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1. Introduction 

Methods of polynomial factorization are essentially of two differnet types, viz: 

(a) Those which converge to all zeros (or fairly simply solved functions of 

them) simultaneously; e. g. , the methods of Aitken-Bernoulli [l] and Graeffe [l] and 

the Q-D algorithm [2] , 

(b) Those which converge to one zero (or a pair of complex conjugate zeros) 

at a time; e.g., New-ton’s method and its quadratic equivalent, Bairstow’s [l, 3, 4 ], 

Laguerre’s [l] , D’Alembert’s [5] and Lehmer’s [6] methods. It is not in general 

possible by any simple means to find enough approximations which are good enough 

that each and every factor can be found by iteration by any of these methods on the 

original polynomial. Therefore it is common to divide each factor as soon as it 

is found to the maximum accuracy into the dividend polynomial and to continue 

with the quotient. 

Wilkinson [7,8] has shown that if the zeros are found in order of increasing 

magnitude or if all the zeros are of more or less equal magnitude, then the division 

introduces very little extra error and all the zeros of the polynomial can be found 

with nearly the full accuracy permitted by the number of working digits and the 

original conditioning of the zeros. However, if neither of these conditions is 

satisfied, then the removal of a relatively large zero (or pair of complex conju- 

gate zeros) may seriously change the remaining smaller zeros. 

* 
Work supported by the U. S. Atomic Energy Commission. 

Submitted to Communications of the ACM. 
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Methods of type (a) are generally slower and much more susceptible to the 

propagation of round-off errors than those of type (b) and if they are used at all 

it is generally for only a few iteration cycles to find an approximation to each of 

the factors which can then be used in a method of the type (b). 

Of the methods of type (b), those due to Newton and Laguerre are potentially 

the fastest but their performance is much more sensitive to the first approximation 

that is used for each factor. Much ingenuity has been used in devising first approxi- 

mations and criteria for stopping an iteration and starting again if convergence seems 

unlikely but it would seem that the best that can be expected for all polynomials is that 

the Newtonian and Laguerre methods will converge fairly quickly to some zero(s) and 

that very often this zero(s) will have the smallest magnitude. 

Kahant hasuseda method which is essentially a quadratic version of the Laguerre 

method; he also uses a fairly elaborate subroutine to calculate upper and lower bounds 

for the magnitude of the smallest zero(s) at each stage. This is probably the most 

sophisticated and powerful method yet programmed but, reportedly, even it does 

not always find all the zeros in order of increasing magnitude. 

It would seem that D’Alembert’s and Lehmer’s methods, albeit slower, are 

more likely (though still not certain) to find the zeros in order of increasing magnitude 

and therefore to avoid the deflation error discussed by Wilkinson [ 6,7]. 

Wilkinson has suggested that, having found all the factors by successive 

iteration and deflation, each should be purified in the original polynomial. This 

will result in accurate zeros in the great majority of cases but it is tedious and not 

completely foolproof; there are some polynomials for which the errors introduced 

by removing the zeros in the “wrong” order so perturb remaining small ill- 

conditioned zeros that two or more of these inaccurate zeros will converge to the 

same zero when “purified” in the original polynomial. 

* 
Private communication. 
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It is apparent that the weakest step in all of these methods is the division of 

the polynomial by a factor and that this weakness most adversely affects the 

Newton and Laguerre methods which are potentially the fastest. This paper will 

show how this weakness can be eliminated. 

2. Division by a Linear Factor 

For clarity, division by a linear factor will be considered first in some detail 

and afterwards it will be shown that the results can be applied almost equally well 

to quadratic factors. 

If a polynomial 
n 

P(x) ?k? ~ pi xn-i 
F 

ix0 

is divided by a factor (x + x1) to form a quotient 
n-l 

Q(x) 4 c qi x~-~--I 

i=O 

there are two different sequences of calculations for the coefficients qi, viz: 

dqo = ‘o 

dqi = PiBx 1 dg( i-1) for i = 1 to (n-l) . . . . . . (1) 

by division in order of descending (subscript d) powers of x and 

a’@-1) = Pn/x, 

q- 
a 1 

= (pci+ lJ- aqti + I))/XIfor i =(n-2) to 1 . . . . g (2) 

by division in order of ascending (subscript a) powers. 
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A-r.. 
-. ,+ 

. ..- 

If (x i XI) is not an exact factor, then dqi # aqi and there will be a remainder 

term. 

