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Introduction 

In papers by Gragg end S-Letter cl';, by the present author [2], and 

by Gear [3], integration processes were considered which combine features 

of both Runge-Kutta methods and multi-step methods. In fact these new 

methods were multi-step analogues to third order Runge-Kutta methods 

in that one additional derivative calculation was made at some point 

between Steps. There is no reason in principle why more than one of these 

additional evaluations should not be made and in the present paper the case 

of two evaluations is considered. It is found that an order of accuracy 

2k + 2 is possible end examples of processes where this order is achieved 

and which are stable exist for k 3 1, 2, . . . . 13 . Detailed formulae for 

some of these cases are given for k = 2, 3, 4. 

The initial value problem whose numerical solution is sought will 

be written as 

dv L = f(X,Y) , Yb,) = Y, dx 

where y,f are vectors with N components. For some purposes it is more 

convenient to consider the autonomous system 

2 =-f_sy) J $x0) =Jo 

where J, is the vector (x,y 

and Y e-0 = (x0, Y,) * 

The Corrector Formula. 

> with N + 1 components, f = (1, fb,Y) > 

Postponing for the present considerations as to how ynmu, ynBv are 

(1) 

to be computed, we write 



k 

Yn = c 

I 
A.Y J n-j 

+hbf 

i 
1 n-u +bf 

2 n-v + 
j=l 

for the formula with which yn = y(xo + nh) is to be computed. fj for 

any subscript j denotes f(xo + jh,yj) . If u,v are given constants, 

there are 2k + 3 coefficients Al, A2, -.., \, bl, b2, Bo, Rl, . . . . 

B k to be chosen so we shall seek values of these coefficients so that 

k k 

0 = -p(o) + 
c 

Ajp(-hXj) f h(blp%-~l) + 1~lP’(-~2) + 
c 

‘jP’(-~j)) 

j=l j=O 

for all polynomials p of degree 5 2k + 2 where X1" 3’ x0 = 0, x1, 

. . . . 3% are distinct real numbers and h is a constant. We will recover 

the coefficients in (3) by writing x1 = u, x2 = v, Xj = j (j = 1, 2, 

. . . . k) . 

Consider the function 

Q(z) = - $+ 
k A 

c 

b 
j+ h b1 2 

j=l Z+!iX 
j ( z-thy > 

2+ 
( z+h$ > 

2* 

so that the integral L(p) given by 

L(p) = 1 
s 

P(Z)+) dz 
2fii C 

where C is a counterclockwise circle with centre 0 and radius R > max 

(ih+ b2j, /~& l -.j bJ&i) > expresses the error in (4) for a 

polynomial p . For L(p) to vanish for p(z) any polynomial of degree 

2 2k + 2 it is clearly necessary and sufficient that 

(3) 

(4) 

(5) 

(6) 

lq(z)l = O(jzl-2k-4) (7) 
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as izi-300 . 

if we write 

K tl x2 h2k+2 
v(z) = J j 

1 hU 1 hV -+ --- 
z2 pl (z+hxj)2 z&xl 2(z+hxl)2 z+hx2 2(z+hx2)2 

we see that (7) is satisfied and that (8) is of the form of (5) if the' 

const&!t U,'V,K are chosen so that the residues of q(z) (given by (8)) 

h-b z=- bx 1 and at z = - hx. 2 are zero and so that the residue at 

x = 0 is -1. Assuming that x1, x2, Xl, X2, . . . . Xk do not have 

vaYL;es such that one of the right hand sides of (g), (lo), or (11) vanishes 

k 
i 
z= T 

1 

u L x -x j=O j 1 

1 F 
;= i XIX 

j=O j- 2 

f= 2.+ 
K x1 

U 
2 
x1 

v 
2 

x2 

i 
2 

x1 

+ U 
3 
x1 

I 
2 
x2 

Wri-, ing (8) in partial fractions and comparing with (5) we find 

k X. 
2 

'0 1 
=-$JJ- - 

1 i 1 J=l 'jmxl 

KV k 'j 
2 

j,, = - - 
ri 

2x2 
2 

Tr( 1 j=l xj-x2 

(8) 

(9) 

(10) 

(11) 

(J-2) 

(13) 
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\ 
U 1 

B. = 
J 

2+-- \ 
2(Xj--x1) xj-x2 2(XjTX2)2j 

I 

A =X 
ITi 

ikl \ 

'i\' 1 

/! ( 

U 1 v -t m \ 
j 

= 

xi-x. ' 
J (xj-xl)2 

+ (xj-xl)? + (xj-x2)2 - (xj-x2)3 1 

where the prime on 

is to be excluded from the product or sum. 

k I 

and 
z 

indicates that the subscript i=j 

i=O 

At this stage it is convenient to examine the error in (4) when 

p(x) is not a polynomial of degree 2k+2 . We will suppose that p(x) 

EC 2ki-4 [a,b] where Ha,bl contains 0, -hx 1' -hx2, -hXl, . . . . -hXk . 

