A Multistep Generalization of the Fourth Order Runge Kutta Method *
 by
 J. C. BUTCHFR
 Stanford Linear Accelerator Center, Stanford, California

Abstract. To obtain high order integration methods for ordinary differential equations which combine to some extent the advantages of Runge-Kutta methods on one hand and linear multistep methods on the other, the use of "modified multistep" or "hybrid" methods has been proposed [1], [2], [3]. In this paper formulae are derived for methods which use one extra intermediate point than in the previously published methods so that they are analogues of the fourth order Runge-Kutta method.

* Work was supported by the U.S. Atomic Energy Commission.
(Submitted to Journal of the Association for Computing Machinery)

Introauction

In papers by Gragg and Stetter [I], by the present author [2], and by Gear [3], integration processes were considered which combine features of both Runge-Kutta methods and multi-step methods. In fact these new methods were multi-step analogues to third order Runge-Kutta methods in that one additional derivative calculation was made at some point between steps. There is no reason in principle why more than one of these additional evaluations should not be made and in the present paper the case of two evaluations is considered. It is found that an order of accuracy $2 k+2$ is possible and examples of processes where this order is achieved and which are stable exist for $k=1,2, \ldots, 15$. Detailed formulae for some of these cases are given for $k=2,3,4$.

The initial value problem whose numerical solution is sought will be written as

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

where y, f are vectors with \mathbb{N} components. For some purposes it is more convenient to consider the autonomous system

$$
\begin{equation*}
\frac{d y}{d x}=\underset{\sim}{f}(y), \quad \underset{\sim}{y}\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

where $\underset{\sim}{X}$ is the vector (x, y) with $N+1$ components, $\underset{\sim}{f}=(1, f(x, y))$ $\operatorname{anc} y_{0}=\left(x_{0}, y_{0}\right)$.

The Corrector Formula.
Postponing for the present considerations as to how y_{n-u}, y_{n-v} are to be computed, we write

$$
\begin{equation*}
y_{n}=\sum_{j=1}^{k} A_{j} y_{n-j}+h\left(b_{1} f_{n-u}+b_{2} f_{n-v}+\sum_{j=0}^{k} B_{j} f_{n-j}\right) \tag{3}
\end{equation*}
$$

for the formula with which $y_{n}=y\left(x_{o}+n h\right)$ is to be computed. f_{j} for any subscript j denotes $f\left(x_{0}+j h, y_{j}\right)$. If u, v are given constants, there are $2 k+3$ coefficients $A_{1}, A_{2}, \ldots, A_{k}, b_{1}, b_{2}, B_{0}, B_{1}, \ldots$, B_{k} to be chosen so we shall seek values of these coefficients so that
$0=-p(0)+\sum_{j=1}^{k} A_{j} p\left(-h x_{j}\right)+h\left(b_{1} p^{\prime}\left(-h x_{1}\right)+b_{1} p^{\prime}\left(-h x_{2}\right)+\sum_{j=0}^{k} B_{j} p^{\prime}\left(-h x_{j}\right)\right)$
for all polynomials p of degree $\leqq 2 k+2$ where $x_{1}, x_{2}, x_{0}=0, x_{1}$, \ldots, X_{k} are distinct real numbers and h is a constant. We will recover the coefficients in (3) by writing $x_{1}=u, x_{2}=v, x_{j}=j(j=1,2$, ..., k) .

Consider the function
$\varphi(z)=-\frac{1}{z}+\sum_{j=1}^{k} \frac{A_{j}}{z+h x_{j}}+h\left\{\frac{b_{1}}{\left(z+h x_{1}\right)^{2}}+\frac{b_{2}}{\left(z+h x_{2}\right)^{2}}+\sum_{j=0}^{k} \frac{B_{j}}{\left(z+h x_{j}\right)^{2}}\right\}$
so that the integral $L(p)$ given by

$$
\begin{equation*}
I(p)=\frac{I}{2 \pi i} \int_{C} p(z) \varphi(z) d z \tag{6}
\end{equation*}
$$

where C is a counterclockwise circle with centre O and radius $R>\max$ ($\left.\left|h x_{1}\right|,\left|h x_{2}\right|,\left|h x_{1}\right|, \ldots,\left|h x_{K}\right|\right)$, expresses the error in (4) for a polynomial p. For $L(p)$ to vanish for $p(z)$ any polynomial of degree $\leqq 2 k+2$ it is clearly necessary and sufficient that

$$
\begin{equation*}
|\psi(z)|=O\left(|z|^{-2 k-4}\right) \tag{7}
\end{equation*}
$$

as $|z| \rightarrow \infty \quad$.

If we write

$$
\begin{equation*}
\phi(z)=\frac{k \prod_{j=1}^{k} x_{j}^{2} h^{2 k+2}}{z^{2} \prod_{j=1}^{k}\left(z+h x_{j}\right)^{2}}\left(\frac{1}{z+h x_{1}}+\frac{h U}{2\left(z+h x_{1}\right)^{2}}-\frac{1}{z+h x_{2}}-\frac{h V}{2\left(z+h x_{2}\right)^{2}}\right) \tag{8}
\end{equation*}
$$

we see that (7) is satisfied and that (8) is of the form of (5) if the constant U, V, K are chosen so that the residues of $\varphi(z)$ (given by (8)) at $z=-h x_{1}$ and at $z=-h x_{2}$ are zero and so that the residue at $z=0$ is -1 . Assuming that $x_{1}, x_{2}, x_{1}, X_{2}, \ldots, x_{k}$ do not have vaiues such that one of the right hand siades of (9), (10), or (11) vanishes ve Ind

$$
\begin{align*}
& \frac{I}{U}=\sum_{j=0}^{K} \frac{I}{x_{j}-x_{I}} \tag{9}\\
& \frac{I}{V}=\sum_{j=0}^{k} \frac{1}{x_{j}-x_{2}} \tag{10}\\
& \frac{I}{K}=\sum_{j=1}^{K} \frac{1}{x_{j}} \cdot\left(\frac{2}{x_{1}}+\frac{U}{x_{1}{ }^{2}}-\frac{2}{x_{2}}-\frac{V}{x_{2}^{2}}\right)+\frac{1}{x_{1}^{2}}+\frac{U}{x_{1}^{3}}-\frac{1}{x_{2}^{2}}-\frac{V}{x_{2}^{3}} \tag{II}
\end{align*}
$$

