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Abstract. To obtain high order integration methods for ordinary
differential equations whiéh combine to some extent the advantages of
Runge-Kutta methods on one hand and linear multistep methods on the other,
the use of "modified multistep" or "hybrid" methods has been proposed
[13, [2], [3]. 1In this paper formulae are derived for methods which use
one extra intermediste point than in the previously published methods so'

that they are analogues of the fourth order Runge-Kutta method.
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Introduction

In papers by Gragg and Stetter [1], by the present author [2], and
by Gear [3], integration processes were considered which combine features
of both Runge-Kutta methods and multi-step methods. In fact these new
metheds were multi-step analogues to third order Runge-Kutta methods
in that one additional derivative calculation was made at some point
between steps. There is no reason in principle why more than one of these
additional evaluations should not be made and in the present paper the case
of two evaluations 1s considered. It is found that an order of accuracy
2k + 2 1s possible and examples of processes where this order is achieved
and which are stable exist for k =1, 2, ..., 15 . Detaliled formulae for
some of these cases are given for k =2, 3, L.

The initial value problem whose numerical solution is sought will

be written as

ZLoe(ey), ylx) =y, (1)

where y,f are vectors with N components. For some purposes it is more

convenient to consider the autonomous system

Loty , yx) =y, (2)

where y is the vector (x,y) with N+ 1 components, f = (1,2{x,v))

end y_ = (xo, yo) .

Trne Corrector Formula.

Postponing for the present considerations as to how Vo’ yh v are

to be computed, we write



k , k
= ;z Pﬁyh-j +h blfn-u + 2 n-v ;z
J=1

j=0

for the formula with which y. = y(xo + nh) is to be computed. fj for
any subscript J denotes f(xo + jh,yj) . If w,v are given constants,
there are 2k + 3 coefficients Al’ AQ, cee, Ak bl’ o7 O’ Bl’ veny

Bk to be chosen so we shall seek values of these coefficients so that

k k
- - - v D 1(_ Ty
0 = -p(0) +>j Ajp( hXJ.) + n(bp' (-hx ) + oo’ (-hxy) + z B,p" (~hX,))
=1 j=0
for all polynomials p of degree = 2k + 2 where Xy Y XO = 0, Xl’

P Xk are distinct real numbers and h 1is a constant. We will recover
the coefficients in (3) by writing X, =W, X, =V, X.=3 (3 =1, 2,
cee, K)o

Consider the function

£ A, b by £ B,
E: —d— +n = 5+ s + E: ——
+hXj (z+hxl) (z+hx2)

o(z) =

NlP

so that the integral L(p) given by

L(p) = == [p(2)o(z) az
2ni &

where (C 1is a counterclockwise circle with centre O and radius R > max

(1hxl[: lhxgl)

thl, cee, [th}) , expresses the error in (4) for a
polynomial p . For L(p) to vanish for p(z) any polynomial of degree

s 2k + 2 it is clearly necessary and sufficient that

l9(z)] = o(}z] 25

(3)

(%)

(6)

(1)
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If we write
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2 7] (z+hXj) zHhx, 2(z+hxl) z+hx, 2(z+hx2)
3=

we see that (7) is satisfied and that (8) is of the form of (5) if the-

constant U,V,K are chosen so that the residues of o(z) (given by (8))

st oz = - hxl and &t z = - hx‘2 are zero and so that the residue at

z =0 1s -l. Assuming that X1, Xp, Xl’ X ey Xk do not have

2)
values such that one of the right nand sides of (9), (10), or (11) vanishes

C

3 -
i

.
11 =y
5 M

>3
!

1 ==

]

K

N
e

v 3=0 Xj x2

Xk

2

e It el P P
X 3= Xj Xl Xl x2 Xp Xl Xl x2 x2

1 2
xu S %
RPN | X
1 o= MR
2
Kk X
0, = - KVZ‘WW‘ 3
= 2. I lx x

(8)

(10)

(11)

(12)

(13)



\
x
- + + - 2)’ (1k)

[
1
]
:1w
—————
]
(%
1
l_l
+
(e
+
‘_l
]
<3
I

J - e VP . \3 2 3
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where the prime on T[]t . and Z indicates that the subscript i=j
i= :
1=0

is to be excluded from the product or sum.
At this stage it is convenient to examine the error in (4) when

p(x) is not a polynomial of degree 2k+2 . We will suppose that p(x)

2k+4 .
€ C [a,p] where [a,b] contains O, -hxl, -hxg, -th, cee, —th .