We can expand p(-hx1)' p(-hX2), .-ay P(-hXk), hp'(-ml), hp'(-m2), 

. . . . kid-@+ hp'(-hy), hp'(-hx2) in Taylor series about 0 up to 

terms in p(2k+3) (0) with remainder terms o(h2k44) as h +O . 

Substitute into the right.hand side of (4) and we obtain, since Al, A2, 

. . . . 
% J bl, b2, Bo> Bl> - .- 7 Bk were chosen to make this expression 

zero for a polynomial of degree 2k+2 , only an expression E p (2k+3 > 

(0)h2k+3 + O(h2k+"), where E is a constant. To determine E we write 

p(z) = z3 for which p (2k+3) (0) = (2k+3)! . We now 

have 

$k+3(2k+3)! E = 1 

J 

k 
K pl Xj2 h2k+2 z 1 + 

i 

hU 

25ri - z+hx 1 2(z+hxl)2 

1 hV --- \ dz 
z+hx 2 2(z+hx2)2 1 

04) 

05) 

(16) 



from which 

i fix., 
E = 

j=l ’ 

(2k+3)? 
(x2 - x1 y + OJ - v>> 

6 

. (17) 

By applying this argument to every component of y in turn we find 

the error in (3) to be E y (2k+3)(x,)’ h2k+3 + O(h2k+4) . 

To find the coefficients in (3) we now write x1 = u, x2 = v, 

x. = 
J 

j (j = 1, 2, . . . . k) . We find 

(18) 

k 

j=O 

l/K = Hk 

where ';I =1+$+...+& k>O, l-i0 = 0 . 

We have 
2 

KU k: 

j=l 

Kv k!2 
‘2=-z 

B 
J 

= K(t) 

(19) 

(20) 

(21) 

(22) 

(23) 



A. 
J 

= K(k)2 / 1 ’ u 1 V 
- j 

\ 
- (j-u)2 + (j-u)3 + (j -vf ( jiv)3 

+ 2Bj (H j - ~~-j) I 

and the nerror constantlP E is given by 

E _ K(k!)2 !v _ u + v-v' 
(2k+3)! \ 2; 

Stability Considerations 

So far the only restrictions that are imposed on the parameter 

u>v are that they are not equal, that each differs from each of the 

integers 0, 1, 2, . . . . k and.that the right hand sides of (la), (lg), 

(20) do not vanish. However, for a given k , it may happen that some 

combinations of u,v do not yield a formula (3) which is stable when 

used as a final "corrector". Excluding the ""principal root': at 1, let 

R be the greatest magnitude for a root of the equation, 

k 
Z - Alzk-' - A2zk-2 - . . . - % = 0 

R is a convenient measure of the stability of the formula: if 

R < 1 the method is (asymptotically) stable and if R > 1 it is unstable. 

For k = 1 only the principal root is present. For k = 2 it is 

,found that R = /(15~~ - ~(u+v) + 4)/(15uv - 23(u+v) + 36)j. 

For higher k it has seemed most convenient to study R as a function 

of u,v numerically. For k = 2 it happens that R < 1 whenever 

(24) 
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u,v E(O,l). Figure 1 shows the con,tour lines R = 1 for k = 3, 4, 5, 

6, 7, 8 and u,v E(O,l). For each curve, the value of the corresponding 

k is written beside it. Here a convention is adopted in that the side 

of the curve where k is written corresponds to the region to which 

R < 1. We see from this figure, that the region for which u,v give 

stability tends to decrease in area as k increases. The same pattern 

continues up to k = 15 but there does not appear to be any region 

where R<l for k=l6. To illustrate the behaviour of R for k = 6, 

7, a-*, 15 figures 2 and 3 are presented. As u varies from .51 to .64 

the values of v which minimize R and the values of the minimum R 

have been computed. Since the v which minimizes R is approximately 

-3u it was found convenient to plot v - .3u as a function of u (figure 2). 

