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ABSTRACT 

Initial- and final-state corrections to single-particle exchange 

amplitudes are studied. Two multichannel K-matrix formalisms, which 

are expected to be valid for different energy regions, are developed 

by means of a random phase approximation, and two similar absorption 

formulas are derived. Both reduce to the Gottfried-Jackson form for 

weak absorption, but give more absorption in the lower partial waves. 

The models are applied 'to the reactions X' + p +fifp for scattering 

angles near 180', and to the reaction ~c-p +Jr'n for small momentum 

transfer. It is found that the improved absorption models do not 

solve the problem found in earlier work of failing to fit the energy 

dependence of the cross sections. However, the increased absorption 

makes it possible to fit the data in the 4-10 BeV/c region by an arbi- 

trary choice of absorption parameters. 

* 

t 

Work supported in part by the U. S. Atomic Energy Commission and 
in part by the Air Force Office of Scientific Research Grant 
AF 49(638)-1389. 

National Science Foundation Fredoctoral Fellow. 

(Submitted to Phys. Rev.) 



Section I 

There has been a great deal of interest lately in so called absorption 

models of high energy interactions. The first of these models1 was based 

on an extrapolation of the low energy distorted wave Born approximation 

(DW-@d, and has the form 

A 12 = 31 B12 G -i-- (1.:1) 

In Fig. 10, we give a simple physical interpretation of this equation. 

The two interacting particles first scatter elastically by means of an 

initia.1 state interaction (the first "blob"), then scatter inelastically 

by some process (second blob), and the two emerging particles scatter 

elastically through a final state intera.ction (third blob). The idea of 

the absorption model is to treat the initial and final state interaction 

exactly by putting in the experimentally observed amplitudes for S 11 and 

S22 and to treat the inelastic scattering in some approximate way (usually 

by using the Born amplitude). 

In this paper we shall derive two similar absorption models on the 

basis of a multichannel K matrix formalism. We shall see that the simple 

interpretation given above will be valid only for high partial waves 

( i.e., for high impact parameters), and that at lower partial waves 

results differing somewhat from Eq; (1.1) will hold. 
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We shall treat the two interactions 

at scattering angles near 180’, and the reaction 

in the forward direction. -In all that follows, we shall work in the 

center of mass frame of the nN system. 

We sha.11 find that the model of Gottfried and Jackson fails to 

fit the experimental data in both interactions, although it still re- 

presents a tremendous improvement over the unmodified Born amplitude. 

The K matrix models, because they introduce more absorption into the 

lower partial waves, can be made to give fairly good fits to the ex- 

perimental data for both reactions. However, as we shall see, they 

can be made to do so only by a rather arbitrary choice of the absorption 

parameter. 

The greatest problem with the absorption models will be seen to 

be their complete failure to predict the observed drop of dR 22 as t-he 

energy is increa.sed. They can be made to follow this drop by increasing 

the amount of absorption in the S wave, but this procedure can be justified 

only in a. rough wa.y. In Section VI we discuss the possibility of improving 

this aspect of the model by Reggeization of the rrN inelastic amplitude. 
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The general plan of the paper Gill be as follows: in Section II 

we shall work out the helicity amplitudes for the above interactions. 

In Sections III and IV, we shall derive our absorption equations, and 

in Sections V and.VI we shall present and discuss numerical results. 

-3- 



Section II 

Consider a rrN reaction of the type as in Fig. 11. We then write 

the scattering matrix as 

S 
Pd 6 (Pf - Jy 

Fi = 6 fi+ v2 q- Afi 

so -that the cross section is 

ii =& ( IIs iiil’) 
and the partial wave elastic unitarity condition reads 

It is well known2 that the most general rrN amplitude can then be 

written in the form 

A = Fs u(p' > U(P) + Fv ?P') j6 u(p) 

where F and Fv depend only on the scalars of the problem. The usual 
S 

way to write these amplitudes is in terms of the helicity expansion, 3 

so that we will need the following results: 2 

J(p'+) u(p+) = (1 - rr') e -i(p/2 cos q2 

U(p'+) u(p-) = (1 + rr') e W/2 sin O/2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5s) 
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and 

U(p'+) b u(p+) = cos Q/2 e-i'/2 [w(l + r') + 2qr] 

(2.D) 
U(p’+) pi u(p-) = sin 8/2 ei'j2 [w(l - rr') ] 

where we have set 

Since we shall usua.lly be considering scattering which is kinematically 

elastic, we can set r = r' in the above expressions. We shall also define 

the scattering plane such that Cp = 0. 

We expect that the cross section for back scattering will be dominated 

by central collisions, that is, by those pions which penetrate to the core 

of the nucleon. Consequently, we expect that the "nucleon exchange" graph, 

shown in Fig. 12, will play an important role. 

A standard calculation4 easily gives 

Fs = 0 

Fv = & 
M 

p2 - 2Ew - 2p2 cos 8 TI 

(2.6) 

where T I is the isotopic factor. 
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The other Born diagram,containing the uncrossed diagram, gives 

Fs = 0 

Fv = 
izEN M 

(E + w) 2 - iv? TI 

which is seen to be a pure S wave contribution. Since the idea of the 

absorption models is to remove most or all of the lower partial waves, 

we do not expect this diagram to contribute much to our final cross section. 

The cross section for the nucleon exchange diagram can easily be shown 

form: to have the following a.symptotic 

da 
zi I 

z 
t)=180° 

(2.7) 

which is a factor of N 103 above the experimental value. 

One possible improvement of the Born term would be to realize that 

the a.ccepted value of 

2 
gnN/4n = 15 

is derived for the case where the nucleon is on the mass shell. In our 

case, however, the nucleon is virtual, and in fact, has zero mass. This 

problem has been investigated,5 and the net result seems to be that if we 

include the modifications in gflN due to the fact that the nucleon is off- 

the-mass-shell, and,in addition, include the propagator modification, 

the amplitude is reduced by a factor N l/4. While this is still not 

enough to bring Eq. (2.7) into agreement with experimental results, we 

sha.11 see that it plays an important part in fitting the data with our 

absorption models. 

