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ABSTRACT 

We discuss the properties of the 15-dimensional SC(h) supermultiplet 

of negative parity excited states of the A = 4 system. This multiplet 

consists of the electric dipole resonance and its spin-isospin analogues. 

The position of the "center-of-gravity" of this supermultiplet is determined 

by the Wigner and Majorana components of the nucleon-nucleon force while the 

splittings within the supermultiplet are due to the spin dependent parts of 

the force. We calculate the energies and state vectors of these levels with- 

in the framework of the shell model after isolating the center-of-mass motion 

and assuring ourselves that we are dejling with proper intrinsic excitations 

of the system. We compute the position of the"center-of-gravity" of the 

supermultiplet and the splittings within it using both a Kurath force and a 

force taken from low energy nucleon-nucleon scattering. The results are 

compared with some recent experimental findings concerning these levels. 
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Among the very light nuclei, He* is the one with the highest symmetry. 

This reflects itself not only in the quantum numbers characterizing the ground 

state of He* but also in its exceptional stability: The lowest ionization 

energy for He4 is the threshold energy 19.813 MeV for the reaction 

He4 -+ H3 + p, and no bound states below this energy are known. 

In the past few years, several unbound excited states in the A=4 

nuclei have been identified. These include a O+T=O state at 20.1 MeV 1,2,3 

and a group of negative parity states in H4, He4 and Li4 at energies 

between 20 MeV and 30 MeV 4,576 above the ground state of He4. The latter 

turn out to have a particularly simple sk-ucture and their analysis is the 

subject of the present paper. 

The double magic ground state of He4 is assigned the quantum numbers 

Td) S=O J%O+ . To the extent that the nuclear forces are dominated by central 

(Wigner) and space-exchange (Majorana) forces, this state belongs to the 

identity (i.e. [ll) representation of su( 4) in Wigner's supermultiplet 

theory.7 The negative parity excited states belong then7 to the [151 

dimensional representation of SU(4), and they include among them also the 

giant dipole resonance. The C(2T-tl) @ (2S+l) 1 content of this representation 

is [3 @ 11 @ [l @ 31 @ [3 @ 31 and therefore the [151 representation 

contains the states in Table 1. To the extent that one can neglect the spin- 

dependent forces, these states should appear as a degenerate supermultiplet 

at the energy of the giant electric dipole resonance. Just as the giant 

electric dipole resonance may be thought of as the oscillation of the protons 

against the neutrons, the other states may be regarded roughly as oscillations 
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of protons with spin up and neutrons with spin down against protons with 

spin down and neutrons with spin up etc. 7 

The spin-dependent forces which will break the degeneracy of this 

supermultiplet are the spin-orbit force, the difference in the triplet and 

singlet central forces, and the tensor force. The p3/2 - p1/;2 spin-orbit 

splitting is known from n-a and p-a scattering to be of the order of 

3-4 MeV. The difference in the triplet and singlet potentials gives rise 

to only a 2 MeV difference in the binding energy of the two-nucleon system. 

The spin-dependent splittings are therefore expected to produce a nf%ne 

structure" of a few MeV in the supermultiplet. The beauty of the a- 

particle is that the system is so simple that it only depends on a few 

parameters of the nucleon-nucleon force , yet the spectrum is rich enough 

that the contribution of all the different spin components of that force can 

be separated by looking at the right combination of level splittings. 

One of the problems with doing spectroscopy in the few-nucleon system 

is that of treating the center-of-mass correctly. Failure to take proper 

account of the center-of-mass motion may mix spurious center-of-mass exci- 

tations into internal excitations thus preventing direct meaningful comparison 

with experiment. 