Writing (8) in partial fractions and comparing with (5) we find

$$
\begin{align*}
& o_{2}=\frac{k v}{2 x_{2}{ }^{2}} \prod_{j=1}^{k}\left(\frac{x_{j}}{x_{j}-x_{1}}\right)^{2} \tag{12}\\
& b_{2}=-\frac{k V}{2 x_{2}^{2}} \prod_{j=1}^{k}\left(\frac{x_{j}}{x_{j}-x_{2}}\right)^{2} \tag{13}
\end{align*}
$$

$$
\begin{gather*}
B_{j}=K \prod_{i=1}^{k} \cdot\left(\frac{x_{i}}{x_{i}-x_{j}}\right)^{2}\left(-\frac{1}{x_{j}-x_{1}}+\frac{U}{2\left(x_{j}-x_{1}\right)^{2}}+\frac{1}{x_{j}-x_{2}}-\frac{V}{2\left(x_{j}-x_{2}\right)^{2}}\right) \tag{14}\\
A_{j}=K \prod_{i=1}^{k} \cdot\left(\frac{x_{i}}{x_{i}-x_{j}}\right)^{2}\left(-\frac{1}{\left(x_{j}-x_{1}\right)^{2}}+\frac{U}{\left(x_{j}-x_{1}\right)^{3}}+\frac{1}{\left(x_{j}-x_{2}\right)^{2}}-\frac{V}{\left(x_{j}-x_{2}\right)^{3}}\right) \\
-2 B_{j} \sum_{i=0}^{k} \frac{1}{x_{i}-x_{j}} \tag{15}
\end{gather*}
$$

where the prime on $\prod_{i=1}^{k}$, and $\sum_{i=0}^{k}$ indicates that the subscript $i=j$
is to be excluded from the product or sum.
At this stage it is convenient to examine the error in (4) when $p(x)$ is not a polynomial of degree $2 k+2$. We will suppose that $p(x)$ $\in C^{2 k+4}[a, b]$ where $[a, b]$ contains $0,-h x_{1},-h x_{2},-h X_{1}, \ldots,-h X_{k}$. We can expand $p\left(-h X_{1}\right), p\left(-h X_{2}\right), \ldots, p\left(-h X_{k}\right), h p '\left(-h X_{1}\right), h p^{\prime}\left(-h X_{2}\right)$, $\ldots, h p^{\prime}\left(-h x_{k}\right), h p^{\prime}\left(-h x_{1}\right), h p^{\prime}\left(-h x_{2}\right)$ in Taylor series about 0 up to terms in $p^{(2 k+3)}(0)$ with remainder terms $\phi\left(h^{2 k+4}\right)$ as $h \rightarrow 0$. Substitute into the right hand side of (4) and we obtain, since A_{1}, A_{2}, $\ldots, A_{k}, b_{1}, b_{2}, B_{0}, B_{1}, \ldots, B_{k}$ were chosen to make this expression zero for a polynomial of degree $2 k+2$, only an expression $\in p^{(2 k+3)}$ $(0) h^{2 k+3}+O\left(h^{2 k+4}\right)$, where ϵ is a constant. To determine E we write $p(z)=z^{3} \prod_{j=1}^{k}\left(z+h X_{j}\right)^{2}$, for which $p^{(2 k+3)}(0)=(2 k+3)!$. We now have

$$
\begin{array}{r}
h^{2 k+3}(2 k+3): \epsilon=\frac{1}{2 \pi i} \int_{C} K \prod_{j=1}^{k} x_{j}^{2} h^{2 k+2} z\left(\frac{1}{z+h x_{1}}+\frac{h U}{2\left(z+h x_{1}\right)^{2}}\right. \\
\left.-\frac{1}{z+h x_{2}}-\frac{h V}{2\left(z+h x_{2}\right)^{2}}\right) d z \tag{16}
\end{array}
$$

from which

$$
\begin{equation*}
\epsilon=\frac{i \prod_{j=1}^{k} x_{j}^{2}}{(2 k+3)!}\left(x_{2}-x_{1}+\frac{1}{2}(u-v)\right) \tag{17}
\end{equation*}
$$

By applying this argument to every component of y in turn we find the error in (3) to be $\in y^{(2 k+3)}\left(x_{n}\right) h^{2 k+3}+0\left(n^{2 k+4}\right)$.

To find the coefficients in (3) we now write $x_{1}=u, x_{2}=v$,
$X_{j}=j \quad(j=1,2, \ldots, k)$. We find

$$
\begin{equation*}
I / U=\sum_{j=0}^{k} \frac{1}{j-u} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
I / V=\sum_{j=0}^{k} \frac{I}{j-v} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
I / K=H_{k}\left(\frac{2}{u}+\frac{U}{u^{2}}-\frac{2}{v}-\frac{V}{v^{2}}\right)+\frac{1}{u^{2}}+\frac{U}{u^{3}}-\frac{I}{v^{2}}-\frac{V}{v^{3}} \tag{20}
\end{equation*}
$$

where $H_{k}=l+\frac{l}{2}+\cdots+\frac{l}{k}, k>0, H_{O}=0$.
We have

$$
\begin{align*}
& b_{1}=\frac{K U}{2 u^{2}} \frac{k t^{2}}{\prod_{j=1}^{k}(j-u)^{2}} \tag{21}\\
& b_{2}=-\frac{K V}{2 v^{2}} \frac{k!^{2}}{\prod_{j=1}^{k}(j-v)^{2}} \tag{22}\\
& B_{j}=K\binom{k}{j}^{2}\left(-\frac{1}{(j-u)}+\frac{U}{2(j-u)^{2}}+\frac{1}{(j-v)}-\frac{V}{2(j-v)^{2}}\right) \tag{23}
\end{align*}
$$

$$
\begin{gather*}
A_{j}=K\binom{k}{j}^{2}\left(-\frac{1}{(j-u)^{2}}+\frac{U}{(j-u)^{3}}+\frac{1}{(j-v)^{2}}-\frac{V}{(j-v)^{3}}\right) \\
+2 B_{j}\left(H_{j}-I_{K-j}\right) \tag{24}
\end{gather*}
$$

and the "error constant" ϵ is given by

$$
\epsilon=\frac{K(k!)^{2}}{(2 k+3)!}\left|v-u+\frac{U-V}{2}\right|
$$

Stability Considerations

So far the only restrictions that are imposed on the parameter u, v are that they are not equal, that each differs from each of the integers $0,1,2, \ldots, k$ and that the right hand sides of (18), (19), (20) do not vanish. However, for a given k, it may happen that some combinations of u, v do not yield a formula (3) which is stable when used as a final "corrector". Excluding the "principal root": at l, let R be the greatest magnitude for a root of the equation,

$$
\begin{equation*}
z^{k}-A_{1} z^{k-1}-A_{2} z^{k-2}-\cdots-A_{k}=0 \tag{26}
\end{equation*}
$$

R is a convenient measure of the stability of the formula: if $R<I$ the method is (asymptotically) stable and if $R>I$ it is unstable. For $k=1$ only the principal root is present. For $k=2$ it is found that $R=|(15 u v-7(u+v)+4) /(15 u v-23(u+v)+36)|$. For higher k it has seemed most convenient to study R as a function of u, v numerically. For $k=2$ it happens that $R<l$ whenever
$u, v \in(0,1)$. Figure 1 shows the contour lines $R=1$ for $k=3,4,5$, $6,7, \Theta$ and $u, v \in(0,1)$. For each curve, the value of the corresponding k is written beside it. Here a convention is adopted in that the side of the curve where k is written corresponds to the region to which $R<1$. We see from this figure, that the region for which u, v give stability tends to decrease in area as k increases. The same pattern continues up to $k=15$ but there does not appear to be any region where $R<1$ for $k=16$. To illustrate the behaviour of R for $k=6$, $7, \ldots, 15$ figures 2 and 3 are presented. As u varies from .51 to . 64 the values of v which minimize R and the values of the minimum R have been computed. Since the V which minimizes R is approximately . 3u it was found convenient to plot $v-.3 u$ as a function of u (figure 2). The minimum value of R is plotted in figure 3 .

