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ABSTRACT 

Bremsstrahlung spectra as a function of target thickness up to several radi- 

ation lengths to be used for particle production in high energy electron machines 

are investigated. The shower equations are cast in integral forms which are then 

solved by iteration. The iterations are performed up to the second generation 

photons; and the numerical results show that for most experiments the first gen- 

eration photons alone will give sufficiently accurate results. For example, for a 

target thickness of two radiation lengths and for k/E0 = 0.5, where k is the photon 

energy and E. is the incident electron energy, the ratio of the second to the first 

generation photon intensity is 8%. This ratio decreases rapidly as one increases 

k/E0 and decreases the target thickness. A very simple formula which approxi- 

mates the first generation photon spectra as a function of target thickness is derived, 

This approximate formula is shown to be accurate enough for estimatmg the secondary 

beam prodaction by electrons. As byproducts of our investigation the first and the 

second generation electron and positron spectra were obtained as functions of target 

thickness. These spectra are useful in estimating the electron and positron back- 

ground. Some aspects of target consideration for the secondary beam production 

are given as an illustration of the usage of our formulae. 



P. INTRODUCTION 

It is expected that muon, pion, kaon, and antibaryon beams of usable intensity 

can be photoproduced by an electron machine such as the Stanford Linear Acceler- 

ator. In order to estimate the flux of these secondary beams, it is necessary to 

have a simple and reliable formula for the bremsstrahlung spectra covering target 

thicknesses up to several radiation lengths and the photon energy, & in the range 

$Eo< k<Eo, where E o is the incident electron energy. 

Most of the articles in the literature1 are mainly concerned with photon energy 

much smaller than an incident electron energy, Eo, and hence are inapplicable to 

our problem. Among experimentalists, a computer program by R. Alvarez 2 seems 

to be widely used. Alvarez’s program essentially treats the emission of the brems- 

strahlung by the first generation electrons (degraded in energy using Heitier’s 

straggling formula) and the absorption of the bremsstrahlung by a factor 1 - p (t-t,) 

due to pair production, where t-t’ is the target thickness (in radiation lengths, r. 1. ) 

from the point of gamma production t 1 to the point t where the gammas are to be 

used. Actually the factor 1 - f (t-t’) in Alvarez’s program is a series expansion of 

expc- g (t-Vi)and hence is applicable only for target thicknesses very small compared 

with unit radiation length. There are many other technical notes about this subject 

by various people. Every experimentalist seems to have his own version of a thick 

target bremsstrahlung formula, and each one of them seems to be widely different 

from the others, none of them being very convincing. Apparently what is needed is 

a detailed derivation of a formula whose error can be evaluated and range of applic- 

- ability stated. Also, in case a refinement is required, the treatment given can be 

a useful reference. 

The method we used is similar to that of Bhabha and Heitler. 3 This method is >-ar- P 

titularly suited to calculatin, o‘ the shower components whose energies are not sma,;l 
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compared with the incident electron energy. The method consists of successive 

approximations for solving the shower equations: First calculate the ener,gy dis- 

tribution of the first generation electrons, Ie % E), as a function of target thick- 

ness. 1:) (t, E) represents the straggling of the incident electrons due to the 

emission of bremsstrahlung. Then IF)(t, EJ is used to calculate the first genera- 

tion photon spectra I(s) (t, k) with absorption of the resultant photons due to pair 

production taken into consideration. (1) I y (t, k) is then used to calcula”,e the second 

generation electron spectra, Ie (‘) (t, E) , by pair production with straggling of the 
. (2) resliitant electrons due to the bremsstrahlung taken into consideration. le (t, E) 

is then used to calculate the second generation photons, I y’ (t,k}, and so forth, 

urntii the cantribution becomes negligible. The energy distribu%~on OI - +&& pjlQtQp& as 

a function of thickness is then given by the sum, 

lqt,k) =IyJ (t,k) + I$ k) i- b3)(t k) + . . . , y ) . 

I3habh.a and Heitler3 were mainly concerned with the multiplicity and energy dis- 

tribution of electron showers, whereas we are interested in obtaining a reasonably 

accuraze and compact formula for I 
Y (t, k) to be used in photoproductior of particles, 

Our main results are contained in Eqs. (24)) (25) and (29) o Ecpatio-;; (Z$J gi-sJes 

the first generation bremsstrahiung energy distribution as a f~&~on of target 

thickness I$)(t,k). 