-6- 



We shall also want the amplitudes for reactions such a.s those shown 

in Fig. 13. The amplitude for the crossed diagram is proportional to 

a J 45,~p wp y&p 1 
\ 

Qap.- 3M*2 3M*2 3M*2 - + -. + - - "j YaYp P@ (2.8) 

I 

so that some algebra gives 

- p.p’ + 

WY > 

Fs = '(kr $ {CM + M*) (POP' - s (k.p)(~~pJ)) + 3 (M2(M + M*) _ w2) 

+ !@d. 
3M*2 

(M + M*) M - 2p.q’) + p2 2p.q’ - (M + M*) M 

where we have set 

D = (p - q’)2 a M*’ 

4r = (P - 9') 

The uncrossed amplitude can be obtained from this by the simple 

substitution 
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and so the uncrossed diagram contributes only to the S and P wave amplitudes, 

and, as with the simple nucleon exchange term, will not contribute very much 

to the cross section. 

The coupling constant is calculated in the usual way to be 

which, if we take 

r = 125 MeV 

gives 

h = 2.18 

Of course, the remarks about virtual effects made earlier apply 

here, too. In the absence of any theoretical work on the problem for 

the-N*, however we have assumed that the reduction due to virtual effects 

was the same for the N and N* exchange. 

The reaction 

n-p -non 

(2..10) 

(2.11) 
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we expect to be dominated by Fig. 14. This dia.gram has already been 

investigated in the DWEA. 67 We can write the amplitude as 

% 
A= Pflfl ; 

k2- mP2 
Gvr,, P-12) 

where Gv, GT, and Gs represent the vector, tensor, and scalar coupling 

constants at the lower vertex. 

The coupling constant at the pxx vertex can be evaluated8 to give 

-312 

so that if I? = 100 MeV, 

2 
* = 2.0 

Following the usual universal coupling scheme,' we set 

Gv = %Kll 

and we use the p - photon anolof3Y 
10 to give 

GT Kv = .g- = 3.7 
V 

(2.13) 

(2.14) 

(2.13) 

(2.16) 
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Some simple algebra leads to the result 

(G, + GT) TI 

Fv= -' 
k2 - mp2 

Unlike the nucleon exchange amplitude, the asymptotic form of this 

graqh can be shown to be 

da 
dR 

(2.17) 

(2.18) 

As we shall see later, this highly unphysical asymptotic form 

will cause serious problems in our absorption calculations. 
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Section III 

In this section we shall presen-5 a derivation of a multichannel K 

matrix absorption model which is somewhat unphysical, but which is 

algebraically simpl'e enough to allow explicit calculation of the absorption 

effect due to the fact that the real pa.rt of the elastic scattering 

amplitude is not zero. 

Before going on, however, it will be useful to consider some general 

remarks on the K matrix. If we restrict our attention to two particles 

intermediate states, then the unitarity condition for each partial wave 

in our norma,lization reads 

where 

r ij =r i 6.. 
iJ 

and 

and where we have suppressed the partial wave index on the matrices. 

We shall do this in all that follows, and every equation must be under- 

stood as applying to each partial wave. 

If we write the amplitude as 

(3.1) 

b = ,K (2 - irK)-1 (3.2) 

then Eq. (3.1) is automatically satisfied so long as K is real and Hermitian. 
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It is also known that 11 in the N/D formalism, 

K, (3.3) 

so that to a first approximation we can set 

K 
ij 

=B 
ij 

where B 
Cl 

is the Born amplitude for the process in question. We see, 

then, that the K matrix gives a way of constructing unitary amplitudes 

from Born amplitudes, which are not in themselves unitary. 

However, as indicated in the above discussion, the K matrix in 

the form of Eq. (3.2) takes account of two particle intermediate states 

only, and does not consider the effect of 3 or more particle intermediate 

states on the unitarity condition. In addition, in the first approximation 

given here, the virtual effects are not included, although we shall see 

that they must be put in to match the data for xN back scattering. 

Even with these shortcoming, however, the K matrix formalism is 

extremely useful in that no matter what approximations we make in the 

elements of ,K, the scattering amplitude will be unitary so long as g is 

real and Hermitian. 

Let us consider a system in 

channels, and in which we desire 

channels in an approximate way. 

threshold behaves like 

which we wish to have two important 

to estimate the effect of all other 

Now we know that the Born amplitude near 

. 

Suppose that the two channels which are important and let us take them to 

be the entrance and exit channel. Let us also suppose they can be 
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considered to be well past threshold at the energy we are considering, 

while all other open channels can be considered to be near threshold. 

Then two points are clear: 

>> K 
.Klj mj 

m # 13 

K2j >> K 
mj 

and 

'1 >> r i 
i f 1,2 

r2 >>. r. I. 

It seems reasonable, then to approximate (1 - irK) by 

l-irla -irlB -irlC3 . . . . . . -ir C 1K 

-ir2B 1-ir2$ -ireD . . . . . . -ir2DK 

-ir3C3 -ir3D3 1 . . 1 
. . . 
. . . 
. 

-irKCK li -ir K 

. . 

. . 

. . G 
. G 

. 
. 

. 
. 

. 
\* l 

l 

\ 

(3.4) 

We would expect this approximation to be valid in a situation where 

the first two channels contain particles of much lighter mass than the 

others, and when we are at energies which are well above the first two 
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thresholds, but just barely past the rest of them, if such a system 

existed. 

There are two comments which should be made at this point. First, 

this approximation is probably not very good for S waves. However, since 

the S wave will be almost completely subtracted out of the amplitude, 

we do not expect this to present serious problems. 

Second, the matrix given in Eq. (3.4), while it does not correspond 

exactly to any physical system, nevertheless is of a form which can be 

inverted explicitly, which is not the case in more realistic models. 

It will also be seen that because of the relative simplicity of the assumed 

K matrix, it will be possible to allow the elastic scattering amplitude 

to have a real part, something which we shall not be able to do easily in 

more realistic models. Therefore the reader may, if he wishes, regard 

Eq. (3.4) as an ad hoc form chasen for simplicity, but which allows a 

more exact fitting of the elastic scattering parameters than other models. 

