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SUMMARY 

We describe a geometrlcal reconstruction procedure for track 

coordinates, taken from spark chambers in a nun-cllliform magnetic 

field. By a least-squares method we fit simultaneously all param- 

eters (momenta, spatial LlligleS, and the vertex coordinates) of the 

observed trajectories, which originate at the same vertex. A test 

run has been performed usin, u simulated high energy events in a non- 

uniform magnetic field where the interaction vertex was assumed 

not to be measured. 

(To be submitted to Nucl. Instr. and Meth. ) 
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I. INTROl)UCTION 

The analysis of high energy interactions of elementary particles, using spark 

chambers in combination with an analyzing magnetic field, usually requires a 

geometrical optimization procedure in order to obtain from the measurements of 

track coordinates an estimate of the relevant physical quantities_, suc_h as momenta 

and spaLtia1 angles. I Complications arise when the magnetic fields are non-uniform 

and the interaction vertex cannot be measured. For example, in the case of the 

recently developed technique 2 of using streamer track chambers placed in magnetic 

fields, one might be interested to reconstruct trajectories passing through non- 

uniform field regions. Moreover, since the interaction usually takes place out- 

side the sensitive region of the streamer track chamber, the vertex cannot be 

measured and has to bc reconstructed. 

IIcrc WC discuss a least-squares fitting procedure for a digital electronic 

coml)utcr, which has the following features: 

‘1 ‘ . it fits coordinates to trajectories traversing regions of non-uniform 

magnetic fields; 

b. it optimixcs simultaneously all measured trajectories and the co- 

ordinates of the interaction vertex, from where the trajectories 

_ originate. 

Thus, the number of &known parameters in our fitting problem is 3N + 3, where 

N is the number of observed trajectories due to one interaction; each trajectory 

carries three parameters (momentum and two spatial angles), and three parameters 

:wc tlw to the vertex. - 

It should bc noted that due to the coupling of the vertex to the different trajec- 

toric>s> strong correlation of the parameters can be expected. Therefore an 

csscntial result of the fitting program will be the covariant matrix of the param- 

eters which has to be klpown for further kinematical optimization. 
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II. METHOD 

i The basic idea applied is to fit by a least-squares method the coordinates of 

all obscrvcd trajectories originated at one vertex to the numerical solution of a 

differential equation. The differential equation describes the path of a charged 

particle through an arbitrary magnetic field; the numerically computed trajectory 
-. 

may bc represented by a vector function F : 

it% Y(S), z(sd J = FJ& Fo, s) (1) 

J= 1,2,..., N refers to the different tracks, 6? stands for the vector of 

the parameters l/P, A, @  of the different tracks 

I? = momentum (BeV/c) 

A = dip angle 

(1) = scattering angle projected in a horizontal plane, defined in go . 

f o = Go’ Yo9 zo) rcprescnts the coordinates of the unmeasured common vertex. 

The unmeasured vertex ties the initial conditions of the different trajectories 

tog&her and was introduced as three more parameters to be fitted for. The 

differential equation to be solved for each trajectory has the general form: 

di? 2.9979 x 10 -2 
ds= PI 

(Z x ix) 

8 = the magnetic field (kG) 

S = arc length (m) 

At the vertex one has the relations: 

u = 
X 

cos A * cos @  
- - 

uY = cos A * sin $ 

(2) 

\ = sin A . 
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;:~ar icast -s+l;lrc mcthotl” one finds the minimum--of 
2 +T 

X =(m-m) G(m-m”). 

by :In iterat ive procedure. mJ -- (x, y, z) J is the column vector of measured 

quantities. 

IN* stands for the coordinates of the computed track’(l) -and c&responds to 

the current choice of the parameters; G is a weight matrix for which usually the 

invcrsc of the covariance matrix containing the measurement errors is taken. 

