has been shown to limit 

the energy resolution of an experimental test of the theory. 

The 800 MeV experiment will test the validity of the quantum 

electrodynamic description of the muon propagator at virtual muon 

masses of = 400 MeV while the 20 GeV experiment will test the 

propagator at M 2 GeV. 

It may also be possible to probe for new vector resonances with 

mass w (2km)l/* by varying the photon energy and detecting the muon 

decay mode of these resonances. 
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Table I. Glossary of Symbols 

k 4-momentum of incident y-ray = (ko, &) 

P- 4-momentum of outgoing negative muon = (w-, p ) N- 

P+ 4-momentum of outgoing positive muon = (Lu+, &) 

P 4-momentum of initial proton = (M, 2) 

P' 4-momentum of recoil proton = (E', P') 

9 p- P'=p++p -k 

7, pm -k 

E polarization 4-vector of incident r-ray 

a 
CI 

proton matrix element = - iemu yu u(P) 

m mass of muon 

M mass of proton 

8 angle between p N- and k in laboratory 

A large regulator mass in radiative corrections a 

h photon mass (for handling infrared divergences) 

a e2/4n w l/l37 

P proton magnetic moment (2.79 nuclear magnetons) 
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FIGUX3 CAPTIONS 

1. "&the-Heitler" diagrams for pair production. 

2. Feynman diagrams for virtual photon radiative corrections. 

3. Feynman diagrams for real photon radiative corrections. 

4. One-pion-exchange production of muon pairs. 

5. Rung diagrams for diffraction scattering: 

(a.) Pion-nucleon 

(b) Photoproduction of vector resonances. 

6. Pion background diagrams: 

(a) One-pion-exchange contribution to fl- production 

(b) Diffraction production of a p" with its subsequent decay 

into a pion pair. 

7* Muon and pion photoproduction cross se&ions at k = 15 GeV 

and 8 = 0.2O. 



I 

-P + 

P- 

( 509-1-A) 

Fig. 1 



IV 

T z 
4v 5v 

7v 8V 9v 

T : IOV II v 

x 

6V 

I3 v I4 v ( 509-2-A 1 

Fig. 2 



k 

4 
5R 

k 2R 

k 4R 

6R 
( 509-3-A ) 

Fig. 3 



“32, 
y y.y 0 0 

( 509-4-A ) 

Fig. 4 



33 
* 

SOfiANCE 

I I I *ix V I 

I 

I 
IT 
I 
I 

I I 

‘a 
V 

I 1 
I 

I 

33 
SOiAN ( 509-5-A I 

Fig. 5 



Yk 1 &s=~, 
5’ N 

=A 
7T+ 

DIFFRACTION 

t 509-6-A ) 

Fig. 6 



I 
3 

-u I 
ci: 
u 
\ 

b cv 
u 

-3 IO i I I I I I I I I 

k= 15 GeV 
@= 0.2 o 

I 

” 14,5 14.6 14a7 1488 14.9 15.0 
w-(GeV) 509-7-A 

Fig. 7 