The ,minimum value of R is plotted in figure 3. 

We nGw consider a method for cc:qut~~g the values of ynVu, y,-v 

ana tke "predicted" value of y,. The lormulae proposed are 

t 
k 

y,-, = L Aljyn-j + h )' 
-s 

Bljrn- j 
j=l ; j= 

/ 

=f A2jYn_j + h[b21fn-u +I B;:'nvj] ;: 
\ 

Y n-v 
j=l j=l 

k 
I 

k 

c 

\i 
Y, = "3jyr,- j + h \b31fn-u + b32fn-v + t 

B .f 
35 n-j \ 

j=l \ j=l i 

(27) 

zefore we consider the choice of the coefficients occuring in (27), (2&j, 
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(29) we generalize the problem to that of unequally spaced points in the 

same way as for the "corrector f0rmul.a~. We shall thus consider the overali 

procedure for finding y(0) from y N ./- ,(-hq, “j 

the formulae 

-i3x2L . . ..z(-5) using 

$-5x1) = L AljE(-WCj) + h t Blj~(3T(-hXj > > 
j=l j=l 

(30) 

k k 

y(-hx2) = 
c 

A2jy(-hxj) + h(b21~:Yj-hXl)) + (31) 

j=l \ z 
- B2JL:$-hxJ))] > 

j=l 

k $8 = c I, 
'jj_YceNcj) + h[D31- ," 

f(y(-i-,x1)) + b 32ijy(-hx2)) 
j=l 

k 
+ 

c B3j9 (_Y( -hxj 
j=l 

>I 

;r 
_y(o) = c Aj+hXj) + hjb&($-A *x1) > + b2f&( -hx2) ) + b3f_(g(0) > 

j=l i 

k 

+ Bj.L(_y( -Xj > > 
i 

. 

(32) 

(33) 

where we have written b 3 
in place of B 0 . 

We can choose the coefficients in (30) so that J(-hx,) is given 

exactly when the components of -Y(X) are polynomials of degree 2k-1. 

When this is done, suppose the error can be written in the form 

E 
1 

(2k)&2k)(0)h2k + E (2k~l)y(2k+l)(o)h2k+1 + E 
1 - 

(2k+2)y(2k+2+o)$k+2 + 0(h'~+3)- 
1 - 

The same is true for (31), (32), and we suppose that the error for these 

formulae can be written in the same form (with subscripts 2, 3, respectively 



i3 

3x3 the E'S) where it is supposed ttat exact values are used for ail 

+antities on the right hand slCcs. ;I tixact quantities are used m the 

right hand side of (33) the errm in ti,is glazltity Is E y (2kt3)(@ 

p+3 +‘O(h 2k+4) dlere E is given by (17). Using the'same type of 

calculation as in 121 we now find the total error in y(O), the approxi- 
W 

cation to y(0) due ta ail soiirces. Xc is given by 
b 

Y(o) - Y(O) = h 
2k+l' (2k) i- b.c (2k) (2k)\ & (2k) 

%A, .N I 
blEl 22 + b3E3 j ay Y" 

v\I 

E &+l) 
22 + b3E3 

(2k+l)\ & $2k+l) 

I 3Y -. 

I 
+ I b2-D2fl 

(2k) (2k) (2k)': 3&,(2k) 

i 
+ b3b31E1 + bjb32'2 jj&yiw .N 

+ h2k+3 ib E (‘-2)t -D2E2(2k+2) 

i 
11 + b3E3 

@+2)‘, F $2k+@ 

; OY ".A 

+ E $2k+3)] 

b2b21E1 
(2k"rl) 

+ b3b31El 
(2k+l) 

.a 

_ blXlE1(2k+1) + "2x2i2(2k+1)) &J _Y('~+~)) 
3Y 

+ h2k+3 b3b32b21cl 
(2k) :af13 

-; 2 
(2k) 

@,y, I 

- b2x2b21E1 
(2k) 
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2 (2k) 
e1 + b2X2 

2 (2k)\ [ b3, f2y(2k) 
e2 j\ ay3 * "-- 

+bb \ (2k) 
3 31 tx1e1 

I 

+ b3b32x2E2 

+ ; h4k+1.fbl($2k)~ + b2/e2(2k))2 + b3;e3(2k))2 $[.$2k))2 

(34) 

In this expression, the various factors involving derivatives of ,y and 

,f are supposed to be evaluated at ,y =3(O). As in 121, the various 

products of such factors are to be interpreted in a conventional way. 