For this program it is assumed that the (possibly reconstructed) spatial coordina- 

tcs s,y, z, and their standard deviations are known. Let us define a vector /3 for 

the set of trajectories containing all parameters to be fitted for: 

13~ expanding liq. (1) around a first estimate PO, one obtains: 

in* 
aFJ 

z:* I-- 
0 

@ O  

Ape + . . . O(A& 

‘1’1~ lrclrative proccdurcx then yields corrections (AT%, A?) = 43, which one relates 

to tho residuals 2.~ = (m - m ‘) by: 

A/3 - (ATG A) -’ ATE AC, (4) 

whcrc 1‘ stands for “transposed” 

1,: ( :5,i ;,/;“’ ) =:- (,I’% A)- l . 6) 

\%hc~‘c 15 mc>ans csspcctation vc,lue, and O/j indicates the error in the vector of the 

paramctcrs. Let III;; look at som; details of th#J fitting procedure: 

-4 - 



A. ‘l’hc Integration Method 

Two methods of numerical integration of Eq. (2) have been tested for conver- 

gencc and computer economy: a second order, Adams method (predictor-corrector 

method), and a third order Runge-Kutta method. Due to better convergence as a 

function of step-size, the somewhat more elaborate Runge-Kutta method was 

preferred. The step-size can be set depending on the average Gdius of curvature. 

If momentum loss can be expressed as a function of s, it introduces no particular 

complication to fit tracks for which the initial momentum changes either continuously 

or discontinuously at a known rate. 

n. ‘I’hc Magnetic Field - 

The reading of the magnetic field in each integration step requires an appre- 

ciablc amount of computer time and storage space. The most economical way to 

represent 23 seems to be to fit the measured field in different regions to simple 

- functions (e. g. rational functions); thus the field components do not need to be 

stored, but can be computed at each intergration point quite quickly. 

c /. The Residuals 

For evaluation of the points m* in any iteration , the following criteria 

were set: in each integration step the distance vector d from the point on the 

trajectory to the next measured point m was computed. m* is defined on the 

trajectory at the closest distance to m. It appears only necessary to test the 

sign of the cosine of the spatial angle between the distance vector a and the 

tangent unit vector 3. That is to say one tests the sign of % 0%. Whenever the 

sign of the cosine becomes negative, the integration has passed the point of the 

closest distance to m; one then computes the accurate m* by a further integra- 

tiolrstcp using the appropriate step size. 
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D. The Partial Derivatives 

The derivatives arnJ/# have also been computed numerically. This was 

done by varying the current choice of p by 15/3 and integrating (1) again. The 

criteria to compute points on the perturbed trajectory are the same as described 

in (C). By this method s does not enter the fitting problem as-a further parameter. 

It appeared unnecessary to compute the partials in each iteration. In some cases 

one can approximate the partials a?/8?, by using the partials for the case of a 

uniform field, which can be represented at points s = constant by a matrix: 

1 0 0 

I= ( ) 010. 

0 0 1 

One observes though that due to the criteria used to find the points m* , one has 

to rcplacc this matrix in each point by: 

This can be seen as follows: 

Introducing a variation ~$2~ at the vertex gives in each point of the trajectory 

a variation 67, for which in first approximation one has 

See Fig. 1. Using the fact 3’0 @  = 0 we find: 

hcncc 

- - 

. 
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Both possibilities to use the approximate partials, Eq. (6) and the numerically 

computed ones have been provided in our computer program. , i 

E. The Matrix Inversion and Convergence of the Iterative Procedure 

For matrix inversions and the test on convergence the SLAC library procedure 

SOLVE was used, which by means of proper scaling avoids numerical singularities. 4 

As- the main check for convergence it is tested whether the corrections A/3 lie 

within the error ellipsoid of the parameter defined by A X 2 = 1, that is to say, 

the inequality 

11 uT(AT GA)A@ (7) 

is being examined in each iteration. This requires us to choose the inverse of 

the covariance matrix of the measuring errors for G (at any rate this is advisable 

if one wants to intcrprct the final X 2 in terms of probability). 