The actual procedure of inverting the matrix is straightforward, 

though tedious, and is given in detail in Appendix I. We should note that 

this inversion is the most difficult part of the calculation, and con- 

sequently it is here that approximations are usually made. In order to 

achieve a simple answer, we introduce a 'random phase' assumption on the 

matrix elements D i and C i' The general logic of the procedure is to solve 

for All, A22' and Al2 in terms of a small number of "statistical" parameters 

which represent the effect of channels other than initial and final ones. 

We then introduce the values of All and A22 from experiment, and obtain an 

expression for Al2 which involves only B, the Born amplitude, and experimentally 

determined parameters. 
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If we assume that All and .A22 are pure imaginary, then the expression 

for Al2 becomes 

On the other hand, if we allow the elastic amplitudes to have small 

real parts, then the expression becomes 

A r +7/l-4B2 r2(l-rq)2 

Til-4B2 r2(l-r~)2 (rq-1) 

(3.5) 

(3.6) 

where AD 12 is the result of the diffraction picture used to obtain Eq. (3.5). 

We see, then, that the net effect of the real part of the elastic 

amplitude is an increase in absorption. 

We next ask whether Eq. (3.5) reduces to any familiar form in the 

weak absorption limit. The answer to this question requires the evaluation 

of r and II, which will be done next. 

From the optical theorem, we can write 

112 
do) 2 ‘T ’ 

=-Jr 

but the differential cross section at high energy is given by 

da -= 
da 

-Bt 
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where t is the momentum transfer. We see, then, that 

A 
P&(x) e-B/2 t dx 

carrying out the integral we find that 

f- ’ 'T -ue2 

FL = 2KB e 

while from Eq. (2.3), we get that 

aT -U,t2 
rrl ,=8nBe. 

so that the absorption factor in the numerator of Eq. (3.5) is just 

I 1 
2 

UT 
':wm e 

-U-e2 

which, for high &, reduces to 

Now at high &, we expect Bt to be small, also. Consequently, Eq. 

(3.5) reduces, in the weak absorption (or high partial wave) limit to 

I 
A uT -U--t2 

12 -4nBe i 

which is the DWBA result. 

In what follows, I shall refer to the results in Eqs. (3.5) and (3.6) 

(3.7) 

as the "Winged K Matrix" model (WKM). 
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Section IV 

In this section we present an absorption model which is expected to 

be more realistic at high energies. At high energies, a large number of 

channels are open for a given reaction, and unless we can calculate in 

detail the effect of each of these channels on the reaction which we are 

investigating, it becomes necessary to make some sort of statistical 

assumption about the unknown channels. The first work of this sort was 

done by Squires, 12 who considered a multichannel N/D equation where the 

elements of ,N and ,D were all equal in magnitude and random in sign. He got 

2 

A 12 (4 .i) 

which, for weak absorption, reduces to the DWBA form. However, Eq. (4.1) 

suffers from a serious defect. If we let the Born amplitude increase 

without bounds, the scattering amplitude, which is supposed to be unitary, 

also increases without bounds. 

This is a difficult problem, since the whole point of going to multi- 

channel N/D or K matrix formalisms is to insure unitarity no matter what 

we put in for the initial amplitude. A resolution of this difficulty, 

similar to the one presented here, has recently been proposed by Squires. 12 

It was suggested by Boss 13 that a better approximation might be to put 

in the explicit values of the K matrix in the channels in which we are 

interested, and then impose the random phase condition on the rest of 

the matrix elements. 
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If we write the amplitude as 

,A' = _K'(l - ir&')-1 

and if we assume that we are at sufficiently high energies that 

Pl 
--J- 

$$ 2 

For all channels, the matrix r can be taken to be 

If, in addition, we define 

irK' = K 

then the amplitude takes the form 

l-A’ - 6 = $1 - Q-1 

(4 2) 

(4.3) 

(4.4) 

The redefinition of K and A is simply a device to help the bookkeeping, 

and our final answers will be in terms of the original definition in Eq. (4.2). 

Let us now define our statistical assumption in the following way: 

consider an enxemble of matrices which have the following properties: 

1. The element K12 = K 21 = B in all matrices 
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2. The equivalent diagonal elements are the same in all matrices. 

3. All other elements are distributed according to some distribution 

law, which we could take to be a normal distribution. That is, the 

ensemble average of K-,&i = < K-R, > ) is zero. 

We could think of this as a system in which each matrix represents 

the amplitudes for a given infinitesimal energy slice, and in which the 

ensemble average represents the average amplitude over a small energy 

14 range. Such models are well known in nuclear physics. Alternatively, 

we could simply think of this as a restatement of the random phase model 

in which certain matrix elements are specifically given, and are not 

included in the random phase hypothesis. 

The question naturally arises as to what the diagonal elements of K 

ought to be. We can take a hint from the WKM and suppose that in the 

diffraction model Kii = 0. It has been shown 13 that this is indeed the case, 

and we shall reproduce this previous work later. 

Even with these assumptions, it is difficult to invert the matrix. 

The inversion procedure is carried out in Appendix II, together with a 

discussion of the random phase hypothesis. The net results is the 

expression 

52 = 

I -- \ 
K12(1 - rq) 1 + ' - -.Jl 2 + 4rq 

1+r2K 2 VGzi * 

1.2 2 i 

Now for higher partial waves, rv becomes small, and this reduces to 

A12 = K12(1 - rq)2 

-1g- 

(4.5) 

(4.6) 



wh ich is the same limi.t.i.ny: form as the WKBI model. Consequently we see that 

the Gottfried-Jackson result is the limiting case of both of our models, and 

this fact may be taken as another 'proof" of Eq. (1.1). 

The problem of allowing the elastic amplitude to develop a real part 

is much more difficult here. From Eq. (E.23) we see that Re Aic 0 means 

that Kii- 0. 

We note that the derivation of Eq. (4.6) depends very heavily on this 

assumption. The basic point is that if we consider a term like 

1 K&(l-6t2) K.e,(l-cm2) KrrR Ka = -- (l-682) Kd2(l-"m2)(1-6jm) Kd2 + 

then for Eq.(ic.>) to be true, we must be able to drop the second term in 

the above: . The only way to do this .is to say that the energy is high 

enough to make the diffraction model reasonable for all channels. 

The problem of putting in a small real part to the amplitude is thus 

seen to be quite complicated, and was not attempted. However, the results 

of the WKM seem to indicate that its net effect is to increase the amount 

of absorption. 