Thus one would associate with y (4 &f/ Ei2f 
- . . . . the tensors J 3 G' ax2' 

' y(n)i, fi, f i( 
j 

= $), fik, . . . . Two tensors in C;uxtaposition are 

supposed contracted over subscripts in the first member and superscripts 

in the second in such a way that the terms actually accuring above have 

only one non-contracted superscript. Note that a term of order 4k+1 h 

is present in (34). When k > 1 this term could be absorbed into O(h 2k+4 ). 

If the method is to be accurate to terms in h2k+2 t'nen we see from 

(34) that 

blEl 
(2k) + b2c2(2k) + b3e3(2k) = 0 

blel 
(2k+l) + b2E2(2k+1) + b3E3(pk+1) = 0 

(39 

(36) 
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b2b21E1 
(2k) + b3b3fl (2k 

+ b3b32Ez 
(W = 0 

blxlE1 
(2k) 

+ b2X2E2 
cw = 0 

We now derive formulae for the coefficients in (30) and (31) so that 

these are accurate for polynomials of degree 2k-1 and so that (35) 

is satisfied. We then find formulae for the coefficients in (32) so that 

this is also accurate for polynomials of degree 2k-1 and SO that (36), 

(37) and (38) are satisfied. - 

By analogy with (5) we write 

k k 

p,(z) = - -L y T Alj i b T B:, . 

z+hx 1 j=l z+hx 
J 

'f!J (z+lllj)2 
j=i 

-D21 + 
( z+hxl)2 

k 
A3j b31 -+hj 

j=l z+hx . 
J \' 

z+h:+ 

and 

Lj(P 
1 r 

) =A 

2ni 
A 

P(') 'rj(" 

so that Ll(p), L2(p), L,(P) 

(37) 

(38) 

(39) 

(40) 

(41) 

dz ? j = 1, 2, 3 (42) 

is the error in (39), (GO), (41) respectively 

for a polynomial p(z) . Lj(p) is to vanish identically for j = 1, 2, 3 

when p(z) is of degree 2k-1. Iience, 

l~j(')l = o([Zl-2k-1) , j = 1, 2, 3. (43) 

It is clear that ql(z) must be given by 



I 
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2k 
cp,(z) = - -2.L 

z+hx l 

where the numerator has been chosen so that the residue at z = -hxl 

equals -1 . 

Thus 

BU = 

k 
Tn x -x )2 
a=1 IL R 

A =B 
U 

We write p2(z) in the for:;1 

so that 

B2j 

+% 

(xj-x2) fi' (x.-x,)2 
a=1 ‘i J 

k 
-iT( 
a=1 

x2-512 

(xj-x2) fi' (Xj-xe)2 
a=1 

! 
[P 

\ 

I - 
\ 

+ B2j 

(4.5) 

(46) 

(47) 

(48) 

(49) 
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b21 = 

$3 .I” (x2-xjj2 J = 
(x1-4 -fJ (“I-xj)* 

The form for cp,(z) given by (47) hLs the correct behavior at 

infinity and at -hxl, -hX2, . . . . -'hXk; -hxl, -hx2. However, P, Q, R 

must be fixed so that the residue at -hxl is 0 and the residue at 

-hx2 is -1. 

We thus have 

k 
1 :. +2y 1 2 1 -=- 
R x2-x1 L 

- = 2+-.+---- 

j=l J 
x.-x1 u x1 x2-x1 

1 
p+ Q/A+ 

i \t,x1-x2 

To obtain a third equation for P,Q,R we use (38;. In the same 

way as for E we obtain for E. (2k) 
J ' 

j= 1 2 the expression > 

so that 

El 
(2k) _ 

- - g- $ (xl-xj;2 
k! . 

-- -F (x,-x-j2 
! j'J1 L ' 

(50) 

(5i) 

(52) 

(53) 

(54) 

(55) 

Using t'ne expressions (21), (22) for bl, b2 and substituting in (38) 



we find 

x2 u p=- 

x1 v 

(F2b) is now determined. We must now choose (p,(z) of such a form 

that (35), (36), (37) are satisfied. This can be done by defining 

q3(z) by the equation 

b&(z) + b2cp2(z) f b3cp3(z) + ; q(z) = 0 . 

