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SUMMARY

We describe a geometrical reconstruction procedure for track
coordinates, taken from spark chambers in a nun-unitorm magnetic
field. By a least-squares method we fit simultaneously all param-
eters (momenta, spatial angles, and the vertex coordinates) of the
observed trajectories, which originate at the saine vertex. A test
run has been performed using simulated high energy events in a non-
uniform magnetic field where the interaction vertex was assumed

not to be measured.

(To be submitted to Nucl. Instr. and Meth.)
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I. INTRODUCTION

The analysis of high energy interactions of elementary particies, using spark
chambers in combination with an analyzing magnetic field, usually requires a
geometrical optimization procedure in order to obtain from the measurements of
track coordinates an estimate of the relevant physical quantities, such as momenta
and spatial angles. 1 Complications arise when the magnetic fields are non-uniform
and the interaction vertex cannot be measured. TFor example, in the case of the
recently developed technique2 of using streamer track chambers placed in magnetic
fields, one might be interested to reconstruct trajectories passing through non-
uniform field regions. Moreover, since the interaction usually takes place out-
sidc the sensitive region of the streamer track chamber, the vertex cannot be
nmeasured and has to be reconstructed.

) licre we discuss a least-squares fitting procedure for a digital electronic
computer, which has the tollowing features:

a. it fits coordinates to trajectories traversing regions of non-uniform

magnetic fieids;

b. it optimizes simultancously all measured trajectories and the co-

ordinates of the interaction vertex, from where the trajectories
_originate.
Thus, the number of t;mknown parameters in our fitting problem is 3N + 3, where
N is the number of observed trajectories due to one interaction; each trajectory
carrics three paramet.ers (momentum and two spatial angles), and three parameters
arc duce to the vertex. -
it should be noted that duc to the coupling of the vertex to the different trajec-
torics;a strong correlation of the parameters can be expected. Therefore an
essential result of the fitting program will be the covariant matrix of the param-

cters which has to be kgown for further kinematical optimization.
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iI. METHOD

The basic idea applied is to fit by a lcast-squares method the coordinates of
all observed trajectories originated at one vertex to the numerical solution of a
differential equation. The differential equation describes the path of a charged
particle through an arbitrary magnetic field; the numerically computed trajectory

may be represented by a vector function F :
x(s), y(s s l =F ozé ., s 1

J=1,2,...,N refers to the different tracks, @ stands for the vector of
the parameters 1/P, A, ¢ of the different tracks

momentum (BeV/c)

~
"

A = dip angle

scattering angle projected in a horizontal plane, defined in 1?0 .

]

¢

> ’ .
£, = (Xgr Yoo 7o) represents the coordinates of the unmeasured common vertex.

The unmeasured vertex ties the initial conditions of the different trajectories
togcther and was introduced as three more parameters to be fitted for. The
differcntial equation to be solved for each trajectory has the general form:

-2
dl _ 2.9979 x 10 > 2
& - Bz (uxB) . (2)

B = the magnetic field (kG)

s = arc length (m)

7

= (@ & @)

At the vertex one has the relations:
ux=cos7\ * cos ¢
uy=cos7\- sin ¢
u, = sin A .

-3 -



9
in (he non-iincar leust-square method” one finds the minimum.of
2 * T " .
X =(m-m) G(m-m’). (3)
by an iterative procedure. mjy = (X, y, z)j is the column vector of measured

quantities.

m* stands for the coordinates of the computed track (1) and corresponds to

thc rcufrenl choice of the parameters; G is a weight matrix for which usually the
inverse of the covariance matrix containing the measurement errors is taken,
I"or this program it is assumed that the (possibly reconstructed) spatial coordina-
tes X,y, 7z, and their standard deviations are known. Let us define a vector S for

the sct of trajectorics containing all parameters to be fitted for:

The iterative proccedure then yiclds corrections (Ai'z, A?) = Af, which one relaies

to the residuals Ac = (m - m’) by:
AB = (AqG Ay ATG Ac, ' (4)
whcr‘c T stands for "transposed"

BFJ

A= 25

¢ he covariance matrix of the fiicd parameters can be oblained as:
sy ok T -1 .
(& o) = G A) . (5)

where £ means exspectation value, and o indicates the error in the vector of the

paramcters. Let us look at some details of the fitting procedure:



A. The Integration Method

'Two methods of numerical integration of Eq. (2) have been tested for conver-
gencc and computer economy: a second order, Adams method (predictor-corrector
method), and a third order Runge-Kutta method. Due to better convergence as a
function of step-size, the somewhat more elaborate Runge-Kutta method was
preferred. The step-size can be set depending on the average radius of curvature.
i rino‘menthmploss can be expressed as a function of s, it introduces no particular
complication to fit tracks for which the initial momentum changes either continuously

or discontinuously at a known rate.

B. The Magnetic Field

The rcading of the magnetic field in each integration step requires an apprle—
ciablec amount of computer time and storage space. The most economical way to
represent B seems to be to fit the measured field in different regions to simple
functions (e.g. rational functibns); thus the field components do not need to be

stored, but can be computed at each intergration point quite quickly.

C. The Residuals

For evaluation of the points m* in any iteration , the following criteria
werce set: in each integration step the distance vector Z from the point on the
trajectory to the next measured point m was computed. m* is defined on the
trajectory at the closest distance to m. It appears only necessary to test the
sign of the cosine of the spatial angle between the distance vector _g and the
tangent unit vector 4. That is to say one tests the sign of 21 -%. Whenever the
sign of the cosine becomes negative, the integration has passed the point of the
closest distance to m; one then computes the accurate m* by a further integra-

tiorstep using the appropriate step size.