We can expand p(-hX ), p(-bX,), .-+, p(-0X ), hp'(-nX ), bp'(-KX,),

. hp'(-th), hp‘(-hxl), hp‘(-hxg) in Taylor series about O up to

(2k+3)

terms in p (0) with remainder terms O(hgk&u). as h—0.

Substitute into the right hand side of (4) and we obtain, since Al’ Ass

e, Ak’ bl’ b2, BO, Bl’ ooy Bk were chosen to make this expression

2k
zero for a polynomial of degree 2k+2 , only an expression e p( +3)
2k+ 2kl
(o)xn k34 o(n k+L), where € is a constant. To determine & we write

k
o(z) = 22 [ (2 +mx,)° , tor wnicn 2% (0) = (2we3): . e now
I

have

2 k42
1 e S S hU

2xi j= J z+hx, 2(z+hxl)2

ot W E\dz (16)
z+hx,  2(z+hx,) }



from which
.k
K 1] Xj2
¢ = (x, - x v 5 (U-T) (27)
(2x+3)? :
By applying this argument to every component of ¥y in turn we find
2 2 2
the error in (3) to be e y< k+3) (Xr> R34 o(n kﬂ')
To £ind the coefficients in (3) we now write X, = U, X5 =V,
XJ,=J (3 =1, 2, ., k) . We find
k .
o= ) 18
/ L, d-v ( )
J=0
kﬁ
= ) - (29)
J-v
J=0
2 U 2 v\ 3 1
l/K=}LK~+—§——__—2-‘I+3—_2.+—_§—-_2--_§ (20)
u o ou v v ] u v
where H,_=1+ 5+ +-l- k>0 H =0
“x 2 k'’ 770
We have
b =I<:LJ2 - Xk (21)
2u 2
17 (G-w)
j=
2
1
b, = - Sl (22)
2v 2
L (3-v)
i=
2
- /K 1
=55 [ D : (23)
LG 2w (o) e(3v)?
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A = K(}?)2 - s Sy -
T \(J'-u)g G0 ) ()’

+ 2B, (Hj - Hk_j) ; (2k)

and the "error constant® e is given by

lv - u+ u-v:

o o Klsf) |

Stability Considerations

So far the only restrictions that are imposed on the parameter
u,v are that they are not egqual, that each differs from each of the
integers O, 1, 2, ..., k and that the right hand sides of (18), (19),
(20) do not vanish. However, for a given k , it may happen that some
combinations of u,v do not yield a formula (3) which is stable when
used as a final "corrector". Excluding the “principal root" at 1, let

R be the greatest magnitude for a root of the equation,

k k-1 k-2 ) o (26)

R is & convenient measure of the stability of the formula: if
R < 1 the method is (asymptotically) stable and if R > 1 it is unstable.

For k

1]

1 only the principal root is present. For k =2 it is
found that R = [ (15uv - T(utv) + 4)/(15uv - 23(wv) + 36)].
For higher %k 1t has seemed most convenient to study R as a function

of u,v numerically. For k = 2 it happens that R < 1 whenever



u,v €(0,1). Figure 1 shows the contour lines R =1 for k =3, 4, 5,

6, 7, 8 and u,v €(0,1). For each curve, the value of the corresponding
k is written beside it. Here a convention is adopted in that the side
of the curve where k is written corresponds to the region to which

R <1. We see from this figure, that the region for which wu,v give
stability tends to decrease in area as k increases. The same pattern
continues up to k = 15 but there does not appear to be any region

where R <1 for k = 16. To illustrate the behaviour of R for k = 6,
7, ..., 15 figures 2 and 3 are presented. As u varies from .51 %o .6k
the values of v which minimize R and the values of the minimum R
have been computed. Since the v which minimizes R 1s approximately
.3u it was found convenient to plot v - .3u as a function of u (figure 2).

The minimum value of R 1is plotted in figure 3.