If a nucleus is described by a shell model and its ground state has 

T=O and S=O, then all states which do not affect the intrinsic structure 

and involve only center-of-mass excitations must have the same values of 

T=O and S=O. They all belong, therefore, to the [ll representation of 

su( 4) . To the extent that the center-of-mass motion is separable, as is the 

4 
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case for a shell model with harmonic oscillator central potential, we are 

therefore sure to be dealing with pure intrinsic excitations if we concentrate 

on the lowest states belonging for instance to the [151 representation of 
Put more 

SU(4).-/simply we can say that if we study the states 3Po 1,2 , T=O together 7 
with the T=l states which are members of the [151 supermultiplet as indicated 

by Table 1, we can be sure we have no spurious center-of-mass excitation 

mixed in. The latter will show up in the 'PI T=O state. 

To make a detailed calculation of the spectrum we shall assign shell- 

model configurations to the states involved. Instead of dealing with a 

free He4 nucleus, we bind it with a potential U(X) around the point 

X=0 where X, = i [zc~+x~+~~+~~] is the center-of-mass coordinate. This does 

not change the spectrum of intrinsic excitations, but superimposes on it a 

superfluous discrete spectrum of center-of-mass excitations in the potential 

The handling of this modified Hamiltonian is simplified greatly, as 

was pointed out by Lipkin, 8 if U(X) is a harmonic oscillator potential. 

Because of the identity 

the effect of binding the center-of-mass 
7 

“-c-x, 2 ?I $z - 
i#j i 1 A 

with a harmonic oscillator potential 

u(x) = $ A14!J”h2 is equivalent to that of binding each one of the particles P-P- 

with a harmonic potential and modifying the interparticle inter- 

action by the addition of - g (2pj". From now on we shall therefore 
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confine our considerations to He4 whose center-of-mass is bound by the 

harmonic potential. Our Hamiltonian is therefore 

H"=CT(i)+g C V(ij) + U(X) 
if 3 

where 

= Ho + H1 

Ho = C T(i) + $ Nn2x: 
i 

H1 = v(ij) 

The ground state of He4 is represented by the complete occupation of the 

lowest states in the harmonic oscillator, i.e. by l(lsl)* T=O, JAI), or in 
2 

SU(4) notation by I&J4 [ll). T o obtain a negative parity excited state we 

have to excite the configuration (ls)3(lp) at i zeroth order excitation 

energy of ti. Other configurations of the same parity lie at an excitation 

of at least 3hu.! and will be neglected. To classify the spin-isospin states 

we must combine a particle which belongs to the representation [4] of SU(4) 

with a hole which belongs to the representation [4-l. This product can be 

reduced according to the rule 

4@'4=1@15. 

By our previous discussion, we can be sure we are dealing with intrinsic 

excitations if we confine ourselves to the [15] representation. If we look 

(1) 

(2) 

(3) 

at the T=O states in Table 1, we see that the states belonging to [15] are 

pure L-S configurations: 
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l(s3p); 3Po I 2) T=O 
7 7 

If we look at the T=l states, then the O- and 2- are simultaneously 

pure L-S and pure j-j since the wave func;tions are identical in the two 

coupling schemes in this case 

l(s3P); “Ps) = 1(S+)-l~3/2; 2) and l(s3p); "po) = l(sh)-lp+; 0) (4) 

Thus the only case where the intrinsic states.af(.s3p) are not uniquely 

determined by T and J is in the T=l, Jr=l- states where there are two 

independent states available 

l(s3p); 3P1) and l(s3p); lpi) 

or T=l 

I( sQ-1P3/2; i) and I( s+)-l%; i) 

Suppose we concentrate on the Wigner and Majorana parts of the two- 

nucleon interaction and try and determine the position of the 'center of 

gravity" of the [15 1 supermultiplet. We note that the extra term in the two- 
1402 nucleon potential in Eq. (3), -C -2~ (x,i-zj)27 coming from binding the 

center-of-mass in an oscillator potential, is a pure Wigner force. It can 

not therefore contribute to the splittings within the supermultiplet, but only 

to the position of its 'center of gravity". To determine its effect on the 

intrinsic excitation energy of the supermiltiplet we must calculate 

$151 3 E[151-E[11 = x(s)3p~151,~~~(s)3p~151) - ((s)4~11]fi~(s)4~ll) . 
E 

(5) 
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If the wave functions in (5) were exact eigenfunctions of the 

4151 Hamiltonian (l), then the energy difference e in Eq. (5) would have 

been independent of cu, since CD affects only the center-of-mass motion, and 

by our previous argument the energies E [ll and E[15' both correspond to 

the lowest center-of-mass energy +L They differ from each other only 

in intrinsic excitation. 

