A Seventh Order Method for the Numerical Solution of Ordinary Differential Equations *
J. C. BUTCHER
Stanford University, Stanford Linear Accelerator Center, Stanford, California

Abstract

Modified multistep methods which combine some of the properties of Runge-Kutta methods and of linear multistep methods are capable of yielding stable high order algorithms with some useful properties. In this paper a two-step method requiring five derivative calculations per step and with seventh order accuracy is found. The order for a one-step method with the same number of derivative calculations would be no more than four. The coefficients in the method are given in exact (surd) form and also as 20D approximations.

In searching for high order formulae for the numerical solution of the initial value problem in ordinary differential equations, one naturally considers either linear multistep methods or Runge-Kutta methods. For an order of scven or more neither of these alternatives is attractive since, in the one case, we would need a six-step method and in the other we would need to use a method requiring nine derivative evaluations per step. However, modified multistep methods are available. $[1],[2],[3],[4]$ These are methods Which utilize information from previous steps as do linear multistep methods and which involve intermediate calculations as do Runge-Kutta methods.

For stable k-step methods requiring r intermediate calculations per
(Submitted to Journal of the Association for Computing Machinery)
*Work supported by the U. S. Atomic Energy Commission
step (that is, a total of $r+$? derivative calculations per step) a worthwhile target to aim for is an order $2 k+r$. For $r=0$ this was shown by Dahlquist ${ }^{[5]}$ to be possible only for $k<3$. It appears that for $r=1$ it is possible up to $k=7$ and for $r=2$ up to $k=15 . r=3$ is a particularly interesting case as the Runge-Kutta case, $k=1$, does not exist. ${ }^{[6]}$

However, there is no reason to suspect that for some $k>l$ such methods might not exist. Owing to the great labour of the manipulations involved, only the single case $k=2$ is investigated here. The interesting result is that there is indeed a method of order seven. In fact, there is at least a two-parameter family, although only one of its members will be shown explicitly here. However, the method of derivation is given and, in fact, can easily be extended to cases of higher k.

Let $y^{\prime}=f(x, y)$ be the differential equation for which a solution is sought and for our present purposes we suppose that f is differentiable arbitrarily often with respect to x and (the elements of the vector) y. We suppose that the solution is known at points $x_{n-1}, x_{n}=x_{o}+n h$. Denote $y_{n}=y\left(x_{n}\right)$ and $f_{n}=f\left(x_{n}, y_{n}\right)$. We seek a method for computing y_{n+1} in the form
$y_{n+u}=a_{1}^{0} y_{n}+a_{1}^{-1} y_{n-1}+h\left(b_{1}^{0} f_{n}+b_{1}^{-1} f_{n-1}\right)$
$y_{n+v}=a_{2}^{0} y_{n}+a_{2}^{-1} y_{n-1}+h\left(b_{2}^{1} f_{n+u}+b_{2}^{0} f_{n}+b_{2}^{-1} f_{n-1}\right)$
$y_{n+w}=a_{3}^{0} y_{n}+a_{3}^{-1} y_{n-1}+h\left(b_{3}^{2_{f}}{ }_{n+v}+b_{3}^{1} f_{n+u}+b_{3}^{o_{n}}+b_{3}^{-1} f_{n-1}\right)$
$\hat{\mathrm{y}}_{\mathrm{n}+1}=a_{4}^{0} y_{n}+a_{4}^{-1} y_{n-1}+h\left(b_{4}^{3} f_{n+W}+b_{4}^{2_{f}}{ }_{n+v}+b_{4}^{1} f_{n+u}+b_{4}^{0} f_{n}+b_{4}^{-1} f_{n-1}\right)$
$y_{n+1}=a^{0} y_{n}+a^{-1} y_{n-I}+h\left(b^{4} \hat{f}_{n+1}+b^{3} f_{n+w}+b^{2} f_{n+V}+b^{1} f_{n+u}+b^{0} f_{n}+b^{-1} f_{n-1}\right)$
where u, v, w are threc numbers distinct from each other and from $-1,0,1$ and $a_{1}^{0}, a_{2}^{-1}, \ldots, b^{-1}$ are the constant coefficients for the method.