Another point to note about the random phase approximation (RPA) is 

that the approximation in which we set 

r, = r1 

-is essential to the derivation, since otherwise the matrix 

r-K NN 

i 3 not symmet.ric. 
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Section V 

Before giving the detailed results of numerical calculations, it will 

be useful to discuss the parameterization of the absorption equation. The 

general type of term we want to look at..are of the form' 

1 -- 
OT 2Bp* 

-e* 

me 

Now the total cross section is given approximately by 16 

aT = 22.6 + ?5.8 
pL 

while the half width of the peak at 4.0 Bev/c is just 17 

I3 = 8.33 Bev-;! 

Consequently, we can calculate the following table 

_- _____... ^.____ ..__. -._-_.-__-_-._ ..-. + 

pL A cs ) __ .___ __.... _ ). __, .- -. _--. -. .__ _ ,. 
4.0 -765 -0.038 ; 

/ 7 
, 

5.9 .70 j -0.025 1 
i 
j 
1 

8.0 i .671 j -0.018 
/ / 

1 10.0 1.66 ! -0.014 j 
I i l__L___ --.-i --.. ---.- ----i 
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'The value of E f:iven above is not the value given by some 18 experimentors, 

but the final results are not very sensitive to variations in B. The value 

of the ratio of the real to imaginary part of the forward amplitude is 

taken to bel' 

u: 
n+tP -+ n*fp 

= 0.33 

a = 0.23 
n-P -+ n-P 

da for backward n+P scattering are 20 
The main points of interest dn 

1. A sharp exponential fall-off with scattering angle. 

2. A drop in g of a factor of 3 between PL = 4 and PL = 8. 

3. The value of 2 at 180’ is smaller than the simple Born 

term by a factor of at least 10 -3 . 

It might be objected that the reactions 

represent elastic scattering, and therefore ought not to be treated in an 

absorption model. However, in terms of helicity amplitudes, we have 

A =O +- 

at zero angle scattering, and 

A =0 ++ 
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at back scattering angles. Consequently, 

K matrix by helicities, it is possible to 

if we label the channels of our 

make an approximate separation 

between the forward and back scattering channels on the bases of helicity 

flip arguments. 

The calculation of this peak by the DWBA has been reported previously21 

and has been done elsewhere in a somewhat different form, 22 The DWBA 

with A = 1 can bring the cross section down to - 1-3 mb, but no further. 

To match the data, it is necessary to include the virtue.1 effects. In 

Fig. 1, we show the results of the DWBA for N exchange alone. We see that 

while i.t is possible to-get a reasonable fit at PL = 4.0 Bev/c, there are 

two major disparities between the DWBA and the experimental points. 

1. The DWEA predicts a rise of cross section with energy, instead 

of the observed drop. 

2. The DWEA does not reproduce the sharpening of the slope as 

energy is increased. 

In Fig. 2, we present the results for the RPA model. While it is 

possible, by increasing A, to correct point 1 above, the second objection 

still holds. In Fig. 3, we present the same results for the WKM, and the 

comments made about the HPA model hold here as well. 

We see, then, that the simple nucleon exchange term, even if we 

include virtual effects, fails to reproduce the sharpening of the peak. 

We might ask, then, about the effect of including an N* exchange in the 

unsubtracted amplitude. This, in N/D language, would correspond to 

starting the calculation with two poles instead of one. For the reaction 
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which we are considering, this means we will sum the three diagrams in 

Fig. 15. 

Since the diagrams add constructively, it is clear that the DWBA, 

which was pushed to it's limit to get the results of Fig. 1, it simply 

will not be able to provide enough absorption when the extra terms are 

added. Although it is not so obvious, the same results are found to hold 

true for the HPA model. The WKM, however, can be made to match the data 

quite well, as is shown in Fig. 4. 

Now it must be realized that when we talk of "fitting'l the data, we 

a.re , in fact, choosing A on the basis of best fit, and not according to 

any theoretical criterion. We will discuss later whether the increa.se of 

A with energy can be justified. It should also be noted that the calculation 

of the virtual effects in Ref. 5 is highly approximate, and consequently, 

the absolute ma.gnitudes of the calculated cross sections is brought into 

question. It is conceivable that if the effective scaling factor due to 

virtua.1 effects were changed, that a situation could arise in which none 

of the models could be made to fit the data, or in which all of them could. 

The relevant facts about the rea.ction 

are that 20 

1. The experimental curves are almost flat in the region of interest. 

2. The cross section drops slightly as the energy is increased. 
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. 

Thi :; rea.cti,on goes pred~ominantly by N* exchange, and is dominated 

by the diagrams in Fig. 16. 

In Fig. 5 we present the DWBA and RPA results for this amplitude. 

We see that while both predict the relatively flat curve, both also 

predict a rise in the cross section with energy, which is not observed. 

In I?ig. 6, the results of the WKM are presented, and we see that with 

the addjtional absorption due to deviations from the diffraction picture, 

il. i.:; 3yrk.i.n po.,., -riblc to fit the data reasonable well. 

'Fk~c-, data for t;h~, forward charge exchange scattering 19 reveals that 

Lhc\ c-rc.1:::; sect i on d i -f'fer:; ?rorn e1ast.i c scattering in that instead of 

pr::kjnCr, i.n thi, forward direction, it begins to level off as 8 -+O. 

In Fig. '( and 8, we present the best fits for lab momenta of 5.9 

and 10 Bev/c for the different models. Once more we see that the DWl3A 

and the RPA models fail to follow the slight energy drop, but that the 

WKJI can be made to fit the data near zero scattering angle quite well. 

On the other hand, for larger angles, it is impossible to match the slope. 

lrl .a.n :l.t,ternpt to improve this situation, we tried to vary Kv. The results 

or t,h<%:;(t ca.lc111.:3t:i on:; fo.r the WKBI model are shown in Fig. 9. The general 

rC'~;ull, :;oern s to be that Kv governs both the turnover at 8 = 0 and the 

magnitude of the slope, and that if we match one of these, we must lose 
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Lhe other. Since the peripheral model is expected to be best for small 

trlomcntum tra.nsfers, it would seem ;?ea.sonable to choose our .original value 

of K 
V' 

and thereby match the turnover. 
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Section VI 

The following points emerge from an analysis of the numerical 

calculations: 

1. The DWBA fails to reproduce the drop in cross section with 

energy for any of the processes considered. 