-2 Preilictor Formuliae

We now consider a method for computing the values of Vo Yoy
- n-

ana the "predicted" value of Yy The Tormulae proposed are

k Xk
‘\——1 I
Yoeu =/, M¥n-3 TR/ Prstns (1)
J=1 J=1
- | & \
- 3 (2
Yn-v 2; A?Jyn-j * h\lefn-u'+Z;J By n—J) \
J=1 J=
k k
) | ). '
v =) A,y . +hb_f + Db, T +LB £ 29)
Iy 33yn-3 { 31 n-u 32 n-v 33 n-Ji \=J)
j=1 \ =1 J



(29) we generalize the problem to that of unequally spaced points in the
same way as for the "corrector formulas™. We shall thus consider the overall
procedure for finding y(0) from y(-th), y(-hxg), cee, y(-th) using

the formulae

X K
ylg) = ) A g(Rc) +n) B r(y()) . ()
=1 | j=1
K | x |
(-hx,) = A, y(-nX,) + n'v, £(y(-hx. )) + B, f(y(-nx,))| , (31)
A ;i; 25~ 73 | 2L 1 ;éi 2= T

-~

\Q(O) = }; Agjz(-hxj) + h(b31£(y(_hxl>) + b32§(z(-hx2))
j=1

k
o), A, e
J=1
y(o) = Z Ay(-nXs) + h{'bla(yﬂ(-hxl)) + oLy (-hxy)) + 2,E(§(0))
: \
J=1
DIEEE) e

[}
N
—

where we have written b, in place of B .

3 0
We can choose the coefficients in (30) so that y(-hxl) is given

exactly when the components of y(x) are polynomials of degree 2k-1.

When this is done, suppose the error can be written in the form

<

-—

21 2 2k+2 2k+2 2
( x)y(Qk)(o)hER . el(2k+1)y(21«:+1)(o)h Kl el( K+ )y(2k+2)(o)hak+ 4+ o(n k+3>'

The same is true for (31), (32), and we suppose that the error for these

formulae can be written in the same form (with subscripts 2, 3, respectively
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on the €'s) where it is supposed that exact values are used for all

cuantities on the right hand sides. I exace guentities are used on the

. y(2k+3)(o>

o

S

[

rignt hand side of (33) the error in tnis quantity

25+3 O(h ) wiiere € is given by (17). Using the same type of

calculation as in [2] we now find the total error in y(0), the approxi-
v

mation to \Z(O) due to all sources. It is given by

2k 2 )
)kl (k) L (2x%)

-+

(2x)\ of _(2k)
11 2%2

v(0) - y(0) = + b€ 1

s

w
W

 2ke+2 r (2k+1) 2 .
i\ 161 * 08 R }

b.b (2x) + b.b (2%) + b.b..E

/
+ & 2P21%1 3°3151 3P30%0

2 { 2 2 A o
k+3 {4b o (@) o €2(5k+2) o (2rr2)’ §é:y(2k+2)
\ j oy~

. .y<2k+3)}

oo o (Brrl) oy (2w+1) | o 4 o (BrrL)l[cE
t

2k+3 Sbys€ )
Z 171 393151 37322 Aay

+ h

'

C (er+1)
blxlel + b2x2€2

> LY

(2x+1)) 8°F (awm}
4

y/

3
2k+3 (2k) ! af\ (2k)
h {b3b32b2l N

O/l
feg

y(2k+l)
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2k+3§ 1 2 (2k) , o 2 (2k)\ [ 2 (2x) | 3¢ (2k)
b {E(blxl €0 Tt B¥p & |35y =3
J d By By

%

/
'[(b2b2l + bBbBl\},xlel

- 2
(ex)" of£ o°% (Ek)
Jd

(34)

In this expression, the various factors involving derivatives of y and
I are supposed to be evaluated at Yy =‘y(o). As in [2], the various

products of such factors are to be interpreted in a conventional way.

2
N '§
Thus one would associate with y(n),’g Eé% 5—%, ..+, the tensors
- %y oy
n)i i i
y(>Jf)f ( )f-k)
ayJ J

supposed contracted over subscripts in the first member and superscripts

Two tensors in juxtaposition are

in the second in such a way that the terms actually accuring above have

only one non-contracted superscript. DNote that a term of order hak’i‘l

. , 5
is present in (34). When k > 1 this term could be absorbed into O(h kﬁu).