In addition to the two quotients which are obtained by dividing exclusively in 

order of ascending or descending powers (Q,(x) and Qn(x) respectively), n-l 

composite quotients can be defined by 
j-l n-l 

c 
n-i-l + 

c 
n-i-l 

&j(X) ~ dqi x aqi X for j = 1 to (n-l) . . . . (3) 
i=O i=j 

and then the remainder term is defined by 

P(x) z (x + xl) Qj(x) + rj xn-j , 

Under these circumstances, the zeros of each Qj(x) will be different from those 

of P(x) but they will be the same (except for that at x = -XI) as those of 

P j(X) 9 (X + x1) Qj(x) = P(x) - rj xne3 , 

Thus, if there is some value of j such that 

r. I I --Jc2 -t 

pJ 

then the polynomial Pj(x) is almost indistinguishable from P(x) when each 

coefficient is represented by t binary digits? In practice this cannot generally 

be achieved but it has been found that for polynomials with widely separated zeros 

(those for which the conventional removal of a large zero is most damaging) 

* 
Sometimes, due to rounding errors, the other “reconstituted” coefficients 
of P(x) will not be exactly equal to P(x) but the error can only be of the 
or de% of 2-t . 
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I I r-/p. J I 
has a sharp minimum at some value of j and this minimum is of the 

-t 
order of magnitude*of 2 . 

Thus, if it is not possible to find a polynomial Qj(x) such that (x + x1) Qj(x) 

is indistinguishable from P(x), then the least average perturbation of the 

remaining zeros is probably achieved when the relative difference between the 

coefficients of P(x) and Pj(x) is minimized. Now, 

j-l n 
r j xn- j = P(x) - (x + x1) c 

n-i-l 
dqix -(x + x1) c 

n-i-l 
aqiX 

i=O i=j 

Pj - X1 dq(j-1) - q.) 
a I 

so that 

Ed =I- xl dq(j-1) + a($ 
j Pj 9 I 

. . . . (4) 

*An upper bound for Irj/pjl cm be found as follows: Wilkinson has shown that if 
the factor (x -t xl) has been found to the maximum accuracy possible, then the 
remainder 

n-j n-i 
rj x1 i=O 

Pi ei x 1 

where 7 I I 
-t eiC2 . 

Hence, 

and if j be such that x,j/ pj is a minimum over all j , then 

< 1 for all i # j . 

Therefore, -t . 
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and it is suggested that j be such that the magnitude of the right hand side of (4) be 

minimized. If any pj is zero, then, regardless of the value of (xl dq(j-l)+ ,sj), Ej 

should be treated as a very large number and the search for a minimum continued. 

It is possible in some cases, however, for the %esVt quotient, Qj(x),--judged 

by some external criterion --to correspond to a value of j for which pj = 0; it is 

apparent that in these cases r/p. fails as an error criterion. However, because, as 
J .l 

can be seen from equations (2) and (3), if any pj is zero then q. and 
dJ 

q . 
a b-1) 

can be 

found almost as accurately as q 
d (j-1) 

and aqj respectively (no subtractions are involved), 

QW) (x) and Q(j+l) (x) are almost equally as good quotients as the “best” Qj(x). 

3. An Example 

The polynomial 

P(x) f x8 + 1112 x7 + 113224 x6 + 1225336 x5 + 2226446 x4 

+ 1225336 x3 + 113224 x2 + 1112 x -t 1 

z (x2 + 2x + 1) (x2 + 10x + 1) (x2 + 100x + 1) (x2 + 1000x + 1) 

has two ill-conditioned zeros at x = -1 and very well conditioned zeros near -. 001, 

-.Ol, -.l, -10, -100 and -1000. Following Wilkinson’s example on page 62 [8] and 

using eight digits, a value of -1.0003333 is acceptable* for one of the two zeros 

at -1. If the factor (x-t 1.0003333) be divided into P(x) the two quotient polynomials 

Q,(x) = x7 -t 1110.9997 x6 -I- 112112.63 x5 + 1113186.0 x4 

+ 1112889.0 x3 + 112076. I x2 + 1110.55 x + 1.0799 
and 

Q,(x) = 1.0999334 x7 + 1110.8997 x6 + 112112.73 x5 -I- 1113185.9 x4 

+ 1112889.1 x2 -I- 112076.02 x2 + 1110.6301 x + .99966681 

*Using eight digits, P(-1.0003333) = -.08. 
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are obtained. For purposes of comparison the zeros of Q,(x), Q,(x) and all 

the composite polynomials Qj(x) for j = 1.. . . .7 were accurately computed; 

the values of Ej for 
I I 

j = 0.. . . 8 were also calculated. Table I shows the 

accurate remaining zeros of P(x) in column 1 and the magnitudes of the relative 

departures from these of the zeros of Qj(x) for j = 0.. . .8 in columns 2-10. * 

The last line shows E. 0 
I I J 

The correct value of the zero at -1 is given as 

-. 99966681 because this makes the product of the two zeros near -1 equal to 

1.0 but errors of this particular zero in the deflated polynomial are not very 

meaningful. 