We have used the complete screening formula for the bremsstrahlung cross 

section. Hence our 1;’ (t, k) is not reliable at the tip of the bremsstrahiung spectra. 

Our formula is correct only when 

l--+ E >> 137 m , 
0 2~; E. i 137 m 

where z is the atomi ‘c inumber of *te target and m is the mass of the electron. 
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%or example, for E. = 10 BeV and for Be target (Z = 4), E must be mua larger 

than 1. j x 1f3* For the type of experiment in which a precise shape ol the brems- 

strahlung tip is required, one can easily insert the exact formula for the brems- 

strahlung cross sect ion in Eq. (23) and obtain an adequate I Y ‘19 (t, k). Eq. (25) is a 

(19 compact expression which gives approximately I ,, (t, k). From Fig. 5 and Table I, 

we see that [1T9@T k9]approx 
Cl9 is indeed an excellent approximation to IY (t, k); thus 

it may be used safely for the purpose of estimating the secondary beam production. 

Equation (29) gives Iv) (t, k) . The small numerical values of I$ (t, k) compared witi; 21 

.-(Y) ,. ‘,*, I Y (t, 1~1 assure us that I t 
3 (t, 1) is negligible. Numerical values of EoIe (‘) (t7 Ej and 

(2) , EoIe tt9 E) are shown in Table II. 

It is a major problem to dispose of electron beams after thay have been used to 

produce secondary beams. The formulae for I!)@, E) and I(e2) (t, E) given in. this 

paper may be used to calculate the intensity and energy distribution of the electron 

beams and thereby assist in the problem of dumping electrons. 

In Section III, we state some of the practical problems involved in using a thick 

target and also illustrate how our formula may be used for the calculation of secondary 

beam yield. 

II. CALCULATIONS 

A. Shower Equations at High Energies 

We are interested in deriving a reasonably compact formula for the photon spectrum 

as a function of target thickness produced by a single incident electron with an mcident 

energy E. > 1 BeV. Since E. is high and we are interested only in the high ener,gy 

component of the shower, we need to consider only the energy loss of electrons due to 

bremsstrahlung and the attenuation of the photon beam due to pair production. X is con- 

venient to measure the thi&ness of the target in units of radiation length. We shall also 

use the complete screening formulae for both the bremsstrahluing and pair production 

. cross sections. As mentioned in the introduction, this will cause inaccuracy near the 

very tip of the bremsstrahluss, especially when the target is very thin. Bowever, bLz,. LiU.3 

difficulty ean be remedied easily later. 
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When an electron with energy E passes through an infinitesimally i;nin target 

dt (in r. 1.)) the number of photons produced in the energy internal dk is4 

1 . 

When a photon with energy k passes through dt, the number of electrons 

plus positrons produced in the energy interval dE is 

2 4 dt dE k 
i 

3 (1 

The number of photons lost due to pair production in dt per incident photon 

is 
; dt . m 

Consider an electron with energy Eo incident on a target, as showh in Fig. 1. 

Let the intensity of the photons in the energy range dE at depth t be Ie(t, 2) diE 

and that of the photons in the energy range dk be I$, k) dk. Then after passing 

through an additional thickness lit, Ie and I Y are altered by bremsstrahLmg z~nd 

pair creations. From Eqs. (I), (2) and (3) we obtain the shower equations: 

@O 
qtt, k) 

at = 

-; IY(t,k) i- I,Ch El $ Cl 68 
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The -~st two integrations in Eq. (5) have infrared divergence; however> the 

difference of the two integrations is fir&e. 

Our objective is to obtain I,, (t, k) and Ie(t, E) with the boundary conditions 

Iy (03 = 0, (6) 

I, (0, E) = d (E-Ed . (7) 

siibstituting I y (t , k) = F (t, k) e 
- .?t 

in (4)) and solving for F(tS k) using the 

boundary condition (6), Eq. (4) may be integrated into the form 

t 
2 (t-t! ) EO 

eg dt? I,@‘, E) f(l-;) + ($)2J dE a 7 (89 
0 

rn, I ne physical meaning of Eq. (8) is clear. The last integration represents the 

bremsstrahlung produced at tq and the term exp(- g (t-V)> just represents the 

attenuation of the photons due to the pair production in going through the thick- 

ness (t-t’). 