15 

(56) 

To see this, we observe that cp (z) defined thus has the correct behavior 
3 

at -hxl, -hx2, 0, -hXl, -hX2, . . . . -hXk and at infinity. To see that 

(35) and (36) are satisfied we see that 

(2k+m) = h-2k-m 
rz 2k+m 

5 2Ki (2k+m)! &1 
cpj(Z) dz 

for m = 0, 1 and j = 1, 2, 3. Making use of (57) we see that 

k 

1 
b E (2k+m) = _ 

h-2k-m-1 
,2k+rrrt-1 dz = 0 2 j /- 

j=l 
2?ri (2k+m)! 

2 q(z) 

since \cp(z)/ = o(]z/-~~-~) as jz] -+CO . To see that (37) is satisfied, 

we multiply (57) by (z+hxl)2/h and by (z+hx2)2/h and take the limits 

as z + -hx 1 and z +-hx 2 respectively. We find 

b2b21+ b3b31 - xlbl .= 0 

b3b32 
- x2b2 = 0 J 

(57) 

(58) 

(59) 

(60) 

(61) 

so that (37) follows immediately from (38). Using (57) we now list 

eqressions for all the coefficients in (32). 



A3j b3 j j 
=L(XA -blAlj -b2A2j -Bj) 

B3j 
= $ (X.B. - blBlj - b2Bej) 

J J 

b31- b3 
= 1. (xlbl - b2b21> 

b32 3 
= b x2b2 

16 

. (65) 

T;ne Truncation Error 

in this section we shall fii;d eqressions for the coefficients in the 
2k+3 

asymptotic error term which we see fro::: (34) to have the form h , 

'- {Cl% (=+3) , af, (2k+2) 
1 Y1\ 2 

t- c2gj ,<X 
(2k+l) 

* Cl ay .z ,- 

(62) 

(63; 

(64) 

) af as f y(2k) where we have sqqosed k 11 andthe c's are 
- eii -ay$-- 

given by (34). From (57) we immedla'LeIy find Ci = - (2k+3)" cl = - @+3)E. 
.-- 

From (60), (61), we find that c2 = ci J c3 = C) J c4 = ci . c2 is given by 

= blxlcl (2k+l) 
c2 

+ b2x2E2(2k+1' 

h-2k-l 

= 2?ri (2k+l)! 
blxl~&z) + b2x2T2(z)] Zig+' dz (66) 

Since r (bixl-(,91(z) + b2x2vx(z)) p(z) dz = 0 when P(Z) is any polflomial 
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of degree 2k , we may replace z 
2k+1 in (66) by any polynomial with the 

same leading term. We choose the polynomial 
(z+hXi) ~ (Z+hxj )2 

*= 

so that 

c2 = - b(xl-x2> + Q 
L 1 . (67) 

To find c 
3 = b2x2b21e1 

@K) we evaluate El (2k) = (h-2k/2ai(2k)!) 

jr cg,( z)G& (z+~X~)~ to find 

C 

b2x2b21 
k 

c3 = - T-r 
(2k)f j=l 

(xl-xj )2 

2 Finally we find c4 = blxl el (2k) by making use of (38) and the value of 

'1 
(2k) to give 

c4 = -  

Particular Methods 

By writing X1 = 1, X2 = 2, . . . . Xk = k we obtain expressions for 

coefficients in (27), (28), (2y), so that practical methods may be devised. 

Eiowever, other vaiues of Xl, X2, . . . . Xk would be used for such special 

needs as changing the step size in the middle of the solution to a problem. 