It is noteworthy that for ‘j = 0 (division exclusively in order of ascending 

powers of x) the largest zero was in error by 10% and for j = 8 (exclusively in 

order of descending powers) the smallest zero was in error by 8% but for j = 4? 

all the zeros were found to the same degree of accuracy as they could be from 

the original polynomial . Thus it would appear that, for real zeros at least, this 

method completely avoids the inaccuracies inherent in removing a medium sized 

zero first. l-t- 

4. Division by a Quadratic Factor 

If now P(x) is divided by (x2 + bx + c) to form the quotient 

Q(x) 5 1 = 
xi 

qi xn-i-2 
* 

The symbol (-E) means X 10eE. 
t The symmetry of Ir./pj 1 about the minimum at j = 4 is of course due to the 

fact that all the zer d s are equally spaced on a log scale and that the zero being 
removed is the geometric mean of all the zeros; in general j # n/2. The best 
value of j is correlated with the ratio of the zero being removed to the geo- 
metric mean of the remaining zeros but this correlation seems rather unreliable. 

7-f Ellenberger [ 91 had previously suggested that if convergence to the largest zero 
seemed likely, then the order of the coefficients should be reversed--this is 
equivalent to division exclusively in order of ascending powers of x. 
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the two sequences for the coefficients of Q(x) are 

dqo = E,, 

dql = ?L - dqo 

dqi = % - ’ dqi-1 - ’ dqi-2 i=2 . . ..(n-2) 

and as-2 = Pnic 

a%-3 = @n-l - b as-2)‘c 

and a% = (Pi+2 - b agi-tl - qi+d /c i = (n-4) . . . o l 

If now, composite quotients are defined by 

i-1 n-2 

Qj(X) ‘C 
n-i-2 + 

&i x c 
n-i-2 j= l.... (n-2) 

aqi x 
i=O izzj 

and (x2 + bx + c) is not an exact factor, then the remainder terms are defined by 

n-j-l 
P(X) E (x2 t bx + c) Qj(x) + rjxn-j + sj+I x 

and P j(X) f (X2 + bx ~ c) &j(X) = P(x) n-j -rx n-j-l 
j 

- %lX l 

Then the least perturbation of the zeros of Pj(x) and hence those of Qj(x) from 

those of P(x) is probably achieved when some function like 

Ejz lrj’pj( + I’j+l/‘j+l\ 

is minimized. This is not quite such an obvious criterion as in the case of 

division by a linear factor but as then$or polynomials with widely separated 

zeros this function has a fairly sharp minimum and the value of j which 

minimizes the disturbance of the remaining zeros cannot be very different from 

that which minimizes this function. 
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A difficulty arises in applying this criterion if every odd-subscripted 

pj is either zero or very small; then, regardless of the accuracy of an 

accepted quadratic factor, Ej is meaninglessly large for all values of j. 

A very simple solution of this problem is to define 

and, as before, to minimize E. over all j. 
I 

The author is not able to justify 

this choice of a criterion theoretically but it has indicated the “best” quotient 

in all cases (admittedly a small number) tested so far. This test for a minimum 

Ej can be very easily carried out using the following expressions for rj and 

‘j+l 

- ’ dqj-2 - b #j-l - aqj 

‘j+l = Pj+l - ’ &j-l -b q.- d J aqj+1 . 

5 . Conclusions 

There is no doubt that the tactic of forming a composite quotient from the 

two idependently generated sequences of quotient coefficients greatly increases 

the accuracy of division by an approximate factor. Furthermore, it appears 

that using such a division technique all the zeros of a polynomial can be found in any 

order and to almost the same accuracy that could be obtained by purifying each zero 

in the original polynomial (without the normally accompanying worries about 

convergence). These advantages would appear to amply justify the extra 
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arithmetic--approximately 7n multiplibations and 3n divisions are required 

for the removal of a quadratic factor as compared to 2n multiplications for 

the conventional division. 

The method of choosing the cross-over point (from one sequence of quotient 

coefficients to the other) has been well justified theoretically for the case of a 

linear factor but requires a more detailed analysis for the case of a quadratic 

factor. 
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