It is now our purpose to choose the various parameters so that y_{n+u}, $y_{n+v}, y_{n+w}, \hat{y}_{n+1}$ agree with their exact values with error $O\left(h^{4}\right)$ and so that y_{n+1} agrees with its exact value with error $O\left(h^{8}\right)$. As in [4], we shall. identify the various coefficients as the numerators in the partial fraction expressions of certain rational functions $\varphi_{1}(z), \varphi_{2}(z), \varphi_{3}(z), \varphi_{4}(z), \varphi(z)$. We shall suppose that these functions are related by

$$
b^{1} \varphi_{1}(z)+b^{2} \varphi_{2}(z)+b^{3} \varphi_{3}(z)+b^{4} \varphi_{4}(z)+(z-1) \varphi(z)=0
$$

and that $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi$ take the forms

$$
\begin{aligned}
& \varphi_{1}(z)=\frac{-K}{(z-u) z^{2}(z+1)^{2}} \\
& \varphi_{2}(z)=\frac{-K}{(z-v) z^{2}(z+I)^{2}}\left\{1+\frac{I_{2 I}}{z-u}\left(1+\frac{M}{z-u}\right)\right\} \\
& \varphi_{3}(z)=\frac{-K_{3}}{(z-w) z^{2}(z+1)^{2}}\left\{1+\frac{L_{11}}{z-u}\left(1+\frac{M_{31}}{z-u}\right)+\frac{L_{32}}{z-v}\left(1+\frac{M_{32}}{z-v}\right)\right\} \\
& \varphi(z)=\frac{-1}{(z-1)^{2} z^{2}(z+1)^{2}}\left\{\frac{I_{1}}{z-u}\left(1+\frac{M_{1}}{z-u}\right)+\frac{I_{2}}{z-v}\left(1+\frac{M_{2}}{z-v}\right)+\frac{I_{3}}{z-w}\left(1+\frac{M_{3}}{z-w}\right)\right\}
\end{aligned}
$$

Let B denote the set of functions bounded in $\{z:|z| \geqq R\}$ where R is some real constant satisfying $R>\max \{I,|u|,|v|,|w|\}$. Then, using the type of analysis used in [4] we see that $K_{1}, K_{2}, L_{21}, \ldots, M_{3}$ must be chosen so that the following conditions are satisfied.
(1) The residue of $\varphi_{1}(z)$ at $z=u$ is -1 ,
(2) The residue of $\varphi_{2}(z)$ at $z=u$ is 0 ,
(3) The residue of $\varphi_{2}(z)$ at $z=v$ is -1 ,
(4) The residue of $\varphi_{3}(z)$ at $z=u$ is 0 ,
(5) The residue of $\varphi_{3}(z)$ at $z=v$ is 0 ,
(6) The residue of $\varphi_{3}(z)$ at $z=w$ is -1 ,
(7) The residue of $\varphi(z)$ at $z=u$ is 0 ,
(8) The residue of $\varphi(z)$ at $z=v$ is 0 ,
(9) The residue of $\varphi(z)$ at $z=w$ is 0 ,
(10) The residue of $\varphi(z)$ at $z=1$ is -1 ,
(11) $z^{8} \varphi(z) \in B$,
(12) $z^{9} \varphi(z) \in B$,

$$
\begin{align*}
& z^{6}\left\{b^{1}(1-u) \varphi_{1}(z)+b^{2}(1-v) \varphi_{2}(z)+b^{3}(1-w) \varphi_{3}(z)\right\} \in B, \tag{13}\\
& z^{7}\left\{b^{1}(1-u) \varphi_{1}(z)+b^{2}(1-v) \varphi_{2}(z)+b^{3}(1-w) \varphi_{3}(z)\right\} \in B, \tag{14}\\
& z^{6}\left\{b^{1}(1-u) u \varphi_{1}(z)+b^{2}(1-v) v \varphi_{2}(z)+b^{3}(1-w) w \varphi_{3}(z)\right\} \in B, \tag{15}\\
& z^{6}\left\{\left(b(1-v) b_{2}^{1}+b^{3}(1-w) b_{3}^{1}\right) \varphi_{1}(z)+b^{3}(1-w) b_{3}^{2} \varphi_{2}(z)\right\} \in B .
\end{align*}
$$

These constitute 16 independent conditions on u, v, w and the 15 constants $K_{1}, K_{2}, \ldots, M_{3}$. Hence, u, v, w cannot be chosen independently. A tedious calculation yields the following relationship between these numbers

$$
3+7(u v+v w+w u)=(5 \pm 2 \sqrt{22})(u+v+w+3 u v w)
$$

where either value of the surd may be chosen. We select the values $v=\frac{1}{3}$, $w=\frac{2}{3}$, resulting in $u=(-493+4 \sqrt{22}) / 819$ or its conjugate. As it happens, the conjugate value leads to an unstable method, so only the one value of u need be considered.