Ge Preinctor Formiae

We now consider a method for computing the values of y_{n-u}, y_{n-v} and the "predicted" value of y_{n}. The formulae proposed are

$$
\begin{align*}
& y_{n-u}=\sum_{j=1}^{k} A_{l j} y_{n-j}+h \sum_{j=1}^{k} B_{l j} \hat{I}_{n-j} \tag{27}\\
& y_{n-v}=\sum_{j=1}^{k} A_{2 j} y_{n-j}+h\left(b_{21} f_{n-u}+\sum_{j=1}^{k} B_{2 j} f_{n-j}\right) \\
& y_{n}=\sum_{j=1}^{k} A_{3 j} y_{n-j}+h\left(b_{3 I^{f}} f_{n-u}+b_{32^{f} n-v}+\sum_{j=1}^{k} B_{3 j} f_{n-j}\right) \tag{29}
\end{align*}
$$

Serore we consider the choice of the coefficients occuring in (27), (28),
(29) we generalize the problem to that of unequally spaced points in the same way as for the "corrector formula". We shall thus consider the overail procecure for finding $\underset{\sim}{y}(0)$ from $\underset{\sim}{y}\left(-h X_{1}\right), \underset{\sim}{y}\left(-h X_{2}\right), \cdots, \underset{\sim}{y}\left(-h X_{k}\right)$ using the formulae

$$
\begin{align*}
& y\left(-h x_{1}\right)=\sum_{j=1}^{k} A_{1 j} y\left(-h x_{j}\right)+h \sum_{j=1}^{k} B_{1 j n} f\left(\underset{\sim}{y}\left(-h x_{j}\right)\right) \tag{30}\\
& \underset{\sim}{y}\left(-h x_{2}\right)=\sum_{j=1}^{k} A_{2 j n} y\left(-h x_{j}\right)+h\left(b_{21} \frac{f}{n}\left(y_{n}\left(-h x_{1}\right)\right)+\sum_{j=1}^{k} B_{2 j} \frac{f}{n}\left(y\left(-h x_{j}\right)\right)\right), \tag{31}
\end{align*}
$$

$$
\begin{align*}
& \left.+\sum_{j=1}^{k} B_{3 j^{f}}\left(\underset{\sim}{y}\left(-h x_{j}\right)\right)\right) \quad, \tag{32}\\
& \underset{\sim}{\tilde{y}}(0)=\sum_{j=1}^{\hat{K}} A_{j} y_{n}^{y}\left(-h x_{j}\right)+h\left(b_{2} \underset{\sim}{f}\left({\underset{\sim}{y}}^{y}\left(-h x_{1}\right)\right)+b_{2} f\left(y_{w}\left(-h x_{2}\right)\right)+b_{3} f(\hat{y}(0))\right. \\
& \left.+\sum_{j=1}^{i} B_{j=1} f\left(y\left(-x_{j}\right)\right)\right) \quad . \tag{33}
\end{align*}
$$

where we have written b_{3} in place of B_{0}.
We can choose the coefficients in (30) so that $\underset{y}{y}\left(-h x_{1}\right)$ is given exactly when the components of $\underset{\sim}{y}(x)$ are polynomials of degree $2 \mathrm{k}-1$. When this is done, suppose the error can be written in the form $\epsilon_{z}^{(2 k)_{y}}(2 k)(0) h^{2 k}+\epsilon_{1}^{(2 k+1)} y_{y}^{(2 k+1)}(0) h^{2 k+1}+\epsilon_{1}^{(2 k+2)} y_{y}^{(2 k+2)}(0) h^{2 k+2}+0\left(h^{2 k+3}\right)$.

The same is true for (31), (32), and we suppose that the error for these formulae can be written in the same form (with subscripts 2, 3, respectively
on the ϵ 's) where it is supposed that exact values are used for all quantities on the right hand sides. Is exact quantities are used on the right hand side of (33) the error in trim quantity is $\in y^{(2 k+3)}(0)$ $h^{2 k+3}+O\left(h^{2 k+4}\right)$ where ϵ is given by (17). Using the same type of calculation as in [2] we now find the total error in $\underset{\sim}{\tilde{y}}(0)$, the approximotion to $\underset{\sim}{y}(0)$ due to all sources. It is given by
$\underset{\sim}{\tilde{y}}(0)-\underset{\sim}{y}(0)=\left.h^{2 k+1}\right|_{b_{1} \epsilon_{1}} ^{(2 k)}+b_{2} e_{2}^{(2 k)}+b_{3} \epsilon_{3}^{(2 k)} \left\lvert\, \frac{\partial f}{\partial y} y_{n}^{(2 k)}\right.$

$$
\begin{aligned}
&+h^{2 k+2}\left\{\left(b_{1} \epsilon_{1}^{(2 k+1)}+b_{2} \epsilon_{2}^{(2 k+1)}+b_{3} \epsilon_{3}^{(2 k+1)}\right) \frac{\partial f}{\partial y}{\underset{\sim}{y}}^{(2 k+1)}\right. \\
&+\left.\left|b_{2} b_{21} \epsilon_{1}^{(2 k)}+b_{3} b_{31} \epsilon_{1}^{(2 k)}+b_{3} b_{32} \epsilon_{2}^{(2 k)}\right| \frac{\partial f_{1}^{\prime}}{\partial \underset{\sim}{y}}\right|^{2}(2 k) \\
&\left.-\left\lvert\, b_{1} x_{1} \epsilon_{1}(2 k)+b_{2} x_{2} \epsilon_{2}^{(2 k)}{\frac{\partial b_{f}^{2}}{\partial y_{2}^{2}}{ }_{2}}^{(2 k)}\right.\right\}
\end{aligned}
$$

$$
+h^{2 k+3}\left\{\left.\right|_{1} \epsilon_{1}^{(2 k+2)}+b_{2} \epsilon_{2}^{(2 k+2)}+b_{3} \epsilon_{3}^{(2 k+2)^{i}} \frac{\partial f}{\partial y} y^{(2 k+2)}\right.
$$

$$
\left.+\epsilon y^{(2 k+3)}\right\}
$$

$$
+k^{2 k+3}\left\{\left(b_{2} b_{21} \epsilon_{1}^{(2 k+1)}+b_{3} b_{31} \epsilon_{1}^{(2 k+1)}+b_{3} b_{32} \epsilon_{2}^{(2 k+1)}\right)\left(\frac{c f_{1}}{\partial y}\right)^{2} y^{(2 k+1)}\right.
$$

$$
\left.-\left\{b_{1} x_{1} \epsilon_{1}^{(2 k+1)}+b_{2} x_{2} \epsilon_{2}^{(2 k+1)}\right) \frac{\partial^{2} f}{\partial y^{2}} f{\underset{w}{ }}_{(2 k+1)}\right\}
$$