Since, however, we shall be taking for the states in (5) only the 

zeroth order, shell model, wave functions, [i.e. eigenfunctions of H_ as 
” 

defined in Eq. (7) below] it is no longer obvious that 

property, and it is worthwhile to devote a few lines to 

415 1 dependence of e on u) in this approximation. To 

clearer we shall consider the Hamiltonian (l), i.e. 

$15 1 still has this 

the nature of the 

make this discussion 

Ih2 E = c [T(i) + 4 ~3~~1 + =$ C [V(ij) - 2~ (~~~i-z~)~l = 
$4 

=CTi++ C V(ij) + $- A DQ2 X2 
ifj 

and take its matrix elements with wave functions generated by the Hamiltonian 

Ho = C[T(i) + -$-I%$ x:1 

where w may be different from CD. H can also be written in the form 0 0 
2 

Ho = CT(i) + 4 
F ij 

and its eigenfunctions thus separate into a product of an intrinsic wave 

(6) 

(7) 

(8) 

function and a center-of-mass wave function. Since the states Is”[~l) and 
4 
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l(~)~p[151), both involve the center-of-mass motion in its lowest state we 

have (the index >. indicates that the expectation value is to be taken with 

eigenstates of (8)): 

(s%1@im~ x2 ~s4[11), = 

= W3P[153~~~~ x2~(s)3pc151)o = -$ - 2 m. 

Using Eq. (9) we now find easily that 

((~)~p[151(~l(s)~p[l51)~ = ((~)~p[l511H 

and 

b4 '[ll/i+4[11)o = (s4[1]1Hls4 

hence 

$51 [151 =E = ((43~[151 ]H]( ~)~p[15 

( 43p[15 

(9) 

> o - (~~[111Hls~[l1)~ 

415 1 The expression (12) for E is therefore independent of the potential U(X) 

which was introduced to "tie' the nuclear center of mass. This is, of course, 

due to the fact that the wave functions we have used are separable into center- 

of-mass and intrinsic coordinates, and their center-of-mass part is the same 

in both (s~[~I)~ and in ](~)~p[l51), . 

Our result (12) also indicates what should be the value chosen for 

(12) 

w 0 ' The essence of our approxima,tion lies in limiting ourselves to just one 

configuration for the gound state and one for the excited supermultiplet. 

Both configurations should be derived from the same central potential in order 
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for (12) to be valid. The state ls4[11)o should thus be chosen to describe 

as well as possible the ground state of He4. It is therefore reasonable to, 

assume that LU 0 should be chosen so as to reproduce as well as possible 

some integral property of the ground state of He4. This can be chosen to be 

the Coulomb energy or the electron scattering form factor. The corresponding 

values of u) 0 are given in Table 2 where we define & = gosc . (The . 
Y12 usual oscillator parameter is defined as - 
Mb2 = ~~osc ., therefore b = j2b) 

We shall now derive (12) using the standard shell model methods. This 

will give us an opportunity to develop also the formalism required for the 

evaluation of the "fine structure" within the [15] supermultiplet. 