D. The Partial Derivatives

The derivatives amgy/38 have also been computed numerically. This was
donc by varying the current choice of 8 by 68 and integrating (1) again. The
griteria to compute points on the perturbed trajectory are the same as described
in (C). By this method s does not enter the fitting problem as.a further parameter.
It appeared unnecessary to compute the partials in each iteration. In some cases
one can approximate the partials a?/a?o by using the partials for the case of a

uniform field, which can be represented at points s = constant by a matrix:

Onc obscrves though that due to the criteria used to find the points m* , one has

to replace this matrix in each point by:

1-207.
This can be seen as follows:

Introducing a variation 6?0 at the vertex gives in each point of the trajectory

a variation 6ér, for which in first approximation one has

6?0=5?+'ﬁ7\.

See Fig. 1. Using the fact -JT- 5 =0 we find:

_=T
A=1u 6?0

hence

#= q-u

ot & _. T
a?—zé—?o—l—'ﬁ —6. (6)

(o]
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Both possibilities to use the approximate partials, Eq. (6) and the numerically

computed ones have been provided in our computer program.

E. The Matrix Inversion and Convergernce of the Iterative Procedure

For matrix inversions and the teét on convergence the SLAC library procedure
SOLVE was used, which by means of proper scaling avoidg numeriqal singulari’cies.4
As the main check for convergence it is tested whether the corrections AS lie
within the error ellipsoid of the parameter defined by A x2 = 1, that is to say,
the inequality

1< a8 aT gayas (7)

is being examined in each iteration. This requires us to choose the inverse of

the covariance matrix of the measuring errors for G (at any rate this is advisable

if onc wants to interpret the final X 2 in terms of probability).

_IF'. The First Estimate

Depending on the geometrical configuration, first estimates on the parameters
have to be computed from the data input. The first estimate (starting) parameters
were computed assuming a uniform magnetic field. By fitting circles to the first
few measured points of the different tracks in a plane perpendicular to the main
field direction, one obtains, from the intersection point, an approximation for the
vertex coordinates. At this vertex approximate ¢'s and A's can be evaluated
as well. The final result of the best fit parameters has shown no dependence on

the starting values.

111. TEST

Presently an ALGOL version of the described fitting procedure with the name
CIRCE exists at SLAC. CIRCE was tested using simulated input data. A simula-
tion procedure for high-energy interactions generates track coordinates with

-7 -



random errors, due to an intcraction model in a chosen configuration of target,
strcamer track chamber, and magnectic field. 5 We represented the components

of the B field in different regions of the magnet by simple functions, fitted to
?.ctual field measurements. The B, component has, in the radial direction, about
307 deviation from uniformity. The B, component reaches 20% of B

- Zmax °

-In a test run photoproduction of p mesons on protons was simulated:

Y+p-—>p+p—> T+ +p,

generating randomly photon momenta from a bremsstrahlung spectrum, an
exponential four momentum transfer distribution and an isotropic decay of the

p in its c.m. system. The optimization of fake trajectories serves as a test of
the proper function of the fitting procedure; in particular the occurrence of biases
in the fitted quantitics, due to the method, can be tested. Since this method was
also applicd to compute the inherent resolution of the invariant mass distribution
for a given cxperimental set-up, a p mass (750 MeV) with zero width was used
fof the simulation. The random Gaussian errors of the coordinates had assumed
standard deviations:2

<AX> =<Ay> =0.5 mm <Az > =1.00 mm.

The other parameters and dimensions were chosen corresponding to an actual
experimental set-up*

B =15 kG.
Z

Dimensions of the streamer track chamber are 200 cm X150 cm X 60 cm. The

invariant mass distribution computed from the fitted momenta and angles of the

*
Proposal for an experiment to study high-energy photoproduction on protons at
SLAC, R. Mozlcy, 1. Derado, D. Drickey, D Fries, A. Odian, F. Villa , and
D. Yount.
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decay pions are shown in Fig. 2. The mass distribution is centered at about

750 MeV. The "experimental” resolution is approximately

A =+ 7 MeV.

*
M 750)
We tested for about 100 fitted fake events the distribution of V2 X2 - V2n -1

(n  number of degrees of freedom), which can be used as a normavlrdeviate with

unit variance for n's which are greater than 30. The distribution was centered at sero

and had approximatcly Gaussian shape and unit half width. The covariance matrix of the

fitted paramcters showed the pronounced cross-correlation of the errors of all the parametzrs.
CIRCE takes about 45 scconds per event on a Burroughs 5500 compuler. A

FORTRAN 1V version of CIRCE is presently being prepared. Due to the differ-

ence of the basic cyele time, we expecet less than 15 seconds running time on an

iBM 7090 computer. On laster computers (like the IBM 360 model 75 or 91 or

CDC 3600) the running time per event can be expected to be of the order of a

few scconds per event.
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FIGURE CAPTIONS

I'ig. 1--Variation of the vertex coordinates of a trajector); for the approximate

evaluation of the partial derivatives ar'/afo.

Fig. 2--Invariant 7 mass distribution of the fitted fake events
')/"‘])-?,/)-F])-?Tfﬂ‘p, » - -

- - where k., was simulated as a bremsstrahlung spectrum

“y
3 < I, < 15 Bev.
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