$$
+h^{2 k+3}\left\{b_{3} b_{32^{b}}{ }_{21} \epsilon_{1}^{(2 k)} \frac{\partial f}{\partial y}\right\}^{3} y^{(2 k)}
$$

$$
\left.-b_{2} x_{2} b_{21} \epsilon_{1}^{(2 k)} \frac{\partial^{2} f}{\partial{\underset{y}{y}}^{2}} f \frac{\partial f}{\partial y}{\underset{y}{y}}^{(2 k)}\right\}
$$

$$
\begin{align*}
& -\left[\left(b_{2} b_{21}+b_{3} b_{31}\right) x_{1} \epsilon_{1}^{(2 k)}\right. \\
& \left.+b_{3} b_{32^{x}} \epsilon_{2}^{(2 k)} \frac{\partial f}{\partial y} \frac{\partial^{2}}{\partial y_{2}^{2}} f y^{(2 k)}\right\} \\
& +\frac{1}{2} h^{4 k+1}\left\{b_{1}\left|\epsilon_{1}(2 k)\right|^{2}+\left.b_{2} \epsilon_{2}^{(2 k)}\right|^{2}+b_{3}\left(\left.\epsilon_{3}^{(2 k)}\right|^{2} \frac{\partial^{2} f}{\partial y_{y}^{2}}\left(y^{(2 k)}\right)^{2}\right.\right. \\
& +0\left(h^{2 k+4}\right) \tag{34}
\end{align*}
$$

In this expression, the various factors involving derivatives of $\underset{\sim}{y}$ and $\underset{\sim}{f}$ are supposed to be evaluated at $\underset{\sim}{y}=\underset{\sim}{y}(0)$. As in [2], the various products of such factors are to be interpreted in a conventional way. Thus one would associate with $y(n), f, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial y^{2}}, \ldots$, the tensors $y^{(n) i}, f^{i}, f_{j}{ }^{i}\left(=\frac{\partial f^{i}}{\partial y^{j}}\right), f_{j k}^{i}, \cdots$. Two tensors in juxtaposition are supposed contracted over subscripts in the first member and superscripts in the second in such a way that the terms actually accuring above have only one non-contracted superscript. Note that a term of order $h^{4 \mathrm{k}+1}$ is present in (34). When $k>1$ this term could be absorbed into $O\left(h^{2 k+4}\right)$. If the method is to be accurate to terms in $h^{2 k+2}$ then we see from (34) that

$$
\begin{align*}
& b_{1} \epsilon_{1}^{(2 k)}+b_{2} \epsilon_{2}^{(2 k)}+b_{3} \epsilon_{3}^{(2 k)}=0 \tag{35}\\
& b_{1} \epsilon_{1}^{(2 k+1)}+b_{2} \epsilon_{2}^{(2 k+1)}+b_{3} \epsilon_{3}^{(2 k+1)}=0 \tag{36}
\end{align*}
$$

$$
\begin{align*}
& b_{2} b_{21} \epsilon_{1}^{(2 k)}+b_{3} b_{31} \epsilon_{1}^{(2 k)} \div b_{3} b_{32} \epsilon_{2}^{(2 k)}=0 \tag{37}\\
& b_{1} x_{1} \epsilon_{1}^{(2 k)}+b_{2} x_{2} \epsilon_{2}^{(2 k)}=0 \tag{38}
\end{align*}
$$

We now derive formulae for the coefficients in (30) and (31) so that these are accurate for polynomials of degree $2 \mathrm{k}-1$ and so that (35) is satisfied. We then find formulae for the coefficients in (32) so that this is also accurate for polynomials of degree $2 \mathrm{k}-1$ and so that (36), (37) and (38) are satisfied.

By analogy with (5) we write

$$
\begin{align*}
& \varphi_{1}(z)=-\frac{1}{z+h x_{1}}+\sum_{j=1}^{k} \frac{A_{1 j}}{z+h X_{j}}+h \sum_{j=1}^{k} \frac{B_{1 j}}{\left(z+h x_{j}\right)^{2}} \tag{39}\\
& \varphi_{2}(z)=-\frac{1}{z+h x_{2}}+\sum_{j=1}^{k} \frac{A_{2 j}}{z+h x_{j}}+h\left(\frac{D_{21}}{\left(z+h x_{1}\right)^{2}}+\sum_{j=1}^{k} \frac{B_{2 j}}{\left(z+h x_{j}\right)^{2}}\right) \tag{40}\\
& \varphi_{3}(z)=-\frac{1}{z}+\sum_{j=1}^{k} \frac{A_{3 j}}{z+h X_{i}}+h\left(\frac{b_{31}}{\left(z+h x_{1}\right)^{2}}+\frac{b_{32}}{\left(z+h x_{2}\right)^{2}}+\sum_{j=1}^{k} \frac{B_{3 j}}{\left(z+h x_{j}\right)^{2}}\right) \tag{41}
\end{align*}
$$

and

$$
\begin{equation*}
I_{j}(p)=\frac{1}{2 \pi i_{C}} \int p(z) \varphi_{j}(z) d z, \quad j=1,2,3 \tag{42}
\end{equation*}
$$

so that $I_{1}(p), I_{2}(p), I_{3}(p)$ is the error in (39), (40), (4I) respectively for a polynomial $p(z) . I_{j}(p)$ is to vanish identically for $j=1,2,3$ when $p(z)$ is of degree $2 k-1$. Hence,

$$
\begin{equation*}
\left|\varphi_{j}(z)\right|=O\left(|z|^{-2 k-1}\right), \quad j=1,2,3 . \tag{43}
\end{equation*}
$$

It is clear that $\varphi_{1}(z)$ must be given by

$$
\begin{equation*}
\varphi_{1}(z)=-\frac{h^{2 k}}{z+h x_{1}} \frac{\prod_{j=1}^{k}\left(x_{l}-x_{j}\right)^{2}}{\prod_{j=1}^{k}\left(z+h x_{j}\right)^{2}} \tag{44}
\end{equation*}
$$

where the numerator has been chosen so that the residue at $z=-h x_{1}$ equals -1 •

$$
\begin{align*}
& \text { Thus } \\
& B_{l j}=\frac{\prod_{\ell=1}^{k}\left(x_{l}-x_{l}\right)^{2}}{\left(x_{j}-x_{l}\right) \prod_{l=1}^{k}\left(x_{j}-x_{l}\right)^{2}} \tag{45}\\
& A_{l j}=B_{l j}\left(\frac{1}{x_{j}-x_{l}}+2 \sum_{l=1}^{k} \frac{1}{x_{j}-x_{l}}\right) \tag{46}
\end{align*}
$$