' 2
If the method is to be accurate to terms in h kt2 then we see from
(34) that

blel(gk) + bzee(ek) + b3€3<2k> =0 (35)

(2x+1) (2x+1) (2x+1) _
b€, + b€, + b3€3 =0 (36)
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(2k> + b. b, € (Ek) + b.b,~€ (2k>

PoP2i€y 373151 T P3Fant =0 ' (317)
2k 2k
blxlel( ) + b2X2€2( ) - 0 (38)

We now derive formulae for the coefficients in (30) and (31) so that
these are accurate for polynomials of degree 2k-1 and so that (35)

is satisfied. We then find formulae for the coefficients in (32) so that
this is also accurate for polynomials of degree 2k-1 and so that (36),
(37) and (38) are satisfied.

By analogy with (5) we write

3 k
- A_ . B: .
o) = - 2k ) —Ean) (39)
z+hx z+hX | (24X )
1 j=1 J J=4i J
k k
o A fo B
23 2 5
0, (2) = - =2 +Z_J_+h<_l_2+z_ﬁ_§ (1)
s | z+hXJ (z+hxl) i (z+hXj)
k k
A ! b b B
1N ' j 31 2 '
@3(2) = - E.+211 3 4 h| f 5+ 3 5 +-E: ————;ilj§\ (41)
A Z+hXj \(z+hxl) (z+hx2) =1 (z+hXj) /
and
,(s) =—l—e[p<z> 9(z) @z, J=1,2,3 (s2)
2ni J

so that Ll(p), L2(p), L3(p) is the error in (39), (40), (41) respectively
for a polynomial p(z) . Lj(p) is to vanish identically for j =1, 2, 3
when p(z) is of degree 2k-1. Hence,

-2k-1
)

o5 (2)] = o(]z] , 3=1,2, 3 (43)

It is clear that @l(z) must be given by
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2K 1:((xl Q‘Xj)e .
9 (z) = - = (1)

where the numerator has been chosen so that the residue at 2 = -hxl
equals -1 .
Thus K »
T %,)
g=1 * 4
= = L
Blj (e T (1,2 7
X.-Xx X.-X
§ 7 gm A
X
PR +ez L (46)
L 1 X.-X X.-X
J 1 L=1 73 T4

We write @g(z) in the form
k

21T (s, % . 2

py(2z) = - J i - [P + hg [—L— + B 2x (47)
) z+hx, (z+hxl) ]
(z+hx2) ];E (z+hX
so that 3 2
J:r Oy / ! R\
Bpy = —— SiE* Q ! — ¥ P ) (48)
(ijﬁ gxfxﬂ \ \xf'j 174 }
2=1
X 2
77-(X2'XM) \
By = —5 LR
(X,-%,) Wgr x )2y Gy [ )7
2/ JL VT J J /
roE \
+ By, 222 S — } 4 (19)



1h

k

4 N2
QR i— (XE—XJ>
v,. = 4=

21 jid 5
(x -X, ) W—r (x -X%)
172 3=1 173

The form for @2(2) ziven by (47) hus the correct behavior at

infinity and at -th, —hXQ, cen, -th; -hxl, 'hXE' However, P, Q, R

must be Tixed so that the residue at -hx is O and the residue at

1
—hx2 is ~-1.
We thus have
l; .
o= 22: L. 2,2 .2 s
R x2-xl =1 Xj_xl U Xl xg—xl
i) bl
P+ Q{ — = I 1
X

5
\X17%0 (Xl-x2) }

1
v

To obtain a third equation for P,Q,R we use (38). In the same

(2x)

way as for € we obtain for €j , §=1, 2 the expression

-2k k
2k h r 2
e.( R - I (z+an) - o, (z) az
J 2xi (2k)! ¢ =L . J
so that
k
2k 1 - 2
el( ) o H (xl—X.)
(2x): j=
X
) L2 T ()7
2 P! o =
(x)!: =1 = °

Using the expressions (21), (22) for b, b, end substituting in (38)

(50)

(52)

(53)

(5%)
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- we find

@2(2) is now determined. We must now choose @3(2) of such a form
that (35), (36), (37) are satisfied. This can be done by defining

@3(2) by the equation

010, (2) + Bypy(2) + 09,(2) + = o(z) =0 .
To see this, we observe that @3(2) defined thus has the correct behavior
at —hxl, 'hXE’ 0, -th, -hXZ’ ceny —th and at infinity. To see that
(35) and (36) are satisfied we see that