Equation (5) can also be cast in a similar form. To do that we first let I y = 0 

and solve Eq. (5) with the boundary condition (7), the result must be, by definitiorr, 

equal to 1:’ (t, E), the intensity of the first generation electrons per incident 

electron. Ie (I9 (t, E) is also called the straggling formula because it represems 

the energy distribution of the incident electron itself after having passed through 

thickness t. For convenience let us restore the E. dependence of ile 49 it, E) 

and write 

I+, E) z e G(t, E, 

Then obviously Eq. (5) with the boundary 

Eo9 . igj 

condition (Yj may be cast in the form 
-CT 

dE’ Gft-t’ , E, E’) 23/@‘,k) x 

0 E 
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BY a direct substitution, one can show that Eq. (10) satisfies Eq. (5). “rhe 

physical meaning of Eq. (LO) is as follows. The net flux of electrons and posi- 

trons at thickness t consists of an energy degraded incident electron beam 

(1) Ie (t, E) plus photon induced pairs. The k integration in the second term times 

dE’dV represents the number of electrons and positrons in the energy interval dE’ 

photoproduced in dt’ . These electron-positron pairs suffer straggling in traveling 

from t’ to t and their contribution to the number of e+ and e- with energy E at t 

is given by the ET and k integrations. Finally dt’ is integrated from 0 t0 t. 

Now Eqs. (8) and (10) are completely equivalent to shower Eqs. (4) and (5) with 

‘boundary conditions (6) and (7). Once I!’ is obtained, Eqs. (8) and (10) can be 

solved by iterations 

;(l-k, + (;j2? cfE , 

4 

dE’ G (t-t’, E, E’ ’ 2+n9 (t,, k’g x 

Y 

“1, 2 & , 

0 E 

j k3 

n= I.,2,3, . . . (13 . 

The final solutions are 

and 
$(t,k) = ,,&$i9 thk9, 

Ie(t , E) = El I:) It, E9 - 

(1) B. First, Generation Electron Intensity, I e (t, E) 

By definition Ie (I) (t, E) is the solution of Eq. (5) with I ,, = 0 . A very good ap- 

proximate solution for I e (I) (t, E) can be obtained by using a Beitler triek;5 namely, 

the bremsstrahlung shape in the last two integrations is approximate6 by a more 

convenient form: 
k 
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In Fig. 2 we compare the shape of the above two expressions. It should be 

noted that for k/E = 0 the two expressions coincide, and for k/E < 0.5 the 

approximate expression is, at most, 10% higher than the exact expression. Since 

the approximate expression for the photon emission is more accurate for low k, 

the resultant solution for (1) I e (t, E) must be more accurate for E closer to E. 

- this is exactly what we want. 

With this approximation we have, from Eq. (5) 

1 dv 

lb-l (l-v 4 
(16) 

Multiplying both sides by ES and integrating E from 0 to m (i.e., taking 

the Mellin Transform of both sides) we have’ 

8M,(t, s) 4 
Me@, s) - (l-3’ M,(t, s) 1 dv = -- 

at 
3 

Qn t-&J 

where 

= - $ M,(t, s) b(l+s) , 

Do 

Me@, 4 = J- ES Is’ (t, E) dE . (18‘) 
0 

Applying the boundary condition It’ (0, E) = d (E-Ed to Eq. (18), we have 

Me(o, s) = EI . (19) 

Hence from Eq. (17) we have 

M,(t, s) = Ei e 
- $ t &l(l+s) 

= Ez (It-s) . 

(20) 
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Using the inversion formula for the Mellin transform we obtain 

p)(t E) = 1 
e ’ 27Yi J 

E-(l+‘) E: (l+s) ds , 

C 

(21) 

where the integration path, c, runs parallel to the imaginary axis with Re s > 0 . 

If one completes the contour by an infinite semicircle on the left plane and eval- 

uates the residue at s = -1, one obtains 

= G(t, E, Eo) . 