We write $\varphi_{2}(z)$ in the form

$$
\begin{equation*}
\varphi_{2}(z)=-\frac{h^{2 k} \prod_{j=1}^{k}\left(x_{2}-X_{j}\right)^{2}}{\left(z+h x_{2}\right) \prod_{j=1}^{k}\left(z+h x_{j}\right)^{2}}\left(p+h Q\left(\frac{1}{z+h x_{1}}+\frac{h R}{\left(z+h x_{1}\right)^{2}}\right)\right) \tag{47}
\end{equation*}
$$

so that

$$
\begin{align*}
& \text { hat } \begin{aligned}
& B_{2 j}= \prod_{\ell=1}^{k}\left(x_{2}-x_{\ell}\right)^{2} \\
&\left(x_{j}-x_{2}\right) \prod_{\ell=1}^{k}\left(x_{j}-x_{\ell}\right)^{2}
\end{aligned}\left(P+Q\left(\frac{1}{x_{1}-x_{j}}+\frac{R}{\left(x_{1}-x_{j}\right)^{2}}\right)\right) \tag{48}\\
& A_{2 j}=\frac{\prod_{\ell=1}^{k}\left(x_{2}-x_{l}\right)^{2}}{\left(x_{j}-x_{2}\right) \prod_{\ell=1}^{k}\left(x_{j}-x_{\ell}\right)^{2}}\left(-\frac{Q}{\left(x_{j}-x_{1}\right)^{2}}+\frac{2 Q R}{\left(x_{j}-x_{l}\right)^{3}}\right) \\
& \tag{49}\\
& \left.+B_{2 j} \left\lvert\, 2 \sum_{\ell=1}^{k} \frac{I}{x_{j}-x_{\ell}}+\frac{1}{x_{j}-x_{2}}\right.\right)
\end{align*}
$$

$$
b_{21}=\frac{2 R \prod_{j=1}^{k}\left(x_{2}-x_{j}\right)^{2}}{\left(x_{1}-x_{2}\right) \prod_{j=1}^{k}\left(x_{1}-x_{j}\right)^{2}}
$$

The form for $\varphi_{2}(z)$ diven by (47) has the correct behavior at infinity and at $-h X_{1},-h X_{2}, \ldots,-h X_{k} ;-h x_{1},-h x_{2}$. However, P, Q, R must be fixed so that the residue at $-h x_{1}$ is 0 and the residue at $-h x_{2}$ is -1.

We thus have

$$
\begin{equation*}
\frac{I}{R}=\frac{1}{x_{2}-x_{1}}+2 \sum_{j=1}^{k} \frac{1}{x_{j}-x_{1}}=\frac{2}{U}+\frac{?}{x_{1}}+\frac{1}{x_{2}-x_{1}} \tag{5i}
\end{equation*}
$$

$$
\begin{equation*}
P+Q\left(\frac{1}{x_{1}-x_{2}}+\frac{R}{\left(x_{1}-x_{2}\right)^{2}}\right)=? \tag{52}
\end{equation*}
$$

To obtain a third equation for P, Q, R we use (38). In the same way as for ϵ we obtain for $\epsilon_{j}{ }^{(2 k)}, j=1,2$ the expression

$$
\begin{equation*}
\epsilon_{j}^{(2 k)}=\frac{h^{-2 k}}{2 \pi i(2 k):} \int_{C} \prod_{j=I}^{k}\left(z+h X_{j}\right)^{2} \cdot \varphi_{j}(z) d z \tag{53}
\end{equation*}
$$

so that

$$
\begin{align*}
& \epsilon_{1}^{(2 k)}=-\frac{1}{(2 \mathrm{k}):} \prod_{j=1}^{k}\left(x_{1}-x_{j}\right)^{2} \tag{54}\\
& \epsilon_{2}^{(2 k)}=-\frac{P}{(2 k)!} \prod_{j=1}^{k}\left(x_{2}-x_{j}\right)^{2} \tag{55}
\end{align*}
$$

Using the expressions (21), (22) for b_{1}, b_{2} and substituting in (38)
we find

$$
\begin{equation*}
P=\frac{x_{2} U}{x_{1} V} \tag{56}
\end{equation*}
$$

$\varphi_{2}(z)$ is now determined. We must now choose $\varphi_{3}(z)$ of such a form that (35), (36), (37) are satisfied. This can be done by defining $\varphi_{3}(z)$ by the equation

$$
\begin{equation*}
b_{1} \varphi_{1}(z)+b_{2} \varphi_{2}(z)+b_{3} \varphi_{3}(z)+\frac{z}{h} \varphi(z)=0 \tag{57}
\end{equation*}
$$

To see this, we observe that $\varphi_{3}(z)$ defined thus has the correct behavior at $-h x_{1},-h x_{2}, 0,-h x_{1},-h x_{2}, \ldots,-h X_{k}$ and at infinity. To see that (35) and (36) are satisfied we see that

$$
\begin{equation*}
\epsilon_{j}^{(2 k+m)}=\frac{h^{-2 k-m}}{2 \pi i(2 k+m)!} \int_{C} z^{2 k+m} \varphi_{j}(z) d z \tag{58}
\end{equation*}
$$

for $m=0,1$ and $j=1,2,3$. Making use of (57) we see that

$$
\begin{equation*}
\sum_{j=1}^{k} b_{j} \epsilon_{j}^{(2 k+m)}=-\frac{h^{-2 k-m-1}}{2 \pi i(2 k+m)!} \int_{c} z^{2 k+m+1} \varphi(z) d z=0 \tag{59}
\end{equation*}
$$

since $|\varphi(z)|=O\left(|z|^{-2 k-4}\right)$ as $|z| \rightarrow \infty$. To see that (37) is satisfied, we multiply (57) by $\left(z+h x_{1}\right)^{2} / h$ and by $\left(z+h x_{2}\right)^{2} / h$ and take the limits as $z \rightarrow-h x_{1}$ and $z \rightarrow-h x_{2}$ respectively. We find

$$
\begin{align*}
& b_{2} b_{21}+b_{3} b_{31}-x_{1} b_{1}=0 \tag{60}\\
& b_{3} b_{32}-x_{2} b_{2}=0 \tag{61}
\end{align*}
$$

so that (37) follows immediately from (38). Using (57) we now list expressions for all the coefficients in (32).

$$
\begin{align*}
& A_{3 j}=\frac{1}{b_{3}}\left(x_{j} A_{j}-b_{1} A_{1 j}-b_{2} A_{2 j}-B_{j}\right) \tag{62}\\
& B_{3 j}=\frac{1}{b_{3}}\left(x_{j} B_{j}-b_{1} B_{1 j}-b_{2} B_{2 j}\right) \tag{63}\\
& b_{31}=\frac{1}{b_{3}}\left(x_{1} b_{1}-b_{2} b_{21}\right) \tag{64}\\
& b_{32}=\frac{1}{b_{3}} x_{2} b_{2} \tag{65}
\end{align*}
$$

The Truncation Error

In this section we shall find expressions for the coefficients in the asymptotic error term which we see from (34) to have the form $h^{2 k+3}$.,