-2k-m
€Kaﬁm)= h fzaﬁm

(z) &
J ori (2ktm)! 7;(2) o

for m=0, 1 and j =1, 2, 3. Making use of (57) we see that

k

-2k-m~1 - |
r 2
}: bjej(2k+m) - B / N
o) 2ni (2k+m)! &
. -2k-4 . (o
since |o(z)| = o(]z] ) as |z| »® . To see that (37) is satisfied,

2 2
we multiply (57) by (z+hxl) /b and by (z+hx2) /b and take the limits

as z —a-hxl and 2z — -hx,. respectively. We find

2

boPpy *+ Dby = X0y = O ,

b3b32 - X2b2 =0
so that (37) follows immediately from (38). Using (57) we now list

expressions for all the coefficients in (32).

(56)

(57)

(58)

(59)

(60)

(61)



A ==— (XA, -b A . - DA
33 b3 ( 33 1715 2723
B, =i (XB, -b é . - b.B,.)
3j by T3 1715 2723

1

Pay = b3‘(xlb1 - bybyy )
L

Py = B; X505

Thne Truncation Error

- B )

’ (62)

(63)

Py
p

(65)

In this section we shall find expressions for the coefficients in the

,,

asymptotic error term which we see irom

(2x+3) . 1 B (2k+2)

y.,\/

o/
Th

) (2x) _

2

t

2

Sf D

i 3y 3.2

t

(2k)} where we

given by (34).

From (60), (61), we find that

b % (2x+1)

%161 + boXAE

¢ %02

-2kl
oxi (2x+1)! &

Since [ (blx_@l(z) + bzxgmx(z)) p(z) dz

of

éﬁO/
s

\2
I

/ -
e,

o

(x+1)

)

)

k+3

(%4) to have the form h )

(2k+1
i )

[

have supposed

From (57) we immediately find

3

f‘[blxlml(z) + nge@a(z)} z

(2&71)

k >1 and the ¢'s are

1
©

L

2k+1

=0 when p(z)

—(QWBY‘Q

ci .

4z

- (2x+3)e.

c

o is given by

(66)

is any polynomial
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2k+
of degree 2k , we may replace z Bl 44 (66) vy any polynomial with the

same leading term. We choose the polynomial ( z+hx )‘Tgr (z+hX )2

so that
K 2
b X, ]:E(xg-xj)
cy = - J= {P(xl-xg) + Q] . 67)
(2x+1)! L
. (2k) (k) _ -2k, .
To find cy = Do Xsb, €0 we evaluate ¢ = (n " /2xi(2k)!)
r 2
{ A
] @l(z) ! S=1 (z+hX.) to find
C

s = - 2221TF< (68)

(2x)t 3=1
Finally we find ¢ =D X l(2k) by meking use of (38) and the value of
€ (k) to gilve
1
1% 05 7%p) Tr
¢, = -t L1 = (%, —X) . (69)
b (2k)! —1

Particular Methods

By writing Xl =1, X2 =2, ..., Xk = kX we obtaln expressions for
coefficients in (27), (28), (29), so that practical methods may be devised.
However, other values of Xl’ XE’ ceny Xk would be used for such special

needs as changing the step size in the middle of the solution to a problem.

For the methods about to be given explicitly, we shall restrict ourselves

to the simple case. Since the complexity of the coefficients increases
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rapidly with k , we restrict ourseives to k =2, 3, & . For each such

.

value of k we have selected two methods: with {(u,v) = (%- ; —5—) and

(u,v) = (% s %} . For k =2 +the two methods are

Ya2/3 = (6y,_ | + 11y ,)/27 + n(165__, + b, ,)/27 (70)
= -2 + £ - 22 - N

Vn-1/3 4Ty, 1 Oy, _p)/2T + n(27 n-2/3 £y - T8, 5)/21 (71)

g, = (=13, + 23y ,)/10 = L(lOan_l/s - 189fn_2/3 + 28k o+ 61f__,)/80 (72)

e f-A. 1 Qo )
Y, = (u8yn_l + yn_g)/ug + h(loOin + °L8¢n-1/3 + uo5fn_2/3 + 280fn

-1

+ TE,_5)/1470 (73)

with truncation error

2 , 2
~ f 2/ \.._ »
v, - y(x) = h7{ 4 ;Xm o7 _B_.._.y(é)) L .26 {a__g_,wfb) i (9:.:\ 3(5))
* 516745 | dy 99225 \3y" 7" 3y |
2 ~ 4 PNt \
s 8 (.é_gff NOBRESINO)
6615 1 oy oy 3y J
1 paede ) 3 2 ) Frae . )], o8
+ 2 29 ¢y _ g Py _ £y \E + o(n”) (74)
3969 oy oy oy 3y oy ]
and
Yp-1/2 = Yp2 T n(9f , + 3, p)/8 (75)