This is the well known formula first obtained by Bethe and Heitler. 7 (See Heitler, 5 

4 page 378. Instead of 3 in the formula he used a different value. We used 2 in 

order to force the approximate formula (15) to agree with the exact value at the 

(1) infrared limit (k=o); thus I e (t, E) has the correct value for E near E. .) 

C. First Generation Photons I(:)(t, k) 

Substituting Eq. (22) into Eq. (11) we obtain 

t ti 

I(‘) (t k) = ; , 
s 

0 

j” (j7n,1)“t’m1 [ !L(l-!L) + (!z)2] F , (23) 

Xq;ia-tion (23) as ii; stands has a singularity in the integrand when E. = E and 

-p<: . In order to carry out numerical integration by a computer, it is con- 

venient to write it in a different form. Changing the variable of integration 

-, T, . -x 2, - ii, (; , and integrating by parts, the second integration in Eq. (23) can be 
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written as 

E. QnT 

J 3 4 
wX --e 3 

0 0 

The terms eex and e” are then expanded into a power series and the integra- 

tion carried out term by term. We then obtain 

where u = k/E0 . 
(24) 

The infinite series converges rapidly when u is near 1. For eq&i-@ge sum- I > 

ming the series up to n = 5, one obtains an accuracy of better than 0.1% at I = 0.5 D 

D. Approximate Expression for I y (I) (t, k} 

In many problems in which the photoproduction cross section is given by a simple 

fornda, one may use Ey. (24) directly. However, in some problems lut which zhe 

photoproduction cross section is expressed in terms of multifold integrations, a 

simplified expression representing I t” (t, 9 is desirable. Let us go back to Zq. (23) 

and make the following approximations. 

(1) Replace F 
; (l-i) + ($2 by 1 . An inspection of Fig. 2 &0~7&cj yfg& t:riis 

approximation will at most make a 10% overestimate in the high enerijny haif of the 

bremsstrahlung spectrum. 

(2) Replace log (Eo/E) by (Eo-E)/Eo . This approximation is also good when 

E is close to Eo. 

(3) Replace r($t’) by 3/(4t’j. This replacement is correct to within L2% LPS 

long as 4t’/3 c: 1.25. 
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We obtain then an approximate expression for I!$)&, k) ; 

The approximations made in deriving this formula are extremely crude and 

not valid at all when E /Eo-0 and t’ > 1 . However, the numerical comparisons 

shown in Table I and Fig. 3 indicate that up to t = 2r. 1. and 0.2 < k/Eo <. I, the 

difference between I $) (t, k) and [IF) (t, kg approx is about 0 to 15%. The reason 

for this miraculous agreement between the numerical values of the two expressions 

can be understood by closer inspection of the behavior of the integrand of Eq, (23). 

We notice t?at the integrand is big only when 4 t’< 1 and E +Eo. But our approx- 

imations are good under these circumstances, and hence even though they are very 

bad in other regions of integration, the integrand there hardly contributes anything 

to the final result. 

E. The Second Generation Electron and Bremsstrahlung Spectra: I e t2) Q, E) and I(;) [;I kj 

In this section we would like to make rough estimates of I e (2) (t, @) and I?) (t, k) in 

(1 order to have some feeling for the errors involved in using Ie t, E) and a 
-h:lj k I Y t 

b, k) in 

doing further calculations. 

Substituting Eqs. (25) and (22) into Eq. (12)) we obtain 

EO 

I12)(t E) = dt’ e ’ ir 
dE’ 

0 E (26j 
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Since we are interested in E very close to E. and E I E7 s k 5 X0, we may 

approximate by 1. Using the identity 

the integration with respect to dE’ can be carried out and we obtain 

Now the gamma function may be replaced by 1 because when 3 4 (t-t’) ,< 1.25, this 

replacement causes 12% error at most ,and when 3 4 (t-t’) > 1.25 the term 

(& k/E) i kt’) decreases rapidIy with increasing t-t’ when k/E is very close to 1. 

With these approximations the integration with respect to t1 can be carried out and 

we obtain 

I(‘) (t E) = & 
e ’ 

0 

(1-x) - (1-Z) 3 
-I- , 

5-!- 7 4 gQn (1-z) 

where v = E/E0 and x = k/E0 . 