2. The absorption constant in the RPA can be adjusted to match the 

energy drop for N exchange, in which case it fails to match the 

shrinking of the peak. In the other cases, the energy drop 

cannot be matched. 

3. If we include the effect of the real part of the elastic amplitude, 

it is possible to choose A such that the WKM gives a reasonable 

fit to the data in all three cases. 

J-c . In considering the reaction 

n+p+ nfP 

in the backward direction, it was necessary to take a more 

complicated expression than the simple Born amplitude for the 

undistorted inelastic amplitude. 

This last point leads to the conjecture that it might be possible 

to do a better job of matching the slope of the forward charge exchange 

cross section if we included more than the simple p exchange diagram. It 

also points out the fact that as the energy of the interaction is increased, 

the replacing of the inelastic amplitude with the Born term becomes less 

and less justified. In fact, the identity 

K ZB 

12 

is the weakest point in the entire absorption procedure. 
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It. must be noted, howr~ver, that the main usefulness of the absorption 

models .j s that it ULow:; a simple calculation of high energy cross sections 

which takes into account the many channel aspects of the problem. Clearly, 

a point of diminishing returns will be reached when the calculation of the 

inelastic terms will become a forbidding problem in itself, and at this 

point other methods of attack will have to be found. Our calculations 

seem to indicate that this point will not lie very far above 

pL - 10 Bev/c 

Another point which requires some attention is the question of 

whether or not the increase of A with energy which was required to fit the 

data can be justified in any way. The elastic unitarity condition in our 

notation is 

Im $, = 
P 

C <mAi& l&l2 I/--s m 

:;o that if we write 

At+ = K e is sin 6 

A:- = N eiri sin 7 

Eq. (6.1) becomes 

K sin2&= P t.,N2 sin* 7 + K2 
1&i* qz- 

sin*6 1 

3 

(6.1) 

(6.2) 

from which it follows that 

16n* ‘/s- > K > A 
P - -++ 
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*j -_ $ 
++ ,,rN (E -I- M) 1 j TI 

and where we've defined 

u(p,s) - it= X(p,s) 

I’. ) that. the :jrlitar'it;y condition reads 

-- 
:t <: 

j- 
(E + M) 

A ;;j.m-i.tar calcrulat.ior~ for the forward charge exchange scattering yields 
_ _ 

2 7\( 2 

1 i 

f&K. i 
p4rr 

Let us consider just the S wave for a moment. The S wave in tvle 

ijWBA can be written 

(l- o=Ao A) I 

( 6 . j) 

(6A) 
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so that at P 
L 

= 8, Eq. (f',.Jc) says that 

A > 0.86 

which is somewhat higher than the value of A which was calculated in 

Section V. 

In the RPA and WKM models, we write for the S wave 

(1 - A)2 IO = A0 

which yields 

While this is smaller than the parameters actually used, it is 

considerable higher than the theoretical absorption parameter, which 

is half of the Gottfried-Jackson result. 

We might say that although the K matrix approach guarantees unitarity 

if carried out exactly, the approximations which we have made seem to leave 

the amplitude nonunitarity for some choices of A. Consequently, we can 

think of the use of a higher absorption parameter as a partial correction 

for the approximations which were made to derive simple formulae. 

As for the increase of A with energy, the charge exchange scattering 

unitarity condition leads to the expression 

(1 - Al) I1 Sl P2 E2+ M 

(1 - A2) 12 = q q EC M 
(6.5) 

where the subscript 1 refers to PL = 5.9 and 2 to PL = 10. Clearly, since 

in this case 12 > I 1, the above equation requires 

A2 > 4 
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In fact, if we let 

5 := 0.9 

then we find 

A.2 = 0.95 

While this increase is not large enough to justify the parameters which we 

picked to match the data, at least it shows that increasing A as energy 

is increa.sed is not tota.lly unreasonable. 

E'j.nally, we must ask why the WKM seems to give results which are so 

much better than the RPA, since one would suppose tha,t the latter is the 

more reasonable model. 

One reason might lie in the fact that although we are at energies 

where many channels are open, it is not clear that we can ignore threshold 

effects, as we did in the RPA. For example, in our energy range the 

threshold factor for the xN channel is virtually at its asymptotic value, 

while the same factor for the pN channel is only within 60% of this value. 

Consequently, it may be tha.t the random phase method does not become valid 

until .nuch h.ighcr cnc!rgier; are reached, at which point the use of the simple 

Horn term in the K matrix is certainly not justified. 

Another difficulty with the RPA is that we know that Q: f 0 in our 

energy range, although we assumed that it was when we derived the RPA. 

If the WKM is any guide, the inclusion of this effect would lead to an 

increase in absorption, which might bring the RPA results more into line 

with the experimental data. 
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As was mentioned above, one way to improve the results of our cal- 

culations would be to include more poles, or perhaps some cuts, in Eq. 

(3.3). However, a more useful approach has been suggested by Arnold, 23 

who pointed out that one can use a Regge pole for the undistorted amplitude 

rather than the dispersion theory pole. It has been pointed out 24 that 

the use of Regge poles might overcome the problem of the energy dependence 

of the backscattering cross section, and this problem, as we have seen, is 

the main weakness of the absorption model as developed this far. The 

authors hope to present calculations of the Reggeization of the absorption 

rn:)dcl j.n the near future. 
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APPENDIX I 

In this Appendix the detailed derivation of the Winged K matrix (WKM) 

formulae is given. The first step is the inversion of (1 - irK). We will 

require only the first two columns of the inverse, as will be seen below. 

The first column is 

P+r2CrD 
2 

k kk 

ir 2B-r2CrDC k kkk 
. 
. . (Al) 
. 

I . 

-i 

-irk C,(B + r2 C riDi2) + irkDk (- ir2 
. ifk 

B + r2 C riCiDi)j 
ifk 

. I . 

and the second column is 

ir B+rlCrCD 
1 k kkk 

Q+rlCrC 
k kk . . . (W . . ) 

- irkCk(- irl B + r1 C rkCkDk) + irkDk (1 - irl a + rl 
i#k 

C riCi2)) 
ifk j . . 