$+c_{3}\left(\frac{\partial f}{\partial y}\right)^{3}{\underset{w}{y}}^{(2 k)}-c_{3}^{\prime} \frac{\partial^{2} f}{\partial y_{r}^{2}} f \frac{\partial f}{\partial y} y^{(2 k)}+\frac{1}{2} c_{4}\left(\frac{\partial^{3} f}{\partial y^{3}} f^{2}{\underset{\sim}{x}}^{(2 k)}+\frac{\partial^{2} f^{2}}{\partial y^{2}} w^{(2 k)}\right)$
$\left.-c_{4}: \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y^{2}} f y^{(2 k)}\right\}$ where we have supposed $k>1$ and the c's are given by (34). From (57) we immediately find $c_{1}^{\prime}=-(2 k+3)^{\prime} c_{1}=-(2 k+3) \epsilon$. From (60), (61), we find that $c_{2}=c_{2}^{\prime}, c_{3}=c_{3}^{\prime}, c_{4}=c_{4}^{\prime}, c_{2}$ is given by

$$
\begin{align*}
c_{2} & =b_{1} x_{1} \epsilon_{1}^{(2 k+1)}+b_{2} x_{2} \epsilon_{2}^{(2 k+1)} \\
& =\frac{h^{-2 k-1}}{2 \pi i}(2 k+1): \tag{66}\\
\int & {\left[b_{1} x_{1} \varphi_{1}(z)+b_{2} x_{2} \varphi_{2}(z)\right] z^{2 k+1} d z }
\end{align*}
$$

$$
\text { Since } \int_{C}\left(b_{1} x_{1} \varphi_{1}(z)+b_{2} x_{2} \varphi_{x}(z)\right) p(z) d z=0 \text { when } p(z) \text { is any polynomial }
$$

of degree $2 k$, we may replace $z^{2 k+1}$ in (66) by any polynomial with the same leading term. We choose the polynomial $\left(z+h x_{l}\right) \prod_{j=1}^{k}\left(z+h X_{j}\right)^{2}$
so that

$$
\begin{equation*}
c_{2}=-\frac{b_{2} x_{2} \prod_{j=1}^{k}\left(x_{2}-x_{j}\right)^{2}}{(2 k+1)!} \quad\left[P\left(x_{1}-x_{2}\right)+Q\right] \tag{67}
\end{equation*}
$$

To find $c_{3}=b_{2} x_{2} b_{21} \epsilon_{1}{ }^{(2 k)}$ we evaluate $\epsilon_{1}{ }^{(2 k)}=\left(h^{-2 k} / 2 \pi i(2 k)!\right)$

$$
\int_{C} \varphi_{1}(z) \prod_{j=1}^{k}\left(z+h X_{j}\right)^{2} \text { to rind }
$$

$$
\begin{equation*}
c_{3}=-\frac{b_{2} x_{2} b_{21}}{(2 k)!} \prod_{j=1}^{k}\left(x_{1}-x_{j}\right)^{2} \tag{68}
\end{equation*}
$$

Finally we find $c_{4}=b_{1} x_{1}{ }^{2} \epsilon_{1}(2 k)$ by making use of (38) and the value of $\epsilon_{\text {I }}{ }^{(2 k)}$ to give

$$
\begin{equation*}
c_{4}=-\frac{b_{1} x_{1}\left(x_{1}-x_{2}\right)}{(2 k):} \prod_{j=1}^{k}\left(x_{1}-x_{j}\right)^{2} \tag{69}
\end{equation*}
$$

Particular Methods

By writing $X_{1}=1, X_{2}=2, \ldots, X_{k}=k$ we obtain expressions for coefficients in (27), (28), (29), so that practical methods may be devised. However, other vaiues of $X_{1}, X_{2}, \ldots, X_{k}$ would be used for such special needs as changing the step size in the midale of the solution to a problem. For the methods about to be given explicitly, we shall restrict ourselves to the simple case. Since the complexity of the coefficients increases
rapidly with k, we restrict ourseives to $k=2,3,4$. For each such value of k we have selected two methods: with $(u, v)=\left(\frac{2}{3}, \frac{1}{3}\right)$ and $(u, v)=\left(\frac{1}{2}, \frac{1}{4}\right)$. For $k=2$ the two methods are

$$
\begin{equation*}
y_{n-2 / 3}=\left(16 y_{n-1}+11 y_{n-2}\right) / 27+n\left(16 \hat{r}_{n-1}+4 \hat{n}_{n-2}\right) / 27 \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
y_{n-1 / 3}=\left(47 y_{n-1}-20 y_{n-2}\right) / 27+n\left(27 f_{n-2 / 3}-22 f_{n-1}-7 f_{n-2}\right) / 27 \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
\hat{y}_{n}=\left(-13 y_{n-1}+23 y_{n-2}\right) / 10+i\left(108 f_{n-1 / 3}-189 f_{n-2 / 3}+284 f_{n-1}+61 f_{n-2}\right) / 80 \tag{72}
\end{equation*}
$$

$$
\tilde{y}_{n}=\left(48 y_{n-1}+y_{n-2}\right) / 49+n\left(160 \hat{i}_{n}+648 f_{n-1 / 3}+405 f_{n-2 / 3}+280 f_{n-1}\right.
$$

$$
\begin{equation*}
\left.+7 f_{n-2}\right) / 1470 \tag{73}
\end{equation*}
$$

with truncation error
and

$$
\begin{align*}
& y_{n-1 / 2}=y_{n-2}+h\left(9 f_{n-1}+3 f_{n-2}\right) / 8 \tag{75}\\
& y_{n-1 / 4}=\left(1309 y_{n-1}-1053 y_{n-2}\right) / 256+n\left(756 f_{n-1 / 2}-1659 f_{n-1}-819 I_{n-2}\right) / 512 \tag{76}
\end{align*}
$$

$$
\begin{aligned}
& \tilde{y}_{n}-\underset{\sim}{y}\left(x_{n}\right)=n^{7}\left\{\frac{4}{416745}\left(y^{(7)}-7 \frac{\partial f}{\partial y} y^{(6)}\right)+\frac{26}{99225}\left(\frac{\partial^{2} f}{\partial y_{w}^{2}} w_{w}(5)-\left(\frac{\partial f}{\partial y}\right)^{2} y^{(5)}\right)\right. \\
& \left.+\frac{8}{6615}\left(\frac{\partial^{2} f}{\partial y^{2}} \frac{f f}{\partial y_{i}} y^{(4)}-\left\lvert\, \frac{\partial f^{3}}{\partial \underset{\sim}{y}}\right.\right) y^{(4)}\right)
\end{aligned}
$$

$$
\begin{align*}
\hat{y}_{n}= & \left(-140 y_{n-1}+193 y_{n-2}\right) / 53+h\left(512 f_{n-1 / 4}-560 f_{n-1 / 2}+3640 f_{n-1}\right. \\
& \left.+1574 f_{n-2}\right) / 1113 \tag{77}\\
\tilde{y}_{n}= & \left(32 y_{n-1}+y_{n-2}\right) / 33+h\left(1113 \hat{f}_{n}+2048 \hat{f}_{n-1 / 4}+4928 f_{n-1 / 2}\right. \\
& \left.+2548 f_{n-1}+73 f_{n-2}\right) / 10395 \tag{78}
\end{align*}
$$

with truncation error

$$
\begin{align*}
& \left.\tilde{y}_{n}-w^{y}\left(x_{n}\right)=h^{7}\left\{\frac{13}{997920} \left\lvert\, y^{(7)}-7 \frac{\partial f}{\partial y} y^{(6)}\right.\right)+\frac{13}{79200} \right\rvert\,\left(\left.\frac{\partial f}{\partial y}\right|^{2} y^{(5)}-\frac{\partial^{2} f}{\partial y_{w}^{2}} \cdot y^{f} y^{(5)}\right) \\
& \left.+\frac{3}{1760}\left|\frac{\partial^{2} f}{\partial y^{2}} f \frac{\partial f}{\partial y} y^{(4)}-\left|\frac{\partial f}{\partial y}\right|^{3} y^{(4)}\right)+\frac{1}{1440} \right\rvert\, 2 \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y^{2}} f y^{(4)} \\
& \left.\left.-\frac{\partial^{3} f}{\partial y^{3}} f^{2}{\underset{\sim}{y}}^{(4)}-\frac{\partial^{2} f}{\partial y_{z}^{2}} \frac{\partial f}{\partial y} f y^{(4)}\right)\right\} \\
& +o\left(h^{8}\right) \tag{79}
\end{align*}
$$