In Table II we compare EoIe “) (t, E) with E I(‘)(t, E). oe The second generation 

photons can be obtained by substituting Ie (2+t, E) in Eq. (11). Since we are interested 

s(l-;) i (;)2 by 1. only in the order of magnitude, we may again approximate 3 

After integration with respect to V, we obtain the second generation bremsstrahlung 

spectra as a function of target thickness: 
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1 1 
dy 1 p N1 - N2 N3-N2 tN2 N3-NJ 

7 Fl 
- ,I 

I+*2 
e-- 

*2*3 *3 2 T 
x v B3 -I 

where k E k’ x= - E, , v=E, > Y= T ’ 
> 

*1=9 3 J-+%!n (l-y) , 

N2 = e , 

3 
N3 = (1-G) 3 . 

In Table III the intensity ratio of the second generation to the first generation 

bremsstrahlung, I’f? (t, 9 /[I’:) (t, kjj approx 3 from Eqs. (25) and (29) is given. 

It is seen that this ratio is 0.078 at t = 2 r. 1. , k/E0 =I 0.5 and it becomes smaller 

as t is decreased or k/E0 is increased. The smallness of these ratios assures 

us that for those experiments which only utilize bremsstrahlung in the energ-y 

range ; < k/E0 < 1 and thickness t < 2 r. l., the second generation photons 

can safely be ignored. 

III. APPLICATIONS 

Let us briefly mention some of the problems8 involved in using a thick target 

at high energies with an intense electron beam. 

1. Temperature: Consider,for example, a beam of 20-BeV electrons with an 

intensity of 10 14 electrons per second. This beam has a power of 320 kilowatts; 
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if its energy is completely absorbed in a target, it will probably destroy the target 

immediately even with normal cooling. Of course one can overcome this problem 

by using a less intense beam or a thinner target so that only a fraction of the beam 

energy is deposited in the target. 

2. Electron and Positron Backgrounds: With high energy and high intensity 

beams it is not practical to sweep away all the electrons after they are used to pro- 

duce the bremsstrahlung in a thick target (t > 0.03). The same target must be used 

for both the ‘bremsstrahlung and particle production. Thus there will be many 

electrons with intensity spectrum Ie (t, E) in addition to 1, 71, K, p, n, 5, n, etc. 

This blast of electron beam can be avoided in two ways. (a) Shun the near forward 

angle and use a thinner target (in order to suppress the angular spread of the electrons 

due to multiple scatterings); or (b) Use a very high z absorber after the main target 

to slow down all the high energy electrons. Bigh z materials are better because 

their absorption coefficients per radiation length (roughly proportional to A - 4/3 

where A is atomic weight) for the strongly interacting particles are smaller. To 

estimate the high energy component of the electrons and positrons after the absorber, 

Eqs. (22) and (28) may be used. Because of the heating problem, this scheme will 

work only when a relatively low intensity beam is used. The separation of other 

particles is a very complicated technical problem and beyond the scope of this article. 

Let us assume that the problems mentioned above can be solved and ask what is 

the optimum thickness and material of the target for producing high energy secondary 

particles. Since the same target is used for producing the bremsstrahlung and the 

secondary particles, the yield, Y, per unit energy and solid angle of Ihe secondary 

particle per incident electron is given by 

“X0 
Y=--&- W) & a 

0 
0 

(30) 
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N = 6x1o23, Avogadro’ s number. 

A = Atomic weight of the target nucleus. 

X0 = Unit radiation length in gm per cm2 of the target material 

II 1+ 0.12 ( 82 $1 A 
ZZ 

4crNz(z+l) rz J?.II (183 z 
-l/3 ’ 

) 

rl= nuclear absorption coefficient per radiation length 

for the secondary particle in the target. 

ly(t, k): Use CT(:) (ty k)] aperox given by Eq. (25) for this purpose. 

d2a = 
dS2dc.& the differential cross section 

by a photon with energy k. 