_F. The First Estimate 

Depending on the geometrical configuration, first estimates on the parameters 

have to be computed from the data input. The first estimate (starting) parameters 

were computed assuming a uniform magnetic field. By fitting circles to the first 

few measured points of the different tracks in a plane perpendicular to the main 

field direction, one obtains, from the intersection point, an approximation for the 

vertex coordinates. At this vertex approximate G’s and h’s can be evaluated 

as well. The final result of the best fit parameters has shown no dependence on 

the starting values. 

III. TEST 

Presently an ALGOL version of the described fitting procedure with the name 

ClRCETexists at SLAC. CIRCE was tested using simulated input data. A simula- 

tion procedure for high-energy interactions generates track coordinates with 
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r:mdom errors, due to an interaction model in a chosen configuration of target, 

5 streamer track chamber, and magnetic field. We represented the components 

of the B’ field in different regions of the magnet by simple functions, fitted to 

actual field measurements. The B, component has, in the radial direction, about 

30% deviation from uniformity. The B, component reaches 20% of Bzmax . -. 

In a test run photoproduction of p mesons on protons was simulated: 

y+p-+p+p-U+++-tp, 

gcncrating randomly photon momenta from a bremsstrahlung spectrum, an 

exponential four momentum transfer distribution and an isotropic decay of the 

p in its c. m. system. The optimization of fake trajectories serves as a test of 

the proper function of the fitting procedure; in particular the occurrence of biases 

in the fitted quantities, due to the method, can be tested. Since this method was 

also applied to compute the inherent resolution of the invariant mass distribution 

for a given cxperimcntal set-up, a p mass (750 MeV) with zero width was used 

for the simulation. The random Gaussian errors of the coordinates had assumed 
.~ 

standard deviations: 2 

<Ax> =<Ay> = 0.5 mm <AZ 7 = 1.00 mm. 

The other parameters and dimensions were chosen corresponding to an actual 

experimental set -up* 

BZ 
= 15 kG. 

max 

Dimensions of the streamer track chamber are 200 cm Y 150 cm X 60 cm. The 

invariant mass distribution computed from the fitted momenta and angles of the 

- 
*Proposal for an experiment to study high-energy photoproduction on protons at 

SLAG, R. Mozlcy, 3. Derado, D. Drickey, D Fries, A. Odian, F. Villa , and 
D. Yount. 
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decay pions arc shown in Fig. 2. The mass distribution is centered at about 

750 MeV. The “csperimental” resolution is approximately 

AM{750) - =+7MeV. 

We tested for about 100 fitted fake events the distribution of P-6-X 2 X 

(n number of degrees of freedom), which can be used as a normal deviate with - - 
unit -variance for n’s which are greater than 30. The distribution was centered at sero 

antl had approximately Gaussian shape and unit half width. The covariance matrix of the 

fittctl IJ‘aramcters showed the I>ronounccd cross-correlation of the errors of all the param&srs. 

(:111<:1< lakes about 45 sccontls per cvcnt on a Burroughs 5500 computer. A 

I~‘OI~‘I’l~RN 1V version ol’ (:ll~Cl< is presently being prepared. Due to the differ- 

011(x: ol’ the basic cycle li tnc, WC cxpcct less lhan 15 seconds running time on an 

lllivl 70!)0 computer. On I’astcr computers (like the IBM 360 model 75 or 91 or 

CIX: 3600) the running time per event can be expected to be of the order of a - 

few seconds per event. 
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FlGlJR 15 CA ITIONS 

Fig. l--Variation of the vertex coordinates of a trajectory for the approximate 
evaluation of the partial derivatives ar’/uio. 

Fig. 2--Invariant TK mass distribution of the fitted fake events 

- whcrc ICY was simulated as a brcmsstrahlung spectrum 
:i ( I:,< 15 13cv. 
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