Let us first construct the expressions for the energy keeping only the 

Wigner and Majorona parts of the force. We first define a particle-hole 

creation operator 

f+(LST)=X (&nllOml [lOLM )(1m ?rn I1 2 L 2 52 sp 2 &3M 2 s )(Lm Lrn 2 mRmsmt t,2 t2 1" 2 -&MT) 2 . 

a+11 1 2-5 mllmsImtl b+11 Q2-5 mp2ms2mt2 

03) 

where a + creates a particle in the lp shell and bS creates a hole in 

the 1s shell. 11 We now construct an LS coupling excited state by defining: 

'ILST) = z'(LST) 1G) where 1G) is the closed (1~)~ shell ground state. If 

we take matrix elements of [E, ~+(LST)I between [IST) and [G) we get the 

excitation energy of the state ILST). We can also explicitly evaluate the 

commutator and keep those terms which will contribute to the matrix element. 
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This is just.the Tamm-Dancoff approximation and leads to the eigenvalue equation 12 

[Fp -Eh s - ELST + ;py;s 1 = 0 ; (14) 

13 where the Hartree-Fock single-particle energies are given by 

eP 
= go;(l + $1 

0 

+C (2L'+l)(2St+l)(2T'+l)' 
L'S'T' 3.2.2 ~iplsL'I~~lPisL')o-(-l)S'+T'~ipLsL' Iv"~l,slPL')o 

(15) 

+C (2L'+l)(2St+l)(2T'+l) 
Tlolmf 1.2.2 (id.sLf Iv"lisisLt)o(i-(;l)S'+T') 

and the particle-hole interaction is 

IipisLt)o-48 8 .(-1)1+o-L'(b153~' 
SOT0 

I~b.hNo (17) 

06) 

If we confine ourselves just to the states in the [151 representation then 

%O%O s 0 and the last term in (12) does not contribute. 

It is a simple matter to write the matrix elements of 7 in terms of 

Talmi integrals and we arrive at 
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where the Talmi integrals are defined by 

Ip ‘F*j 
6 

m 

r2P+? V(&r)e -?dr . 

We note that only relative s- and p-states in the two-nucleon interaction 

contribute to our problem. Combining these results we find 

$15 1 
ps;ps = - $o+?,) 

Let us now concentrate on the contribution of U(X) to E [151 . Let 

us write 

where the second contribution comes from the additional interaction potential 

in Eq. (3). We find 

cm IO = - g,.,g 
030 

(19) 

ITP-193 



13 

and therefore 

$51 =_1 
cm 2+530$ (0 

+ &310Cm + 511Cm)-310Cm - ~(IoCm+IICm) = 0 

This is equivalent to our result (12). We can therefore finally write 

( Ep- ES - P51 + v;;lj;&, = 0 

where now 

EP = (iplTllp)o + 
7 
L'S'T' 

~(2L'+l)~~~1:1)(2Tf+1) 

UlplsL ~vjlplsL')o - (-l)S'+T'(lplsL' Iv/lslpL')ol 

(ls]Tjl~)~ +I 
(2L'+l)(2S'+l)(2Tf+l) E = 

S 1.2.2 
L'S'T' 

p51 
ps'ps = - (lslpL~vjlslpL)o . 

These are just the equations one would write down in the shell model without 

ever worrying about the center-of-mass problem. They are true, however, only 

if we use harmonic oscillator wave functions and consider states from whose 

symmetry we can conclude that they involve the center-of-mass motion in its 

lowest state. 

The next question is how to determine E -E . The usual method is to Ps 
take the particle-hole energies from neighboring nuclei. If we do this we 

(21) 

(22) 

(23) 

(24)~ 
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14 
have 

Ep-ES = [Mlp(He5) - (M(He4) -I- M(n))] - [M(He*) - (M(Hes) + M(n))) 

2 + 2MeV - L-20.6 MeVl = + 22.6 MeV 

where the first term involves an estimate of where the lp state lies 

between the lp 
3/2 

and lp states in He'. 
/ 

The result (25) agrees 
12 

fairly well with that one would get by merely taking the harmonic oscillator 

spacing ignoring v (see Table 2): 

ep-ES 2uo =18 MeV (Coulomb energies) 

21.8 MeV (Electron scattering) 

but we see there is some ambiguity about what we mean by particle-hole 

energies in such a light system. We also see that v [151 
Ps;Ps 

- the particle-hole 

interaction - is repulsive and moves the "center-of-gravity" of the super- 

multiplet, e [151 , to higher energies. 