T = Target thickness in radiation 

EO 
= Incident electron energy. 

for the secondary particle production 

lengths . 

k min = Minimum energy of the photon kinematically allowed for the photo- 

production process. 

ua is the absorption cross section of the secondary particles for the target 

nucleus. For most purposes, we may assume the absorption cross section to be 

80% of the total cross section and the total cross sections for n,k, and p, etc. 

on the nuclei are given by at(A) = at(l) A 2/3 , namely the total cross section for 

the proton times A 2/3 . The total cross sections at high energies from protons for 

fl, k-, k+ and 5 can be obtained from experimental data’ ; 

t 
u =25mb , 

+P 

t -22mb , u- - 
kp 

t 
0-b =l8mb , 

kp 
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t 
o- ;: (45+F)mb, where p is the incident 5 momentum 

PP 
in BeV/c in the lab system. 

L 

ta- PP 
= 50 mb for our purpose,) 

From these we obtain the values of ?J for various secondary particles in some 

target materials. (See Table IV.) 

Using Eq. (30) we have calculated the yield of 7r, k-, k+, k”, p from the 

electron machine using various kinds of production mechanisms. The numerical 

results show that the smaller the z the better the yield since no strongly inter- 

acting particles are photoproduced with z2 dependence; hence the yield per radi- 

ation length is larger from small z materials than from high z materials. The 

nuclear absorption coefficient, rl , is larger for the low z materials than for the 

high z ones, but it is not a very decisive factor in the choice of materials because 

there is not much sense in using a target thicker than 2 radiation lengths. Thus, 

Y is rather weakly dependent upon rl . 

We have used Be targets to calculate the yields for various particles. The 

results indicate the optimum thickness of the target is around T = 2 for 7r and k 

productions and T = 1.6 for 6 photoproduction. For muon production, the nuclear 

absorption coefficient rl is zero; thus as far as the yield is concerned, the thicker 

the target the better. Nowever, more than 90% of the maximum number of muons 

with energy > $ E. are produced within a thickness of four radiation lengths. 

IV. DISCUSSION 

From the numerical examples, the following conclusions may be drawn: 

i) Second generation bremsstrahlung is negligible for T < 2 r. I. and 

k/E0 > 0.5. 
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ii) For calculating yield per equivalent quanta, either I $ li (t, k) or 

[I(? ft7 K)] approx * given by Eqs. (24) and (25) respectively, may be 

used, depending upon the degree of accuracy desired. 

iii) For the photon-difference type of experiments in which the accurate shape 

of the bremsstrahlung tip is required, one may insert a more accurate 

bremsstrahlung spectrum 10 in Eq. (23) and calculate I y ( , w t k) 

accordingly. 

iv) To estimate the electron and positron background from a thick target, 

It’ (t, E) and IF (t, E) given by Eqs. (22) and (28) may be used. The 

angular spread of these electrons and positrons is mainly caused by 

multiple scatterings, and not by the production mechanisms. 

Some qualitative features of I (1) y (t, k) may be understood in the following 

way. Since we are interested in k comparable to the incident electron energy 

Eo, the energy of the electrons E from which these y’s are produced must 

also be very close to E. . Now the electron spectrum given by I e (‘I (t, E), Eq. 22 

changes its shape abruptly at t = .75 r. 1. For t c.75, we have It) (t,Eo) = co; 

whereas for t > .75 , we have I e +t, Eo) = 0 . This tells us qualitatively that 

practically all the high energy y’s are produced from t = 0 to t = .75, and 

after t = .75, the intensity of the y’s is just attenuated by the absorption factor 
e- 7/9(t-. 75) , as shown in Fig. 3. 

In Figs. 4a, b, c, the curves for k I (1) y (t, k), given by Eq. (24)) as functions 

of t and k/E0 are plotted. The computer programs (in ALGOL) for generating 

all the numerical values given in this article are available upon request. 
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FIGURE CAPTIONS 

1. A thick target 

2. Bremsstrahlung spectral shape. Curve A for complete screening, curve B 

was used to calculate straggling formula. See Eq. (15). 

3. Exact and approximate first generation photon spectra as a function of target 

thickness. 