Where in all of the above I have left out the factor k, where L is 

the determinant of the matrix (1 - irK). 

Up to now, except for our initial assumption, everything has been 

perfectly general. We now make a "random phase" approximation on D and C. 
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If there are a 1are;e number of channels open, and if the individual Ci 

and Di are small, and if it is reasonable to assume that they have random 

signs, we can drop terms like 

c ci R, C c, and C Di 
i 

with respect to terms like 

C Di2 = D x Ci2 = c (A31 

s.i.nce the error involved is of order l/n, where n is the number of open 

c:hannel s . 

Now we started with a K matrix of the form 

a 

B 

c3 
. 
. 
. 

'k 

B 

B 

D3 
. 
. 
m 

Dk 

c ..> . . . 
2 

D3... 

. . . Ck 

. . . Dk 

./-. 
,/’ 

-- 
\ 

\ 
‘c- 

. . . . . 

. . . . . 

where the submatrix f. is presumed to have small entries. To calculate 

+ A22? and Alp however, we don't need to know E at all. 
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If we calculate the elements 0f.A which are of interest, we find 

that 

A B 
12 = A2l = z 

and 

1 
Al1 = a w - ir 2 f3 + r2D) + ir2 B2 + iC + r2 @ C + ir2 

and 

A 1 
22 = E; 

1 
irl B2 + p(l - ir 1 a + rlC) + iD + rl aD + irl 

t 
The expression for A turns out to be 

A = rlr2 B2 + (1 - irl CI + rlC)(l - ir,B) + r2 D(1 - irl 0. + rlC) 

Let us now see what the requirements of the diffraction model are 

for this case. Set 

Al1 = iX 

A22 = i5 

(A31 

(A6) 

(A7) 

0-w 

(A9) 

Then combining Eqs.(A6), (AT), and (Ae), we get the following two equations: 

CX~(- irlr2 X + ir2) + a(- 1 + rl X + rlr2 XD - r2D) 

+ @(r2 X + X 2‘ r C - 12 r2C) + iX r2D + C(iX r2 - i) (AlO) 

+ B2(iX r r 12- ir2) + iX + DC(iX r r - 12 ir ) 2 = 0 
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and 

a@(-irlr2 k + irl) + a(r2 5 + rlr2 D 5 - rl D) 

+ p(r, 5 -I- rlr2 C-l-r1 C) + D(ie r2 - i) + C(ir 1 5, (All) 

2 
+ B (irlr2 5 - irl) + i5 + iD(i5 rlr2 - irl) = 0 

Now unitarity requires that CE and B be real, and the diffraction 

assumption imposes two conditions--namely that 

Re All L = Re AQ2 = 0 (A@ 

Therefore, if we can find an 0 and B which satisfy Eq. (3.161, we can be 

sure that they are unique. 

Suppose we try 

a =$=O 

we find, by inspecting Eqs. (A6) and (AT), that they do indeed produce 

imaginary diagonal amplitudes. 

F'or the sake of simplicity, let 

C=D 

and write 

Then adding the imaginary parts of Eqs. (AlO) and (All) gives 

Dzl- 1 - 4B 2 2 r (1 - rq)2 
2r(i-7j - 1) 

w-3) 

(A141 



WC note that the requirement of unitarity on the entries in the K 

matrix constrains D to be real. Therefore the unitarity condition can 

be cast in the form 

4B2 r2(l - rv)2 < 1 

which means that the Born term cannot grow without limits and still 

satisfy unitarity (this should not be surprising). 

If we insert Eq. (A14) into Eq. (A8) we find 

so that ‘I 
A =B 2(1 - rv)2 I 

12 
1 - 4B2 r2(l - rn)'\ 

@15) 

I (A17) 

The problem of the choice of the sign in Eq. (A17) can be solved by 

requiring that as r and B approach zero (i.e. as we approach threshold) 

A 12 -+B. This requires the choice of the positive sign, SO that, finally, 

we have 

A 12 
= 2(1 - r-7)' B 

1 - &BP r2(l - i-7) 2 
W3) 

The same sign choice could have been made by noting that for high 

partial waves, where B is small, the denominator of Eq. (A17) would approach 

zero for the other sign choice, thus giving an infinite amplitude. 
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Suppose we now ask what happens if we allow Al1 to develop a small 

real part -- i.e. let 

All =E +iX CX= ;<<1 

If for the sake of simplicity we allow 5 = X, C = D, and r1 = r2 then 

the analogue of Eqs. (AIO) and (All) is just 

(ir - iX r2 - er2) a2 -t a [2X r(1 + rD) - 2rD -1 -2isr(l + rD)] 

+ D(2iX r - i + 2rs) + B2(iX r2 - ir + er2) (AC') 

+ D2(iX r2 - ir + er2) + E + iX = 0 

In the spirit of treating Re Al1 as a pertubation, we can also let 

D=Do+ti 

and drop terms which are second order in the pertubation parameters. If 

we put these approximations into Eq. (Alg), and use Eqs. (A13) and (Alb), 

we &an solve for 6 and u). After the above substitutions, the imaginary 

part of Eq. (Al9) is just 

u,=o 

In a similar way, the real part of Eq. (Al9) yields 

A J 
6,=-E 0 

2x r(1 + r D ) - 1 - 2r Do 0 i 

(W 

(=9 

whf>re n o is defined from Eq. (A8). 
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We can now proceed to calculate the new absorption factor. Plugging 

Eq. (A21) and (A22) into the definition of A, we get the final expression 

for 52 to be 

A = 2B(l - rv)2 
12 -- 

l+ l- 4B2 r2(l rq)2 (A23) 

1 4B 
2 2 

- r (1 - rq)2 (rq - 1) 

and the net effect of allowing small deviations from the diffraction model 

is seen to be an increase in absorption. 
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APPEHDIX II 

In this Appendix, the inversion of the Random Phase Approximation 

(HPA) mat,rix is ciirrit-d out by means of writing (1 - irK) 
-1 as 3 power se.ri.e:;, 

then evaluating, the g'ent'ral term by the random phcse hypothesis, and then 

:;unnninf; the recultj rig seri(+s. From Eq. (4.4) we can see that 

pK+K2+g3+ . . . . . +g+ . . . . . (Bl) 

The problem, then, is to evaluate < Kn > under assumptions 1 through 3. 