Before attempting to calculate this let us formulate the problem of 

determining the splittings within the supermultiplets. To get the splitting 

we can simply replace 

?(ij) + V(ij) 

since they differ by a Wigner force and we know from the supermultiplet 

theory that this cannot constribute to the splittings. We introduce for 

convenience the jj-coupling particle-hole creation operators 

(25) 
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i: (lpj,ls2 ) f Z(j) EC (jmj 
J!!2 2 JT 1 

Smj~/j&JMJ)($mt~t 
2 

I%Y$J)a;j;mjmt b&.;m. m 
m3mt r 

1 1 Jp t2 

and look for excited states of the form 

Except for the T=l, Jn=l- states there will only be one term in the sum 

(27) for any given value of J and T since, for the T=O, Jr=l' state 

we must take the correct combination of states to have a pure "P-. The 1 

transformation coefficients in this case are just the 9-j symbols (we 

couple (sR)j) 

s 1-j 
P3/2,a 

p3,2s*1- ) 

Linearizing the equations of motion in the same way as before we 

arrive at the equation 

where s- and eC- are again the single-particle single-hole energies. 
2 OL 2 

The particle-hole interaction iS given by 14 

(2J'+l)('T'+l) '(Pj's~J'T' IVIPjsq 
5' T' 

(26) 

(27) 

(28) 

"T' ) 0 

Vls4PjJ'T')o (29) 
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Equation (29) allows us to express the particle-hole interaction in terms of 

matrix elements of the particle-particle,interactions. 

of coefficients -(2J'+1)(2T'+l) 

These relations can also be derived using fractional parentage coef- 

ficients. 15 If we are only interested in the splittings we obtain 

where the particle-particle matrix elements Vj(T'J') are the same as in 

Eq. (29). Equation (30) again expresses the particle-hole energies in terms 

of the particle-particle energies. The coefficients giving one in term of 

the other (Table 4) differ from those of Table 3, because the energies are 

calculated with respect to a different zero point. If we include the Hartree- 

Fock energy of the p. 
J 

particle in the interaction matrix rather than in the 

configuration energies we obviously change nothing. This energy is given by 

v(pj)H-F = 

J'T' 
c 
(pjs+J'T' IVJP~~+J'T')~-(-~) Pi-J~(,,)h!?T 

(pjs+J'T' j+'+pjJ'T' > 0 3 
(31) 

or writing it out explicitly we have 

) 
V(P$) 

H-F = + 
i 
v(o-,o) + 3v(l-,o) + 3v(o-,l) -I- 9v(l^,l) 

I 

v(P3/2)H-F = 8' 
c 

3v(l-,0) + 5v(2-,O) + 9v(l-,l) + 15v(2-,l) ? 
I 

Adding this matrix of coefficients to those of Table 3 we get Table 4. 

(30) 
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We proceed now to write the particle-particle matrix elements in terms 

of Talmi integrals. Let us assume a nucleon-nucleon interaction of the form 

V( r> = ( aw+aMPEJfasPo+atP7)Vo12) + J( r12) (S 0 L) ( bo+btPT) 

where P M, a and P7 are the space, P spin, and isospin exchange operators 

and SOL is the tensor operator S = [a(l) oo(2) 12M , L = [r12ar1212M . 
7 

(We can easily generalize our results to include different radial dependences 

for the, forces by letting (a,+%+ ---)V + (awVw+s?+ ---) at the end.) 

We first go over to L-S coupling. We have 

(pj,~+J'T'IVl~js+J'T')o - (-1) 
$+j+J'(-l)&-$+T' 

(pj,sgJ’T’ (V\~+P~J'T')~ 

+ aT( -l)l+T’ )($(IO+Il) - (-l)s+T'$(Io-I1)) 

+6-3. (bo+b7)(-l)J'g'; :J' 2raT',lT 

where IT = (lpl IJ(r)[rOr12111p) is the matrix element of the radial part 

of the tensor force in a relative lp state. We note that since the tensor 

force vanishes both for S=O and in a relative 1=0 state, we can only have 

a contribution from the tensor force in an L=l, S=l, T=l state. Writing 

these equations out we find for the particle-particle matrix elements 

(32) 

