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A Seventh Order Method for the Numerical Solution

of Ordinary Differential Equations*

J. C. BUTCHER

Stanford University, Stanford Linear Accelerator Center, Stanford, California

Abstract. Modified'multistep methods which combine scme of the proper-
ties of Runge-Kutta methods and of linear multistep methods are capable of
yielding stable high order algorithms with some useful properties. In this
paper a two-step method requiring five derivative calculations per step and a
with seventh order accuracy is found. The order for a one-step method with -
the same number of derivative calculations would be no more than four. The
coefficients in the method are given in exact (surd) form and also as 20D

approximations.

In searching for high order formulae for the numerical solution of the
initial wvalue prbblem in ordinary differential equations, one naturally
considers either linear multistep méthods or Runge-Kutta methods. For an
order of seven or more neither of these alternatives is attractive since,
in the one case, we would need a six-step method and in the other we would
need to use a method fequiring nine derivative évaluations per step. However,

(1],(2],[=]1,[4]

modified multistep methods are available. These are methods
which utilize information from previous steps as do linear multistep methods
and which involve intermediate calculations as do Runge~Kutta methods.

For stable k-step methods requiring r intermediate calculations per
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step (that is, a total of r + 2 derivative calculations per step) a worth-
while target to aim for is an order 2k + r. For r = O this was shown by

]

D:a\.]alculis’r,[5 to be possible only for k < 3. It appears that for r = 1 it

is possible up to k = T and for r =2 up tok = 15. r =3 is a particuiarly -
interesting case as the Runge-Kutta case, k = 1, does not exist.ts] |

However, there is no reason to suspect that for some k > 1 such methods
might not exist. Owing to the great labour of the manipulations involved,
only the single case k = 2 is investigated here. The interesting result is
that there is indeed a method of-order seven. In fact, there is at least a
two—parémeter family, although only one of its members will be shown ex-
plicitly here. However, the method of derivation is given and, in fact, can
easily be extended to cases of higher k.

Let y' = f(x,y) be the differential equation for which a solution is
sought and for our present purposes we suppose that f is differentiable
arbitrarily often with respect to x and (the eléments of the vector) y. We

suppose that the solution 1s known at points x x = Xo + nh. Denote

n-1> “n

= ‘ = . w ! . .
Y, y(xn) and f_ f(xn,yn) e seek a method for computing y ., in the

form

Vopn = agyh + a;lyn_l + h(bifn + b;lfn_l)

Ypaw = aZyn + a;lyn_l + h(b;fn+u + ben + b;lfn-l)

Vs = agyn +a v, + h(bifn+v L L bgfn + b;lfn_l)

§ 0 = a:yn + a;lyn_l + h(bzfn+w SRS S A bifn + b;lfn_l)

V.. = aoyn + a'lyn_1 + h(b‘*'f‘m1 + b3fn+w + bzfn+v + blfn+u + bofn + b_lfn_l)
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where u, v, w are three numbers distinct from each other and from -1, 0, 1

- -1 ’
and ai, all, « « ., b are the constant coefficients for the method.

Tt is now our purpose to choose the various parameters so that Y0

+

Y.

, § . agree with their exact values with error O(h*) and so
n+v n+1

> I

that y . agrees with its exact value with error O(h®). As in [4], we shall
identify the various coefficients as the numerators in the partial fraction
expres;ions of certain rational functions wl(z), @2(2), ¢3(z), ¢4(Z): o(z).
We shall suppose that these functions are related by

o (2) + b (2) + 0% (2) + D% (2) + (2-1)9(z) = ©

and that @ , ¢_, 9, @ take the forms

_Kl
¢ (z) =
1 (z—u)zz(z+l)2
K L Mo\
cp(z): 2 l+.—2_]-'. l+-§l‘.
2 (z-v)z3(z+1)% z-u z~-U
K L M L/ M
3 (z-w)zZ(z+1)2 z-u z-u z-V z-V
-1 L M L M L M
q)(z): S l+-—:-L-— +__§_ l+_g_ +.—2—. l+_2_.
(2-1)223(z+1)2 ( z-u z-Uu Z~V Z~V z-W z-W

Iet B denote the set of functions bounded in {z:|z| 2 R} where R is

some real constant satisfying R > max {1,lu|,|v|,|w|}. Then, using the type

of analysis used in [L4] we see that K Kg, L5 »+- 5 M must be chosen

21

so that the following conditions are satisfied.