For the methods about to be given explicitly, we shall restrict ourselves 

to the simple case. Since the complexity of the coefficients increases 

(68) 

(69) 



rapidly with k , we restrict ourselves to k = 2, 3, 4 . For each such 

value of k we have .selected two methods: with (u,v) = (5 2 ?j) and 

For k = 2 the two metnods are 

yn-2,3 = (16YnWl+ 1'ynm2)/27 + hWfn-, + 4f,-,)/27 (70) 

ynmij3 = (J+7Y,-, - 20Yn-21/"T i h(27fn-2/3 - 22fn-1 - 7f3-2)'27 (71) 

'n = (-13~~~~ + 23yn-2)/10 T :J:08fnelj3 - Wfn-2,3 + 284fnml + 61fns2)/80 (72) 

r;, = (48Yn-1 -l- yn-2 )/49 + h(i60;~ + 648~~~~~~ -i. Wfn-2,3 + 280fnml 

with truncation error 

,yn. - ;(x,) = h7 4 

416745 
J7) _ 7 x p; + - 26 

\” 

8 
i 

a2f. +---.-A f f,(C 
6615 ax2 - ?3y 

1 +- 2 af.a"f (4 

3969 
2 -TX' 
aJ ax 

+ O(h8) 

and 

yn-1/2 = yn-2 + h(9fn-l + ?~D-2,/8 

Y,_~,~ = (13m~~-, - 1053~~-~),'256 * “(756fn-i,2 - 1659fn-1 - 81~f'~-~),'512 

(73) 

(74) 

(75) 

(76) 
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'n = (-14"~~~~ + 193Y,_,>/53 + h(512fn-l,4 - 560fn-l,2 + 3640fn-, 

+ 1574fnm2)/1113 (77) 

31, = (32Yn-1 + Yn-2 )/33 + h(llL$n + 2048fn-l,4 + 4y28fn 1,2 

+ 2%8fn 1 + 73fn-2)/io395 

with truncation error 

; - Y(x,> = h7 13 I. (7) 
Wn or 

997920 i-" 
- 7 $$6)) + --=(($p - 4.f4;'y 

_ a3, gyP+) 
ax3 * 

a2_f af fy(4) 
ax2 ax”-+ U 

+ O(h8) 

For k = 3 the two methods are 

Yn-2,3 = (49-y,-, + 32ynm3)/'81 + h(196& + i96fnw2 + 28fn-3)/'43 

Y,-~/~ = (1'+992~~-~ - 6784~~~~ - 2943yne3)/5265 

+ h(118584f n-2/3 - i48400fn 1 - i45208fn 2 - i7336f n-3)/11o565 

'n = (-16400-&-~ + 139716~~~~ + 47015yns3)/=724 

(78) 

(79) 

030) 

(81) 

+ h(9y5085fn-l,3 - 2405700fn-2,3 + 48192i8fne1 + 3U836fnw2 
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y, = (9369~~~~ + 837~~~~ + 7~~~-~)/10277 

+ h(20976:, + y84iy n-i/3 + 3W6fn-2,3 + 585%fn 1 

+ 7506fn 2 + 3z.u n-3)/2o554o 633j 

with truncation error 

in - ,y(",) = hy~431~j400 [ycy) _ y % ,(')j + -Id 
aY i 

3938 $&y(7) _ (g)e $7): 
70140525 ! ag w ax J \- 

-t O(hl') (84) 

and 

'n-l/2 = (-22.5~~ 1 + 200ynw2 + 153yne3C28 

+ h(225fn 1 + jOOf, 2 + 4?f n-3:/~~8 (85) 

"n-1/4 = (633y487yn-1 - 29&1088ynq2 - 2604735yns3)/753664 

+ h(ic12'4736f n-112 - i3604745fn 1 - 24m'+ofn 2 - %Wooif n-3)/376832O X86) 

'n 
= (-206118ynml + 125037~~~~ + i01Wknm3)/20677 

+ h(565248Oz n-1/4 - 77468i6f n-1/2 
+ 4y2y8865fn 1 + 7568yi30fn 2 

(87) 
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Yn = (5319Yne1 + 513Ynm2 + 41Yn-3)/5873 

+ h(207669Tn + 589824f n-l/4 + 887o4of n-1/2 

+ 7i5869fn 1 + 86229fne2 + 3549fnw3)/226U-05 (88) 

with truncation error 

vYn Y(x,) = h9 29 af -- 

i 
j,(s) _ 9 ‘, + 

28190400 r 327 
J8) 

~ 1 

+ 45 
375872 

+ O(hl') 

+ 7533 ;& f 3+(6) _ ,‘f:? (6)! 