(33) 
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v&O-O) = bw+~+as-at)Io 

vg(O-1) = (aw-k+as+at)I1 + q(bo+bt)IT 

vg(i-o) = g (aw+aM+as-at)Io-+ $aw-aM-as-a& 

vM(l-l) = $ (aw+aM-as+at)Io + $(aw-aM+as+at)Il - q(b;+b$T 

V~ 92(1-O) = $ (aw+s+as-at)Io + $(aw-yps-at)I1 

V% $2-0) = (aw+aM+as-at)Io 

'3 $(1-l) = 5(aw+aM-as+at)Io + $(a;-aM+as+at)I1 - -$boibt)IT 

V~ 3(2-1) = (aw-aM+as+at)I1 + 
2z 

$$ bo+bt )IT 

"3 2' 1-o>= - 3 fi rjaw+~+as-at)Io-(aw-~-as-at)I1] 

6 
V+ $1-1) = 3 (aw+aM-as+at)Io - bw-aM+as+a.+ + +j(bo+bt)IT 

We can now use our coefficients to get the particle-hole energies (we are 

only interested here in splittings within the 

the coefficients in Table 4). 

Particle-Hole energies (we define bo+bT z b 

enters our results): 

El51 supermultiplet so we use 

since only this combination 

:+(0-O) = (aw+aM+as-at)Io + (2aw-2aM+as+at)11 + 6bI T 

E&(1-0) = $(5aw+5s+2as -2at)Io + $2aw-2aM+as+at)11 2 - 6 2 TbIT 

6 E&(0-1) = (aw+%)Io + 2(aw-aM+as+at)I1 + TbIT 
2 

E&(1-1) = (3aw+3aM-as+at) $I0 + $ (6aw-6aM+5as+5at)Il - 6 2 ybIT 
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E 
4 

(1-o) = $7aw+7aM+as-at)Io + $2aw-2aM+as+at)11 - 6 
TblT 

E;i(2-0) = (aw+aMas-at)Io + (2aw-2a$as+at)11 + 
2 

6 Q( 1’1) = $( 3aw+3s-2as+2at)Io +- $( 6aw-6s+4as+4at)11 - gbIT 
2 

J;; E3(2-1) = (aw+s)Io + 2(aw-s+as+at)I1 + sbIT 
2 

fi fi v+ +(1-O) = $4aw+4aM-2as+2at)Io + T (-4aw+4s-2as-2at)Ii + FbI, 

45 56 
o-3 t s (a +a >I1 + -f@ IT 

where V1 3 are the off-diagonal elements of v 
52 

in the particle-hole configur- 

ation. 

We still have to pick out the correct combination for the Jr=l-, T=O 

state corresponding to the =Pp We use 

and after a little algebra arrive at 

E3,pT(l-,o) = (aw+~-kas-at)Io + (2aw-2a$as+at)11 - $blT ’ 1 
We are now in a position to draw several.interesting conclusions about the 

splittings within the supermultiplet. 

i) If we look at the splitting of the O- and 2- states for both T4 and 

T=l we find 

E(O-$1 - E(2-,O) = & 6bIT 

E(O-,l) - E(2-,l) = 3 61, 

(34) 

(35) 

(36) 
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Therefore none of the central forces contribute to this splitting. This can 

be understood very easily as this splitting must be due to the difference 

between the interaction of the p 
ii 

particle in the J=O- state with the 

( S&J3 
2 

configuration and that of the pS particle in the J=2- state with 

the same configuration. neglecting differences in the radial wave function 

for ~1 3 
and pa , such a difference in the interaction can result only from 

2 
spin dependent forces. However the spin G+ of the p-particle always sees 

a saturated pair of spins 2x and 0 -2 of the unlike particles in the s- 

orbit, and as far as the spin of the like particle s is concerned, it is 

parallel to & both for J=2- and for J=O-, as can be seen from Fig. 1. 