(1) The residue of wl(z) at z=u is -1,
(2) The residue of ma(z) at z=u is O,
(3) The residue of wz(z) at z=v is -1,
(%) The residue of @3(z) at z=u is O,
(5) The residue of @3(Z) at z=v is O,
(6) The residue of w}(z) at z=w is -1,
(7) The residue of ¢(z) at z=u is O,
(8) The residue of ¢(z) at z=v is O,

(9) The residue of ¢(z) at z=w is O,

(10) The residue of @(z) at z=1 is -1,
(11) z%(z)eB,
(12) 2°p(z)eB,
(13) zﬁ{bl(l-u>@l(z) + V(1) (2) + b3(l—w)®3(z)}eB,

(14) 7o (1-u)o,(2) + bE(1v)e (2) + B3(1w)0 (2)] ez,

(15) =2°

(16) zs}(ﬁil-v)b; + vP(1-0)ptJo_(2) + b3(1—w)b§@2(z)}eB.

bl(l—u)u@l(z) + b2(1-v)v¢2(z) + b3(1-w)w@3(z) €B,

These constitute 16 independent conditions on u, v, w and the 15
~constants Kl, K2, oo M}. Hence, u, v, w cannot be chosen independently.
A tedious calculation yields the following relationship between these
numbers

3+ Tur +vw +wu) = (5 £ 2V22)(u + v + w + 3uvw)
where either value of the surd may be chosen. We select the values v = %,
w o= %, resulting in u = (-493 + 4V22)/819 or its conjugate. As it happens,
the conjugate value leads to an unstable method, so only the one value of

u need be considered.




We are now in a position to compute Kl, Kg, oo M3 and, hence, the

coefficients a:, a;l, cee b, First, we use (7), (8), (9) to compute

Mo, M, M and then (10), (11),(12) to find Ll, L, L. We now determine
b = %&ﬁ(z—u)2¢(z), bz and b_. le, Msl, M32 are now found from (2), (&),
(5); Kl is found from (1) and then K2 and K3 from the simultaneous equations
(13) and (15). Lzl is now given from (3) and L31, L32 from the system (14)
and (6). We are now in a position to compute the remaining coefficients
and to substitute into (16) as a check. For the calculations performed by
the author this check was indeed satisfied.

Values of the coefficients are given in Table I in algebraic and in
decimal form. For the number (04+BV22)/y the integers Q, B, 7 are given
as is the decimal value rounded to 20D. That a method of the form we are

~considering should be (asymptotically) stable, it is necessary that
|5™1< 1 and sufficient that |b *|< 1. In our case, it is found that
p Y = -751 + 160V22 ~ -0.53 so that the method is stable.

To see how the method performs in the solution of real problems, two
examples were selected. The equations were (a) dy/dx =y, (b) dy/ax =
-y2/(1 +x23) in each case with initial value y(o) = 1. Using a step size
h = l/n where n took on a number of integral values., the highest being
1000, the solutions were evaluated at Xx= 1. At this point the exact
solutions are (a) y(1) = e, (b) y(1) = &/(4 +‘ﬂ). Double length accuracy
(26 octal digits) was used in the computations so that for most values of
n used, rounding errors were insignificant compared with the truncation
errors. The results found indicated that the truncation errors had the
asymptotic forms (a) 1.7 x 1072+n” (b) -1.6 x 107°.h” so that in either case,
30 decimal accuracy, for example, could be achieved with something like

10000 steps.
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