Now 

z c 
4. 

(1 - p2 + bt2, Q, K&-Jr2 
,m, . ..r 

= K12 C K;?, Km--. K r2 + c 
m,n,...z 

~ (1 - EJ-& Kit K,R,. . .Kr2 
,m,...r 

= K12 (K922 + x L, (1 - 6t2, (1 - brn2 + Q) Kit K&. . .Kr2 
,m,...r 

== K12 (K"-'& + ; (1 - 6h) Kit Kk 
i 11 

C 
n,r,... 

K2n...Kr2'] 
i 

- 
+ ,k.?.r 

(1 - E&)(1 - bm2, Kl,e...Kr2 

Clearly, by carry.i.n[: this process out further, we eventually arrive at 

the expression 

(Knj12 = E (K9;2 
m=l 

(Kn-m)22 (332) 
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where 

(Km);* = c -e Kla (1 - E$& I:&, (1 - Em2).. . ..(l - 6,*) Kr2 
,m,...r 

The advantage of this procedu>e is that it extracts the Kl2 de- 

pendence from the power series in K. It is obvious that the term (Km);2 

contains no dependence on K 12 for m > 1 because for each index which is 

summed over, there is a term like (1 - 8-e 2) which cancels the single 
, 

term in the sum which could contain a K12. 

In an exactly analagous manner to the above derivations, we can 

show that 

(*)22 = c oa;l (Kn-m)l2 
m 

Equations (B2) and (B3) together will give us a way of evaluating 

A 12 and A22, and hence will lead to an absorption model. Before we can 

do this, however, we must apply our random phase approximation to these 

equations which, as they stand, are perfectly general. I shall use the 

language of ensemble averages in proceeding, but everything I shall say 

is also true in the random phase picture. 

In the statistical picture, it is reasonable to assume that the 

distribution of one element of the K matrix is independent of the dis- 

tribution of other elements, so that if i f m 

< Kl4?J &n K > = < IQ/> < K.> = 0 

but if i = m, then 

(B3) 

< Kit KQ = < K$,> f 0 
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Irl both of the above, of course, we are assuming that none of the K 

matrix elements involved is K 12 . We can summarize the above by saying 

from which it follows that 

Now as far as sing,le matrix elements go, the only one which has a non- 

zero ensemble average is K 12, from which it follows that 

< -e” (1 - 6&) Q, (1 - 6m2) K& Km21 
,m 

=<C(l- 
& 

Eg2) Kl~ KQ < K12' = ai B 

From this, we can formulate the following rules concerning ensemble 

averages over (Km)12 and (K",i2. If m is even, then (Km)J2 can be non- 

zero only if the individual terms in it can be paired--for example, a 

possible )t th order term would be 

yrn Kg, Kh Kd Kb (1 - Et2, (1 - Ern2) 
-e 

If m is odd, however, then it is impossible to pair all of the 

terms, and the answer will always be proportional to 

<Kb>= 0 m odd 

(B5) 

since none of the interior indeces in the sum can be = 2. 
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For (p)i2, on the other hand, exactly the opposite is true. For 

odd m, it is possible to let the last term in the sum be K12, and then 

pair all of the rest. A fifth order term, for example, would be 

For even m, however, this cannot be done, and 

(C Km)i2 = 0 m even 

We can see more clearly now the nature of the difficulty found in 

previous models. 12 Consider a third order term. 

g;2 K14L K&n Km2 = c 
-92 

(K14L) 2 K12 + m+: 2 Kl& K& Km2 

mf2 91 

036) 

and the second term can be further expanded into 

Kll ' Kim Km2 + K 1JL K~ Km2 037) 

the diffraction hypothesis allows us to drop the first of these terms, 

but then we are in trouble. While each term in the sum over m in the 

second term in Eq.Oc.11) is of order l/n, the fact that m runs from 3 

to n means that there are about n such terms, and dropping these terms 

is certainly not justified. 

The ensemble formulation sidesteps this problem by defining the 

troublesome term to be zero, but t;ie difficulty can be overcome in the 

random phase picture also by noting that the spirit of the statistical 

approach demands that the elements to be treated statistically be (1) 

small in magnitude, and (2) large in number. A simple comparison 



I 

shows that the error made in dropping the terms in Eq. (B'i) is of' order 

K 12 

which is small by assumption. This also points out a difficulty in the 

original Squires approach to the absorption problem. By failing to 

di.stinguish the entrance and exit channels from other channels, he 

essentially let 

K 12 
q7-p 

which, as he has pointed out, 23 leads at once into difficulty in calculating 

A 12' 
In view of the above, we see that 

52 (fl-1);2 n odd 

(is);, = 
0 n even 

@a 

We are left, then, with the problem of evaluating 

(f-1);2 = 2 Kg, (1 - S,$ K-R, (1 - 6,,).....(1 - Er2) Kr2 

This sum does not include terms where the interior indeces are = 2. But 

since all terms must pair, and since only the first and last terms have 

an index 2, it is clear that 

(*-1);2 = K12 ; (1 - s2g) K;g (P-3)h 
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If, in addition we make the simplifying assumption that 

C K;t (1 - 8b) = R for all i 
-e 

then 

(pm1)L2 = K12 . R . R (B9) 

th where B(n) is the number of surviving terms in the n order sum. 

It is important to note that in evaluating (Knm3)i~ no interior 

index is prevented from assuming the value of the first or last index, 

and we are therefore dealing with a well studied problem. 12,13,26 

With this introduction, we can now turn to Eqs. (B2) and (B3) and 

write 

@lo) 

and 

n or n-l 
(K922 = K12 (K921 + R C 

\ m=3,7... 
Bb3)(fl-m)21 

Suppose that now we sum Eq. (BlO) over odd n, starting from n = 3. 

c 
n=3,3... 

(K4),, 

+R ; c" 
n=3,5... m=3... 

B(m-3)(flem)22 

(B11) 

(B=) 
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which can be written 

c (Kn& = K12 &)22 
n=3,3... x=2:4... 

1 + c 
r=2,4... 

(Kr)22 

) 

Now the expression 

B= 
eo;1... 

