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Abstract. Modified~multistep methods which combine scme of the proper- 

ties of .i(I.mge-Kutta methods and of linear multistep methods are capable of 

yielding stable high order algorithms with some useful properties. In this ' ! 

paper a two-step method requiring five derivative calculations per step and " 

with seventh order accuracy is found. The order for a one-step method with ' 

the same number of derivative calculations would be no more than four. The 

coefficients in the method are given in exact (surd) form and also as 20D 

approximations. 

In searching for high order formulae for the numerical solution of the 

initial value problem in ordinary differential equations, one naturally 

considers either linear multistep methods or Runge-Kutta methods. For an 

order of seven or more neither of these alternatives is attractive since, 

in the one case, we would need a six-step method and in the other we would 

need to use a method requiring nine derivative evaluations per step. However, 

modified multistep methods are available. bl, kl, 131, [41 These are methods 

;rhich utilize information from previous steps as do linear multistep methods 

and which involve intermediate calculations as do Runge-Kutta methods. 

For stable k-step methods requiring r intermediate calculations per 
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step (that is, a total of r + 2 derivative calculations per step) a worth- 

while target to aim for is an order 2k + r. For r = 0 this was shown by 

Dahlquist [51 to be possible only for k < 3. It appears that for r = 1 it I I 

is possible up to k = 7 and for 1: = 2 up to k = 13. r = 3 is a particularly ' 

interesting case as the Runge-Kutta case, k = 1, does not exist. [61 

However, there is no reason to suspect that for some k > 1 such methods 

might not exist. Owing to the great labour of the manipulations involved, 

only the single case k = 2 is investigated here. The interesting result is 

that there is indeed a method of-order seven. In fact, there is at least a. 

two-parameter family, although only one of its members will be shown ex- 

plicitly here. However, the method of derivation is given and, in fact, can 

easily be extended to cases of higher k. 

Let y' = f(x,y) be the differential equation for which a solution is 

sought and for our present purposes we suppose that f is differentiable 

arbitrarily often with respect to x and (the elements of the vector) y. We 

suppose that the solution is known at points x X n-1' n =x f nh. Denote 
0 

'n = Y(x,) ad fn = f(xn,yn)- We seek a method for computing yn+l in the ' 

form 

Y nfu = soy 
In 

4- a.;'y n-1 + hb;fn + b;lfnml) 

Y ni-v = $yn + a.ily n 1 + h(blf 2 n+u + b& + b;lf,& 

Y n+w = azyn + a;'y,-, + h(b2f 
3 n+v + blf 

3 n+u + b;fn + b;'fnwl) 

$n+l = a”,yn ea. y ;’ n-1 + hb2nw + bzfn+v f bifn+u + b04f, + b;lfn-l) 

yn+. = a"yn f a-ly n-1 f h(b4;‘fn+l + b3fn+w + b2fn+v + b'f,+u i- b'f, f b-lfnel) 
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where u, v, w are three numbers distinct from each other and from -1, 0, 1 

and a,", -1 -1 are the constant coefficients for the method. a. b 1>"'", 

It is now our purpose to choose the various parameters so that yn+u, 

Y ni-v' 'n+w> 'n-t-A agree with their exact values with error O(h4) and so 

that Y,+~ agrees with its exact value with error O(h8). As in [4], we shall 

identify the various coefficients as the numerators in the partial fraction 

expressions of certa.in rationa. functions cpl(z), (p2(z), (p3(z), (p4(z), q(z). 

We shall suppose that these functions are related by 

blql(z) -t bzya(z) f b3T3(z) + b4q4(z) + (z-1)9(z) = 0 

and that cp,, cp,, (p3, cp take the forms 

-K 
cp,(d = 

(z-u)z2;z+1)2 

‘pa(z) = -K2 [l+~~+yj 
(z-v)z2(z+l>2 

rp3w = -K3 {l+~~+>)+2jl+5Z)j 
( z-w)z2( z+112 

cp(z> = -l r"('+y)+~~+y+~~+&)j 
(z-1)2z2(z+1)2 z-u 

Let B denote the set of functions bounded in {z:IzI 1 R) where R is 

scme real constant satisfying R >max {l,lul,/v),lwlj. Then, using the type 
.* I 

of.analysis used in [4] we see that K K L 1J 2’ 2l’ ” l Y 
M3 must be chosen 

so that the following conditions are satisfied. 