Vel = (1309y, ; - 1053y, _,)/256 + n(756% /2 " 1650f | - B19f ,)/512 (T6)
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§, = (-loy, , + 193y, p)/53 + n(512f, - 5602, ), + 36kof )

+ 1574, ,)/1113 (17)

v, =32y, _; + v, _5)/33+ n(1113f_ + 2048fn_l/2+ + 4928fn_l/2

+ 2548E_ | + T3f__,)/10395 (78)

with truncation error

5o ylx) =h7{ L1 (1) g 28 ,(8)), 13 ((_a_g +5) 6_%“(5))
997920 Sy 79200 || oy dy
2 3 2
it Tt U Ry L=
1760 la; 3y 3y | ko | 3y 3y
3% 2 ) __afgggfy(u))}
e o "
+ o(n) (79)
For k = 3 the two methods are
Vo2/3 = b9y, o + 32yn_3)/8l + n(1965 | + 196f , + 28fn_3)/243 .(80)

Va-1/3 = (1k992y , - 618y, - 2943yn_3)/5265

+ n(118584f . - 1LBLOOE . - 1h5208f , - l7336fn_3)/llo565 (81)

2/3

9, = (-16k00Ty | + 139716y, , + W05y, _,)/22T24

+ h(995085fn_l/3 - 2405700fn_2/3 + LB192k8r | + 3412836f
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= (9369y, | + 83Ty, _» + 7lyn_3)/10277

~ L
+ h(209767 + 98ul5fn_l/3 + 393008 55t 5853§fn_l
+ 75o6fn_2 + 321fn_3)/2055no -(83)
with truncation error
< 2
~ 1y 3 '
5yl ) - W9 ( (9) _ gt ¥(8)\3 . 3938 5 g f\ym (g_f_) ST
~n (,h3163uoo \ 3y J - Towoses | oy 3yl T
' 2 N o 3
8L '3 f .3f _(6) oty (6)
+ i > } - ,Y - T vy }
3340025 | oy oy , Oy | J
2 3 e
PB0 [ Bz (6) P26 g, <o>\}
15k1550 | oy By oy” 7 Sy, By ]
+ o(n'?) (84)
and
Voo1/2 = (-225y__, + 200y , + l53yn_3)/128
+ h(225fn_l + 300f , + u5fn_3>/128 (85)
Vp-1/4 = (633948Ty, , - 2981088y, , - 2607y _.)/75366%

+

h(4124736fn_l/2 - 1360u7u5fn_l - 247955A0fn_2 - 3851001fn_3)/3768320 (86)

= (-206118yn_l + 125037yn_2 + 101758yn_3)/2o677

+ h(5652h80fn_l/u - 77&6810fn_l/2 + u9298§65fn_l + 75689130fn_2

+ 11559891fn_3)/796o6h5 87
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= (5319y,_, + 513y, p + 41y, 5)/5873"

+ h(207669fn + 58982hfn_l/u + 887ou0fn_l/2

+ 715869f 1t 86229f b+ 3549fn_3)/2261105 (88)

with truncation error

~ 2 ‘ y
7= y(x) = h9{ 9o 1,09 g _6_22(8)\ . o787 ‘;ég y(7)
= 28190400 3y © | s6hk2k00 {3y
2
2L 0
%
i 2 TN r\3 \
. 1233 ;azgtféiy%) _enT ()
21612640 {oy oy %@X} - }
2 3 2
L5 e L (6) 3 2 (6) L (6)‘}
b A £ Ay S S
375872 dy Oy 3y, oy oy
10
+ 0o(h™") (89)
Finally, for k =4 +the two methods are
Va-2/3 = (-39200y . - 3305y, o + lO8OOOyn_3 + 2332hy ) )/59049
+ h(19600fn_l + uuloOfn_E + 25200fn_3 + 196Ofn_4)/l9683 (90)