For $k=3$ the two methods are

$$
\begin{align*}
y_{n-2 / 3}= & \left(49 y_{n-2}+32 y_{n-3}\right) / 81+h\left(196 f_{n-1}+196 f_{n-2}+28 f_{n-3}\right) / 243 \tag{80}\\
y_{n-1 / 3}= & \left(14992 y_{n-1}-6784 y_{n-2}-2943 y_{n-3}\right) / 5265 \\
& +h\left(118584 f_{n-2 / 3}-148400 f_{n-1}-145208 f_{n-2}-17336 f_{n-3}\right) / 110565 \tag{81}\\
\hat{y}_{n}= & \left(-164007 y_{n-1}+139716 y_{n-2}+47015 y_{n-3}\right) / 22724 \\
& +h\left(995085 f_{n-1 / 3}-2405700 f_{n-2 / 3}+4819248 f_{n-1}+3412836 f_{n-2}\right.
\end{align*}
$$

$$
\left.\begin{array}{rl}
\tilde{y}_{n}= & \left(9369 y_{n-1}+837 y_{n-2}+71 y_{n-3}\right) / 10277 \\
& +h\left(20976 \hat{f}_{n}\right.
\end{array}\right)+98415 f_{n-1 / 3}+39366 \hat{f}_{n-2 / 3}+58536 f_{n-1} 1
$$

with truncation error

$$
\begin{aligned}
& \tilde{y}_{n}-\underset{\sim}{y}\left(x_{n}\right)=h^{9}\left\{\frac{47}{43163400}\left({\underset{w}{y}}^{(9)}-9 \frac{\partial f}{\partial y_{w}} y^{(8)}\right)+\frac{3938}{70140525}\left(\frac{\partial^{2} f^{2}}{\partial y_{w}^{2}} \tilde{w}_{w}^{(7)}-\left(\frac{\partial f}{\partial y}\right)^{2} y^{(7)}\right)\right. \\
& +\frac{854}{3340025}\left(\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial x}{\partial y} y^{(6)}-\left(\left.\frac{\partial f}{\partial y}\right|^{3} y^{(6)}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +O\left(h^{10}\right) \tag{84}
\end{align*}
$$

and

$$
\begin{align*}
& y_{n-1 / 2}=\left(-225 y_{n-1}+200 y_{n-2}+153 y_{n-3}\right) / 128 \\
&+h\left(225 f_{n-1}+300 f_{n-2}+45 f_{n-3}\right) / 128 \tag{85}\\
& y_{n-1 / 4}=\left(6339487 y_{n-1}-2981088 y_{n-2}-2604735 y_{n-3}\right) / 753664 \\
&+h\left(4124736 f_{n-1 / 2}-13604745 f_{n-1}-24795540 f_{n-2}-3851001 f_{n-3}\right) / 3768320 \tag{86}\\
& \hat{y}_{n}=\left(-206118 y_{n-1}+125037 y_{n-2}+101758 y_{n-3}\right) / 20677 \\
&+ h\left(5652480 f_{n-1 / 4}-774681.6 f_{n-1 / 2}+49298865 f_{n-1}+75689130 f_{n-2}\right.
\end{align*}
$$

$$
\begin{align*}
\tilde{y}_{n}= & \left(5319 y_{n-1}+513 y_{n-2}+41 y_{n-3}\right) / 5873 \\
& +h\left(207669 \hat{f}_{n}+589824 f_{n-1 / 4}+887040 f_{n-1 / 2}\right. \\
& \left.+715869 f_{n-1}+86229 f_{n-2}+3549 f_{n-3}\right) / 2261105 \tag{88}
\end{align*}
$$

with truncation error

$$
\begin{align*}
& \tilde{y}_{n}-y\left(x_{n}\right)=n^{9}\left\{\frac{29}{28190400} \left\lvert\, y^{(9)}-9 \frac{\partial x}{\partial y} y^{(8)}\right.\right)+\frac{5787}{756442400} \|\left(\frac{\partial f}{\partial y}\right)^{2} y^{(7)} \\
& \left.-\frac{\partial^{2} . \mathrm{f}}{\partial y_{y}^{2}} \mathrm{xy}^{(7)}\right) \\
& \left.+\frac{7533}{21612640} \left\lvert\, \frac{\partial^{2} f}{\partial y^{2}} f^{2} \frac{\partial f}{\partial y} y^{(6)}-\frac{\partial f}{\partial y}\right.\right)^{3} y^{(6)} \mid \\
& \left.+\frac{45}{375872}\left\{2 \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y_{v}^{2}} \cdot{ }_{2}^{(6)}-\frac{\partial^{3} f}{\partial y_{y}^{3}} f^{2}{\underset{w}{n}}^{(6)}-\frac{\partial^{2} f}{\partial y^{2}} \frac{\partial f}{\partial y} f y^{(6)}\right)\right\} \\
& +O\left(h^{10}\right) \tag{89}
\end{align*}
$$

Finally, for $k=4$ the two methods are

$$
\begin{align*}
y_{n-2 / 3} & =\left(-39200 y_{n-1}-33075 y_{n-2}+108000 y_{n-3}+23324 y_{n-4}\right) / 59049 \\
& +h\left(19600 f_{n-1}+44100 f_{n-2}+25200 f_{n-3}+1960 f_{n-4}\right) / 19683 \tag{90}\\
y_{n-1 / 3} & =\left(653682800 y_{n-1}-54440316 y_{n-2}-381259575 y_{n-3}-62034500 y_{n-4}\right) /
\end{align*}
$$