-3- 



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

05) 

06) 

The residue of Cpl(z) atZ=u is -1, 

The residue of q,(z) at z=u is 0, 

The residue of q,(z) at z=v is -1, 

The residue of q,(z) at z=u is 0, 

The residue of q,(z) at z=v is 0, 

The residue of (p3(z) at z% is -1, , 

The residue of q(z) at z=u is 0, 

The residue of q(z) at z=v is 0, 

The residue of q(z) at z=w is 0, 

The residue of v(z) at z=l is -1, 

z8~(+B, 

zgd z > EB, 

z6jb1(l-u$(z) + b"(l-v)q2(z) + b3(l-w)cp3(z+B, 

z7 bl(l-u)ql(z) 
t 

+ b2(l-v)cp2(z) + b3(1-d~3(d~~~, 

z6 bl(l-u)ucpl(z) + b'(l-v)vrp2(z) + b3(l-w)wqJ3(z+B, 
i 

z6[[@1-v)b: + b'(l-w)b;)ql(z) + b'(l-w)b;(P2(z)}eB. 

These constitute 16 independent conditions on u, v, w and the l> 

constants K 1J K 2’ l ** 

A tedious calculation 

,M' 3 
Hence, u, v, w cannot be chosen independently. 

yields the following relationship between these 

numbers 

3 f 7b f VW Mu) = (5 + 2V%)(u +v i-w -I- 3uvw) 

where either value of the surd may be chosen. We select the values v = $, 

2 w = -, 
3 

resulting in u = (-493 + 4m)/819 or its conjugate. As it happens, 

the conjugate value leads to an unstable method, so only the one value of 

u need be considered. 
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We are now in a position to ccmpute K 1Y K 2Y l ** Y 
M3 and, hence, the 

coefficients a0 a -1 -1 

1' 1' 
l ** , b . First, we use (7), (8), (9) to compute 

M 
1' 

M M and then (lo), (ll), "(12) to find L1, L2, L3. We now determine 
2' 3 

% 
= ;$z..u)2s,(z), b and b . M 2 3 21' 

M,,, M32 are now found frc~~~ (21, (&I, 

(5); K is found from (1) and then K 

(13) aid (15)* L21 
2 

and K3 frcm the simultaneous equations 

is now given from (3) and L L 
31' 32 

from the system (14) 

and (6). We are now in a position to compute the remaining coefficients 

and to substitute into (16) as a check. For the calculations performed by 

the author this check was indeed satisfied. 

Values of the coefficients are given in Table I in algebraic and in 

decimal form. For the number (a+Bm)/y the integers (3, f3, y are given 

as is the decimal value rounded to 20D. That a method of the form we are 

,considering should be (asymptotically) stable, it is necessary that 

Ib-lls 1 and sufficient that lb-'\< 1. In our case, it is found that 

b -1 = -751 -I- 16ov-22 = -0.53 so that the method is stable. 

To see how the method performs in the solution of real problems, two 

examples were selected. The equations were (a) dy/dx = y, (b) dy/dx = 

-y2/(l i-x2) in each case with initial value y(o) = 1. Using a step size 

h = l/n where n took on a number of integral values, the highest being 

1000, the solutions were evaluated at X= 1. At this point the exact 

solutions are (a) y(l) = e, (b) y(l) = 4/(4 + a). Double length accuracy 

(26 octal digits) was used in the computations so that for most values of 

n used, rounding errors were insignificant ccmpared with the truncation 

errors. The results found indicated that the truncation errors had the 

asymptotic forms (a) i.7 X 10e2*h7 (b) -1.6 x 10m3=h7 so that in either ca.se, 

30 decimal accuracy, for example, could be achieved with something like 

10000 steps. 
-5- 
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