21612640 iax2 c ax \ ay ;x 
~ i I 

Finally, for k = 4 the two methods are 

I 
;3 

(89) 

Yn-2/3 = (-39200y n-l - 330'?'?Vn-2 -i- 108000~~-~ + 23324Ynm4)/59049 

+ h(ly600fn 1 + 441001, 2 + 25200f n-3 + 1Wfn-4)/19683 (90) 

yn-l/3 = (653682800~~~~ - 544G0316ynw2 - 381259575~~~~ - 62o345ooy,-,)/ 
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+ h(418263750f n-2/3 - 6916o84oof_ 1 - 1248768y90fnw2 A- 

- 5405814oOf n-3 - 35iWoofn 4)/363879621 

'n = (-1'7463266~~~~ + 44288yline2 +, 12250002yn-3 + 1782557ynm4)/yy8184 

+ h(4043106Yf n-l/3 - 122509179fn.2,3 + 304y34560fn 1 + 425424gm,_, 

+ 164835435fnB3 + yy60664fnB4)/232Y0960 

Yn = (301456ynm1+ 65448~~.~ + 22640~~~~ + 1457ynB4)/391001 

-t h(14710080~n + 766o6236f n-1/3 
+ i6o2iy62f n-2/3 

+ 62942880fn i 

+ 208440$fn 2 + 3604260fn 3 -i- iigo28fn_4)/150535385 

with truncation error 

$xn) = h=- ’ ; - 28027 i,y b-1) _ 11 af yw\ 
-n l82900492775 \ ax 

-' 
i 

+ 1663988 
139004374509 ‘b 

+ 

(91) 

(92) 

(93) 

+ O(h12) (94) 



and I 

yn-l,2 = (-6125~~~~ - 3675~~~~ + 9261~~~~ f 2075ynm4)/1536 

+ h(l225f, l+ 3675f, 2 + 2205fnw3 + 175fnB4)/512 

23 

(95) 

yn-l/4 = (@4331175yn-, + 449223975~~~~ - 1027077975~~-~ - 23-27%n-4) 

/74448896 

+ h(72817920f n-l/2 - 3W+8nfn 1 - QWi'W5fn~2 

- 7w6imfn 3 - 58733i15fn_4)/74448896 (96) 

'n = (-99742024~~ 1 - 45909828~~~~ + 123367176~~~~ + 27180523ynw4)/4895847 

+ h(l48897792f n-1/4 - 23y486976f n-1/2 -I- i66q0440fn 1 + 5185g74240fnM2 

+ jo563462i6f 
n-3 

+ 240266188f ,-,)/17l354645 (97) 

y:2 = @W+88o~~-~ + 1482624~~,_~ + 477408~~~~ -t- 30127y~-~)/10485039 

+ h(3427OY290$ -t 11y1182336f m-l/4 -i- i37222~5 36f n-1/2 + mmWfn-l 

+ 450881640frL 2 + 75396384f 
n-3 + 2456234fn_4)/40367400i5 (98) 

with truncdion error 
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? - y(x,> = h" 
bn v I 36923 g('l) _ 11 af ,y(l") (i 

322939201200 ; $Y I 

+ 94815 ! h2r 2 ~ af y(8) _ 
1230244576 :ay ay ‘- . . 

+ O(h12) 

Numerical Examples 

As an illustration of the use of the method given by (70), (71), 

(72), (73) f ive equations have been integrated from x = 0 to x = 40 0 

by this method and by the fourth order Runge-Kutta method. Using step 

sizes h = l/2, l/4, l/8, l/16, l/32, l/64, l/128 each equation was 

integrated by the two methods and the greatest of the errors produced at 

x = 1, 2, . . . . 40 for each method were compared. For a given equation and 

step size let E denote the maximum error for the new method divided by 

the maximum error for the Runge-Kutta method. In figure 4, E is plotted 

as a function of h for each of the equations. The five equations used 

(99) 

were given by 
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I: j,=, , y,=l 

II: j,=-z, yo=4 
x4-2 

III: j, = ycosx > Y, = 1 

Iv: $ = -y + 2 sin x , y, = -1 

V: j, = -y + 10 sin 3x , y, = -3 . 

O-00) 

(101)' 

(102) 

(103) 

(104) 
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LFT OF FIGURE 

1. R = 1 contours for k = 3, 4, 5, 6, 7, 8. 

2. v - .3u where v minimizes R for given u. k = 6, 7, 8, . . . . 15. 

3. Minimum R for given u. k = 6, 7, 8, . . . . 15. 

4. Error of a k = 2 method compared with Runge-Kutta for five 

equations and for various step sizes. 
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