(1) 4. Blots of kI y (t, k), as given by Eq. (24)) as functions of t and k/E0 . 
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TABLE1 

Numeruxl VdUeS Of Fthin ='f(k/Eo) from Eq. (l), Fexact = k1, (I) (t,k)/t from Eq. (24), and Fappx 

k/E,, Fthin 
0.10 1.20997 
0.20 1.10664 
0.30 1.02331 
0.40 0.95998 
0.50 0.91665 
0.60 0.89332 
0.70 0.88999 
0.80 0.90666 
0.82 0.91239 
0.84 0.91893 
0.86 0.92626 
0.88 0.93440 
0.90 0.94333 
0.92 0.95306 
0.94 0.96360 
0.96 0.97493 
0.98 0.98707 
0.999 0.99933 

k/El, F thin 
xi0 1.20997 
0.20 1.10664 
0.30 1.02331 
0.40 0.95998 
0.50 0.91665 
0.60 0.89332 
0.70 0.88999 
0.80 0.90666 
0.82 0.91239 
0.84 0.91893 
0.86 0.92626 
0.88 0.93440 
0.90 0.94333 
0.92 0.95306 
0.94 0.96360 
0.96 0.97493 
0.98 0.98707 
0.999 0.99933 

t = 0.01 t = 0.05 

F exact F aPPx F exact F wx - - - ~ 
1.20417 0.99542 1.18110 0.97735 
1.10071 0.99464 1.07713 0.97350 
1.01740 0.99375 0.99387 0.96916 
0.95406 0.99273 0.93046 0.96419 
0.91055 0.99153 0.88616 0.95835 
0.88668 0.99005 0.86013 0.95126 
0.88222 0.98816 0.85123 0.94223 
0.89671 0.98550 0.85735 0.92970 
0.90181 0.98481 0.86001 0.92648 
0.90760 0.98403 0.86302 0.92289 
0.91407 0.98316 0.86625 0.91886 
0.92119 0.98216 0.86956 0.91422 
0.92889 0.98097 0.87272 0.90878 
0.93710 0.97951 0.87534 0.90219 
0.94566 0.97765 0.87674 0.89377 
0.95421 0.97502 0.87538 0.88210 
0.96164 0.97056 0.86653 0.86261 
0.95451 0.95157 0.79765 0.78482 

t = 0.5 t = 0.7 

F exact F aPPx F exact F aPPx’ - - - - 
0.94458 0.79825 0.85154 0.73117 
0.83465 0.76612 0.73931 0.68960 
0.75015 0.73170 0.65415 0.64610 
0.68318 0.69446 0.58584 0.60025 
0.62848 0.65360 0.52828 0.55143 
0.58142 0.60786 0.47669 0.49868 
0.53678 0.55508 0.42626 0.44038 
0.48695 0.49091 0.37071 0.37331 
0.47525 0.47595 0.35813 0.35829 
0.46256 0.45999 0.34476 0.34253 
0.44863 0.44280 0.33041 0.32587 
0.43307 0.42409 0.31481 0.30810 
0.41535 0.40341 0.29759 0.28890 
0.39463 0.38006 0.27817 0.26780 
0.36950 0.35283 0.25556 0.24397 
0.33710 0.31921 0.22785 0.21571 
0.28960 0.27224 0.18982 0.17839 
0.16770 0.15839 0.10381 0.09802 

t = 0.1 

F exact F awx -- 
1.15277 0.95529 
1.04815 0.94775 
0.96490 0.93929 
0.90130 0.92966 
0.85591 0.91843 
0.82716 0.90494 
0.81289 0.88793 
0.80929 0.86467 
0.80921 0.85877 
0.80908 0.85223 
0.80873 0.84489 
0.80789 0.83653 
0.80616 0.82679 
0.80289 0.81508 
0.79691 0.80030 
0.78565 0.78010 
0.76136 0.74715 
0.64338 0.62504 

t = 1.0 

F exact, F wx 
0.72421 0.64258 
0.60981 0.58975 
0.52503 0.53641 
0.45695 0.48237 
0.39899 0.42738 
0.34675 0.37101 
0.29659 0.31250 
0.24448 0.25032 
0.23333 0.23717 
0.22178 0.22368 
0.20973 0.20976 
0.19701 0.19531 
0.18345 0.18017 
0.16872 0.16409 
0.15231 0.14661 
0.13317 0.12685 
0.10847 0.10229 
0.05768 0.05447 