We are now in a position to compute $K_{1}, K_{2}, \ldots, M_{3}$ and, hence, the coefficients $a_{1}^{0}, a_{1}^{-1}, \ldots, b^{-1}$. First, we use (7), (8), (9) to compute M_{1}, M_{2}, M_{3} and then (10), (11), (12) to find L_{1}, L_{2}, L_{3}. We now determine $b_{1}=\lim _{z \rightarrow u}(z-u)^{2} \varphi(z), b_{2}$ and $b_{3} . M_{21}, M_{31}, M_{32}$ are now found from (2), (4), (5); K_{1} is found from (1) and then K_{2} and K_{3} from the simultaneous equations (13) and (15). L_{21} is now given from (3) and I_{31}, I_{32} from the system (14) and (6). We are now in a position to compute the remaining coefficients and to substitute into (16) as a check. For the calculations performed by the author this check was indeed satisfied.

Values of the coefficients are given in Table I in algebraic and in decimal form. For the number $(\alpha+\beta \sqrt{22}) / \gamma$ the integers α, β, γ are given as is the decimal value rounded to 20D. That a method of the form we are considering should be (asymptotically) stable, it is necessary that $\left|b^{-1}\right| \leqq 1$ and sufficient that $\left|b^{-1}\right|<1$. In our case, it is found that $b^{-1}=-751+160 \sqrt{22} \approx-0.53$ so that the method is stable.

To see how the method performs in the solution of real problems, two examples were selected. The equations were (a) $d y / d x=y$, (b) $d y / d x=$ $-y^{2} /\left(1+x^{2}\right)$ in each case with initial value $y(0)=1$. Using a step size $h=1 / n$ where n took on a number of integral values, the highest being 1000, the solutions were evaluated at $x=1$. At this point the exact solutions are (a) $y(I)=e,(b) y(I)=4 /(4+\pi)$. Double length accuracy (26 octal digits) was used in the computations so that for most values of n used, rounding errors were insignificant compared with the truncation errors. The results found indicated that the truncation errors had the asymptotic forms (a) $1.7 \times 10^{-2} \cdot h^{7}$ (b) $-1.6 \times 10^{-3} \cdot h^{7}$ so that in either case, 30 decimal accuracy, for example, could be achieved with something like 10000 steps.

REFERENCES

1. GRAGG, W. B. and STETPER, H. J. Generalized multistep predictorcorrector methods. J. ACM(1964), 188-209.
2. BUTCHER, J. C. A modified multistep method for the numerical integration of ordinary differential equations. J. ACM(1965), 127-135.
3. GEAR, J. W. Hybrid methods for initial value problems in ordinary differential equations. J. SIAM NUMER. ANAI. SER. B2 (1965), 69-86.
4. BUTCHER, J. C. A multistep generalization of the fourth order RungeKutta method. Submitted to J.ACM.
5. DAHIQUIST, G. Convergence and stability in the numerical integration of ordinary differential equations. MATH. SCAND. 4 (1956) 33-63.
6. BUTCHFR, J. C. On the attainable order of Runge-Kutta methods.

MATH. COMP. 19 (1965) 408-417.
TABLE I

TABLE I（cont＇d）

980切 TEL80 \＃ESZ8 TE90T•0	28IT	LOCL－	L8LS	\pm
9โ9こを 8ट己ら6 6れをEれ 9T6れt•0	S926t	＋860S I	00866 9－	ε^{q}
	8كE	S己己6－	LLEE币	e^{q}
	HLL60 8Sع80 サoサて		L90L9 856\％T 89L己れ OT－	$\tau^{\text {q }}$
	L992	Otote	†टTE9 8－	$0^{\text {q }}$
92889 LE90E LSヶEE OS990＊ 0^{-}	0L62	629ts	SCE己カ 乙－	I－${ }^{\text {a }}$
05692 TLCTS 28टп\％Lれ\＆\＆S•T	τ	09T－	$2 S_{L}$	0^{8}
	I	095	TSL－	T－${ }^{8}$
68290 88LET OпGE8 عट807＊T	$58 \varepsilon \dagger \checkmark T 2$	8れ2988	п86ट2 IT－	${ }_{\Sigma}{ }^{\text {q }}$
	65905 T6	9†859 をEL－	20¢L8 功	${ }^{\text {F }}$
08E8I TETOT ヶE969 OTTLで L9	ELZSL．8LE29 SG9\％		Oサ6LE サट8れを 9TETL 己－	$\square^{\text {a }}$
	E6TLT E80カt	2عこ8S T8ヵて9 †	8856L ETSTE 9－	${ }^{7}$
	58986 Lヵट		789\＃76 OTE	${ }_{\text {¢ }}^{\text {¢ }}$ ¢
S60E6 टLLET LOT8E \＃SGヶ0＊OTT－	LEL8S 6T	9629S عпп¢T－	ヶ26れて 6598	$\stackrel{\circ}{*}$
S60E6 टLLET LOT8E \＃SSH0＊TIT	LEL8S 6T	9629S \＆76T	L8599 6098－	${ }_{T-}^{*}{ }^{+}$
	ℓ	g	0	