R&j2 B(@ 

has been fully investigated elsewhere 12~5926 and we will just quote the 

result here. 

p=-& 1 l-jL-TR 
i 

0x3) 

@lb) 

Going through the same procedure on Eq. (Bll) by summing over even n 

from n = 4, we get 

c (eje2 - R - c2 = y2 
x=3:5. . . 

(Kg)2l 
n=2,4... 

‘a (B15) 

Now suppose we define 

C = c 
n=2,4... @)22 D= c 

n=3,5... 
@)12 
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using the symmetry of the K matrix, we see that we have two equations 

in two unknowns: 

D=K12 b+RBii+C)j 

4 

C=R+K2 +K 12 12 D + R B(K12 + D> 

i i 

which can be solved to give 

K 
K 12+D= 

12 I (1 + R 8)(1 + RI] 

1 - Kf2 (1 + R PI2 

and 

and 

R + K:, (1 + R l3)* 
C= AL 

1 - K;2 (1 + R B)2 

Recalling Eqs. (4.3 and (4.5) we see that 

A = 12 

1-‘\Il+4R 
I 
2 

rA = 11 

0316) 

017) 

ew 

(Bl9> 

(B20) 
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It is these expressions, then, which must be used to obtain our 

absorption equation. As usual, the procedure will be to solve for R 

in terms of the diagonal matrix element, and then put this into the 

expression for the off diagonal element. 

AS it stands, the problem is quite formidable, since Eq.(B20) is 

a quartic expression in R. We look, therefore, for a rea.sonable approximate 

solution. Now at high energies, 

r2 N (&)2 = -& N 5 x lo’3 

In the reactions which we shall consider later, the value of Kf2 is 

usually 2 10. Consequently, a. reasonable approximation is to let 

If we do this, we see that for lower partial waves, when can be 

expected to be large, the expression 

will be at its minimum, while when the above approaches 1 (as it does for 

high partia.1 waves), is approa.ching zero. We expect, then, that Eq. (B21) 

will be a. good a.pproximation to use, and indeed, numerical studies for the 

amplitudes we actually calculated bear this out completely. 
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Our final absorption equation then becomes 
I- -l 

Al2 = 

K 12 IL+ i 
1-v '; + 4rq] (1 - rq) 

1+r2 4 22 l+w 1 
2 

(W 

In closing, we would like to outline the procedure developed by 

Ross13 which must be followed to Justify our earlier assertion that the 

diffraction model demands that Kii be set equal to zero. Using the 

procedure outlined above to extract the Kii dependence of (Kn)ii, we get 

@Iii 4 i (Kyi (Kn-m)ii 
m=l 

where now the ' means that interior indeces cannot be equal to i. Summing 

this equation first over even n and then over odd n, we get two coupled 

equations, as before, which are 

c (Knjii = Kii C 
n=2,4... n=1,3... 

(pjii + R B 1-t c 
n=2,4... 

(Kn)ii ' 
I 

and 

’ lKn)ii = Kii (*)ii + R B C 
n=l,3... 

(Kn)ii 
. . . n=1,3... 

from which we can get 

K 
*- A= C ii n=1,3... 

(Kyii = 
(1 - R ;i2 - KTi 

(B23) 
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FIGURE CAPTIONS 

1. Backward nCp scattering, DWBA model? N exchange: 

(a) Curve for P L = 4 BeV/c, A = 1 

(b) Curve for P L = 8 BeV/c, A = 1 

2. Backward z"p scal,tering, RPA model. N exchangef 

(a) Curve for P L = 1, teV/c, A = 0.88 

(b) Curve for P L = a BeV/c, A = 1.0 

2 A' * Backward zip ,c:.lt~:2:i:;;-, NQi model, N exchange: 

(a) Curve for-P L = 4.0 BeV/c, A = 0.7, Cx = 0.33 

(b) Curve for PL = 8 BeV/c, A = 0.9, Q = 0.33 

(c) Curve fcr PL = 8 BeV/c, A = 0.93, (3 = 0 

-t. Back3:ard r.+p scattering, WHIM model, N + N* exchange: 

(a) CUPX fc;r PL = 4 %'J/c, A = 0.7, U = 0.33' 

(b) Curve for P L = a BeV/c, A = o.*, a = 0.33 

(c) Curve for P L = a BeV/c, A = 1.0, 0 = 0 

5, Backward n-p scattering: 

(a) DWBA curve for A = 1, P L = 4 BeV/c 

(b) DWBA curve for A = 1, P L = a BeV/c 

(c) RPA curve for A = 0.95, P L = 4 BeV/c 

(d) RPii %rve fnr A = 1, P L = 8 BeV/c 

I* 
0. Backward sr-p scattering, WKM model: 

(a) Curve for P L = 4 BeV/c, A = 0.94, Q! = 0 

(b) Curve for P L = a BeV/c, A = 1, cz = 0 

(c) Curve for P L = 4 BeV/c, A = 0.8, Q = 0.23 

(d) Curve for PL = a BeV/c, A = 1, cr = 0.23 



7. n-p +fl"n at P L = 5.9 BeV/c, KV = 3.7: 

(a) DW, A = 0.7 

(b) DWBA, A = 1.0 

(c) RPA, A = 1.0 

(d) WXM, A = 0.9, Q: = 0 

(e) WKM, A = 0.9, cx = 0.23 

3 . fl-p +r~On at P L = 10 BeV/c, KV = 3.7: 

(a) DWBA, A = 1 

(b) RPA, A = 1 

(2) WXN, A = 1, cx = 0 

jd) wm, A = 1, Q = 0.23 

9* rr-p +z"n at P L = 5.9 BeV/c: 

(a) DWBA, A = 0.7, Ifr = 0 

(b) D~A, A = 1, KV = 1.85 

(c) WXM, A = 0.9, a = 0, f4 = 1.85 

(d) DWBA,A=l+=O 

(e) WKM, A = 0.95, aC = 0, Kv = 0 

10. Schematic interpretation of the Gottfried-Jackson model. 

11. Kinematics of x - N scattering. 

12. Single nucleon exchange diagram. 

13. N*-exchange diagrams. 

14. p-exchange diagram. 

15* n+p-scattering diagrams. 

16. n-p-scattering diagrams. 
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