Vpu1/3 = (653682800y-n_l - 54&40316yﬁ_2 - 381259575yn_3 - 62034500yn_u)/

155948409
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- 691608400fn_ - 12A876899Ofn_2

+ h(u18263750fn_2/ N

3

- 5uo58luOOfn - 35198800fn_h)/363879621 (91)

-3

gn = (-17u63266yn_l + uu28891yn_2 +.i225ooozyn_3 + l782557yh-u)/99818u
+ n(bOH310697, ) /5 - 1225091792, 55 + 04935605 + he5h2UI5LE. o
+ 16&835&35fn_3 + 996066Afn_u)/2329o960 (92)
;n = (301h56yn_l + 65uu8yn_2 + 226u0yn_3 + lh57yn_u)/39lOOl

+ h(1u710080fn + 76606230fn_l/3 + 16021962fn_2/3 + 029u2880fn_l

+ 208huoskfn_2 + 3oou260fn_3 + ll9028fn_u)/l50535385 (93)
with truncation error
~ 2802 f (11 Sf
a —\X(Xn) _ hllz' 8027 Ly(l ) 4 OF (10)\
. 182900492775 | Al
- i 2 LN 2
1663988 (9 f . (9) _ fof) y(9)*;
a0okaTas09 1 3y T oyl ¢
2 3
42500 of of y(8) _ (§§: (8))
73672881 l3ay" ~ dy Loyl Y
CoNe 3 NI ;
R SEPY-3- SNO -« FEN O = 3- SO}
10557027 | 3y oy ay” 7 oy 9 i

+ o) | (54)
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and

Vo1/2 = (-6125y, _, - 36Ty, , + 9261y, , + 2075y, ,)/1536

+ h(1225fn_l + 3675fn_2 + 2205fn_3 + l75fn_u)/512 (95)

Vooapy = (BBIBNToy , + Wa92239T5Y, p - 10270TT9T5y,,_, - 232028270y, )

/74448896

+ h(72817920fn_l/2 - 31&524875fn_l - 1207u78475fn_2

- 7372615955 5 - 587133115% ) )/Thih8856 (%6)
§_ = (-o9Th202ky . - 45909828y, + 123367176yn_3 + 27180523y, ), )/48958KT
+ h(1&8897792%_1/1+ - 239486976fn_l/2 + 1662170kk0f | + 518597h2k0L
+ 30563462167, . + 2402661881 | )/171354645 (97)
;n = (8kok8BOy +‘l&82624yn_2 + u77uo8yn_3 + 30127y, )/10485039

+ h(3u2709290fn + 1:L91182336fn_lﬂL + 1372225536fn_l/2 + 1575099680fn_l |

+ A508816u0fn_2 + 75396381+fn_3 + 2&5623hfn_u)/4036740015 (98)

with truncation error



~ 1 ' e
Fo-y(x) =n 1{__ 36923 &,m) _ 1 82,000
Wi | 322939201200 dy
. 2
L 29 (¥, (9) [l (o)
3690733728 | 3y" by
L o815 137 3z (8) _ a2 (8)
1230244576 3y oy oyl ¢

7 ] E s ’2.» /& >3- 2
+ 1209 (2 _O,_ O 2 fy<8> _ o _3 }3 y(8>
55920208 | dy oy ‘ oy 7

O<h12)

+

Numerical Examples

4

As an illustrabion of the use of the method given by (70), (T71),

(72), (73) five equations have been integrated from x_ =0 to X = 40

by this method and by the fourth order Runge-Kutta method.

Using step

sizes k =1/2, 1/h, 1/8, 1/16, 1/32, 1/6k, 1/128 each equation was

integrated by the two methods and the greatest of the errors produced at

x =1, 2, ..., 40 for each method were compared.

For a given equation and

step size let E denote the maximum error for the new method divided by

the maximum error for the Runge-Kutta method.
as a function of h for each of the equations.

were given by

In figure 4, E

The five equations used

is plotted

(99)
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vy=y , v =1 . (100)
&'=' = ’ yo‘—"l‘L ; (lOl)
x+2 :
v = ycosx v, =1 5 (102)
y=-y+2sinx , y =-1 ) (103)
y=-y+10sin 3x , y = -3 . (104)
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R = 1 contours for k = 3, 4, 5, 6, 7, 8.
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