$$
\begin{align*}
&+h\left(418263750 f_{n-2 / 3}-691608400 f_{n-1}-1248768990 f_{n-2}\right. \\
&\left.-540581400 f_{n-3}-35198000 f_{n-4}\right) / 363879621 \tag{91}\\
& \hat{y}_{n}=\left(-17463266 y_{n-1}\right.\left.+4428891 y_{n-2}+12250002 y_{n-3}+1782557 y_{n-4}\right) / 998184 \\
&+h\left(40431069 f_{n-1 / 3}-122509179 f_{n-2 / 3}+304934560 f_{n-1}+425424951 f_{n-2}\right. \\
&\left.+164835435 f_{n-3}+9960664 f_{n-4}\right) / 23290960 \tag{92}\\
& \tilde{y}_{n}=\left(301456 y_{n-1}+65448 y_{n-2}+22640 y_{n-3}+1457 y_{n-4}\right) / 391001 \\
&++14710080 \hat{f}_{n}+76606236 f_{n-1 / 3}+16021962 f_{n-2 / 3}+62942880 f_{n-1} \\
&\left.+20844054 f_{n-2}+3604260 f_{n-3}+119028 f_{n-4}\right) / 150535385 \tag{93}
\end{align*}
$$

with truncation error

$$
\begin{align*}
& \tilde{y}_{n}-\underset{\sim}{y}\left(x_{n}\right)=h^{11}\left\{\frac{28027}{182900492775}\left(\underline{y}^{(11)}-11 \frac{\partial f}{\partial y}{\underset{\sim}{y}}^{(10)}\right)\right. \\
& +\frac{1663988}{139004374509}\left(\frac{\partial^{2} f}{\partial y^{2}} f y^{(9)}-\left.\frac{\partial f}{\partial y}\right|^{2} y(9)\right) \\
& +\frac{42500}{735472881}\left(\frac{\partial^{2} f}{\partial y^{2}} \underset{\sim}{f} \frac{\partial f}{\partial y} y^{(8)}-\left(\frac{\partial f}{\partial y}\right)^{3}{\underset{w}{v}}^{(8)}\right) \\
& +\frac{37}{10557027}: 2 \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y_{w}^{2}} f y^{(8)}-\frac{\partial^{3} f}{\partial y^{3}} f^{2}{ }_{w}^{(8)}-\frac{\partial^{2} f}{\partial y_{w}^{2}} \frac{\partial f}{\partial y} f_{w}{ }_{w}^{(8)} \\
& +O\left(h^{12}\right) \tag{94}
\end{align*}
$$

and

$$
\begin{align*}
& y_{n-1 / 2}=\left(-6125 y_{n-1}-3675 y_{n-2}+9261 y_{n-3}+2075 y_{n-4}\right) / 1536 \\
& +h\left(1225 f_{n-1}+3675 f_{n-2}+2205 f_{n-3}+175 f_{n-4}\right) / 512 \tag{95}\\
& y_{n-1 / 4}=\left(884331175 y_{n-1}+449223975 y_{n-2}-1027077975 y_{n-3}-232028279 y_{n-4}\right) \\
& / 74448896 \\
& +h\left(72817920 f_{n-1 / 2}-314524875 f_{n-1}-1207478475 f_{n-2}\right. \\
& \left.-737261595 f_{n-3}-58733115 f_{n-4}\right) / 74448896 \tag{96}\\
& \hat{y}_{n}=\left(-99742024 y_{n-1}-45909828 y_{n-2}+123367176 y_{n-3}+27180523 y_{n-4}\right) / 4895847 \\
& +h\left(148897792 f_{n-1 / 4}-239486976 f_{n-1 / 2}+1662170440 f_{n-1}+5185974240 f_{n-2}\right. \\
& \left.+3056346216 f_{n-3}+240266188 f_{n-4}\right) / 171354645 \tag{97}\\
& \tilde{y}_{\mathrm{n}}=\left(8494880 \mathrm{y}_{\mathrm{n}-1}+1482624 \mathrm{y}_{\mathrm{n}-2}+477408 \mathrm{y}_{\mathrm{n}-3}+30127 \mathrm{y}_{\mathrm{n}-4}\right) / 10485039 \\
& +h\left(342709290 \hat{f}_{n}+11911.82336 f_{n-1 / 4}+1372225536 f_{n-1 / 2}+1575099680 f_{n-1}\right. \\
& \left.+450881640 f_{n-2}+75396384 f_{n-3}+2456234 f_{n-4}\right) / 4036740015 \tag{98}
\end{align*}
$$

$$
\begin{align*}
& \tilde{y}_{n}-\underset{w}{y}\left(x_{n}\right)=h^{11}\left\{\frac{36923}{322939201200} y^{(11)}-11 \frac{\partial f}{\partial y_{n}} y^{(10)}\right\} \\
& \left.+\frac{2759}{3690733728}\left|\frac{\partial^{2} f}{\partial y_{w}^{2}} f y^{(9)}-\frac{\partial f}{\partial y}\right|^{2} \quad y^{(9)}\right) \\
& +\frac{94815}{1230244576} \cdot \frac{\partial^{2} x}{\partial y^{2}} \pm \frac{\partial \hat{y}}{\partial y} y^{(8)}-\frac{\partial x^{3}}{\partial y} y^{(8)} \\
& \left.+\frac{1269}{55920208}\left\{2 \frac{\partial f}{\partial y} \frac{\partial^{2}}{\partial y^{2}} \cdot y^{(8)}-\frac{\partial^{3} f^{2}}{\partial y^{3}}{\underset{n}{n}}^{(8)}-\frac{\partial^{2} \cdot x^{2}}{\partial y^{2}} \frac{\partial f}{\partial y} f_{y}^{(8)}\right)\right\} \\
& +O\left(h^{12}\right) \tag{99}
\end{align*}
$$

Numerical Examples

As an illustration of the use of the method given by (70), (71), (72), (73) five equations havc been integrated from $x_{0}=0$ to $x=40$ by this method and by the fourth order Runge-Kutta method. Using step sizes $h=1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64,1 / 128$ each equation was integrated by the two methods and the greatest of the errors produced at $x=1,2, \ldots, 110$ for each method were compared. For a given equation and step size let E denote the maximum error for the new method divided by the maximum error for the Runge-Kutta method. In figure 4, E is plotted as a function of h for each of the equations. The five equations used were given by

$$
\begin{array}{ll}
\text { I: } & \dot{y}=y, y_{0}=1 \\
\text { II: } & \dot{y}=-\frac{x y}{x+2}, y_{0}=4 \\
\text { III: } & \dot{y}=y \cos x, y_{0}=1 \\
\text { IV: } & \dot{y}=-y+2 \sin x, y_{0}=-1 \tag{103}\\
\text { V: } & \dot{y}=-y+10 \sin 3 x, y_{0}=-3,
\end{array}
$$

REFERENCES

1. GRAGG, W.B., and STEMER, H.J. Generalized multistep predictorcorrector methods. J.ACM 11 (1964), 188-209.
2. BUTCHER, J.C. A modified multistep method for the numerical integration of ordinary differential equations. J. ACM 12 (1965), 124-135.
3. GEAR, J.W. Hybrid methods for initial value problems in ordinary differential equations. J. SIAM NUMER. ANAL. SER. B 2 (1965), 69-86.

LISTT OF FIGURES

1. $R=1$ contours for $k=3,4,5,6,7,8$.
2. $v-.3 u$ where v minimizes R for given u. $k=6,7,8, \ldots, 15$.
3. Minimum R for given $u . ~ k=6,7,8, \ldots, 15$.
4. Error of $a k=2$ method compared with Runge-Kutta for five equations and for various step sizes.

Fig. 1