F e, 
1.0! 
0.9: 
0.9( 
0.8~ 
0.7! 
0.7( 
0.7: 
0.7: 
0.7: 
0.71 
0.71 
0.6! 
0.6: 
0.6' 
0.61 
0.6: 
0.5, 
0.4: 

FE! 
0.s 
0.4 
0.3 
0.2 
0.2. 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 



TABLEII 

al values of E,,I.(*)(t,E) and EoI,(2)(t,E) as functions of t and E/E,, 

0.7128 0.0849 0.9243 0.1424 1.0106 0.1902 0.9911 0.2263 
0.7638 0.0666 0.9520 0.1094 1.0006 0.1434 0.9434 0.1666 
0.8219 0.0518 0.9824 0.0833 0.9902 0.1071 0.8952 0.1220 
0.8900 0.0397 1.0165 0.0625 0.9790 0.0786 0.8458 0.0877 
0.9719 0.0299 1.0556 0.0458 0.9668 0.0562 0.7942 0.0614 
1.0745 0.0217 1.1020 0.0324 0.9530 0.0388 0.7393 0.0414 
1.2097 0.0151 1.1594 0.0217 0.9370 0.0252 0.6793 0.0262 
1.4026 0.0097 1.2353 0.0134 0.9175 0.0150 0.6112 0.0151 
1.7171 0.0053 1.3472 0.0070 0.8913 0.0075 0.5290 0.0073 
2.4026 0.0020 1.5558 0.0025 0.8496 0.0025 0.4161 0.0023 

t = 1.4 t = 1.6 

E&,(I) E,xI,(~) E&,(*) E,,XI,(2) 

0.7656 0.2580 0.6205 0.2589 0.4819 0.2527 0.3609 0.2416 
0.6735 0.1850 0.5247 0.1827 0.3918 0.1758 0.2820 0.1656 
0.5876 0.1300 0.4390 0.1264 0.3144 0.1206 0.2170 0.1121 
0.5070 0.0902 0.3619 0.0863 0.2476 0.0805 0.1633 0.0738 
0.4304 0.0608 0.2922 0.0572 0.1901 0.0526 0.1192 0.0476 
0.3573 0.0393 0.2290 0.0363 0.1407 0.0329 0.0833 0.0294 
0.2867 0.0239 0.1717 0.0217 0.0986 0.0194 0.0546 0.0171 
0.2178 0.0131 0.1199 0.0117 0.0633 0.0103 0.0322 0.0090 
0.1496 0.0060 0.0734 0.0053 0.0345 0.0046 0.0156 0.0040 
0.0802 0.0018 0.0325 0.0016 0.0126 0.0013 0.0047 0.0011 

t=0.6 

E&(l) E,xI,(2) 

t = 0.8 t = 1.0 

E&(l) E,xI,(2) 

t = 1.8 

E+I,(') E,xI,(2) 



TABLEIII 

second generation to first generation photon spectra as functions of k/E0 and t 

t = 0.6 t = 0.8 t = 1.0 t = 1.2 t=1.4 t = 1.6 t = 1.8 t = 2.0 

0.015 0.023 0.032 0.041 0.050 0.059 0.069 0.078 
0.011 0.017 0.024 0.031 0.038 0.045 0.053 0.060 
0.008 0.013 0.018 0.023 0.029 0.034 0.040 0.045 
0.006 0.009 0.013 0.017 0.021 0.025 0.029 0.033 
0.004 0.007 0.009 0.012 0.015 0.018 0.021 0.024 
0.003 0.004 0.006 0.008 0.010 0.012 0.014 0.016 
0.002 0.003 0.004 0.005 0.006 0.007 0.009 0.010 
0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.005 
0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 



I 

TABLE IV 

Nuclear absorption coefficient, r] , per radiation length 

Particle 

Be 

c 

cu 

Pb 

Be 

Be 

Be 

Target 
z A 

xO 

4 9 65 

6 12 44.6 

29 63.57 13.1 

82 207.2 6.5 

rl 

3.75 x 10-l 

2.34 x 10-l 
3.93 x 10 -2 

1.32 x 1O-2 

3.3 x10 -1 

2.7 x10 -1 

7.5 x 10 -1 