Thus the central spin-dependent interaction of the p-particle with the 

w= is the same for both J=O- and J=2- and does not lead to an additional 
3 

splitting between them. 

There is one effect we have not yet included namely that it is known 

that the pS and p1 
T 

levels are split by a single particle spin-orbit force. 
2 

If we go back to our Hartree-Fock single-particle energies we see that with 

the two-particle force we have assumed in Eq. (32) we have 

V(P$) H-F= v(p$ '1 
2 

H-F= $(aw+aM)Io + $5aw-5aM+4as+4at)Il 

and we cannot explain this splitting within the present approximation. We 

will therefore simply add an emperical single-particle spin-orbit splitting 

in our single-particle configuration energies, and define 

(371 
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We can either take this value from p-a and n-Q: scattering to be 

E : 4 MeVt (p-a and n-C1 scattering) 

or use E as a parameter to be determined from the splittings within the 

supermultiplet. The spin-orbit splitting may come from the spin-orbit part 

of the nucleon-nucleon interaction or from second order effects of the tensor 

force. In any event, it is a quantity which we will not attempt to calculate 

in the present approximation. Since the O- and 2- states are pure j-j 

configurations, we can immediately include E and obtain, instead of (36), 

E(O-,0) - E(2-,O) = E + +$ebIT 

E(O-,l) - E(2-,l) = E + $,&IT 
(39) 

ii) If we look at the T=O splittings, we just have to compute the energy 

splittings within the triplet 3P J . From the above we get 

@O-,0) - E(l-,O) = $ E + ; JjbIT 

E(l-,O) - E(2-,O) = $ e - f fibIT . 

Again the central forces do not contribute to these splittings, the effect 

being entirely due to the single-particle spin-orbit interaction and to the 

tensor force. The former can be evaluated directly from the fact that it 

involves the scalar product of two vectors, 16 leading, in the absence of 

tensor forces, to: 

E(2-0) - @ l-O) = s = 2 
E(l-0) - E(O-0) 2-O if IT=0 (41) 
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Combining the results of i) and ii) we see that we have three independent 

splittings in terms of the two parameters e and b1 T' The contributions of 

these two quantities can therefore be determined and the consistency of the 

whole picture can be checked, by comparing (39) and (40) with experiment. 

iii) The splitting between the isospin multiplets can'be obtained from the 

above as 

E(2-,1 ,) - E(2-,O) = (a pQIo + bs+ath - 5 GbIT . 

It is independent of the Wigner and Majorana forces, as it must be, and is 

also independent of e since both states in (42) are pure pS configurations. 
2 

iv) In the limit of pure j-j coupling, the T=l spectrum splits into two 

"3 
doublets. It is known 17 that the lowest member of such doublets has even 

or odd J according to whether the parity of the configuration is negative 

or positive. The splittings of these doublets is evidently given by 

(42) 

Es( 1-J) 
2 

- ES(2-,l) = $(at-as)Io - $(as+at)I1 - hebIT 
2 

E&(1-,1) - E+(O-,l) = $at-as)Io - $(as+at)I1 - $6bIT 

(J-J (43) 
coupling). 

With no tensor force these splittings would simply be in the ratio of 2:l. 

For the JT=l-, T=l states, however, we must actually diagonalize the 

interaction to find the correct state vectors. From Eq. (28) we see that 

we must solve the two equations 

+ E&(1-,1) - ~~ 'l) CX$-?~ + v+(l-,l)c~+ I'-@  = 0 _ 
-2 

v+-,l) CL$-~~ + (- $ E = es + E$l-,l) - sl-'1) c$-~' = 0 
2- 

( 44) 
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in order to get the splittings and the coefficients of the state vectors 

ai- 91 I',1 and ~13 . 
5 

Note that vs 5 (1-J) = "$ 2 3 (l-,1) since the matrix 
2- 

elements of the potential are real, and that again, only the spin dependent 

parts of the interaction enter into this calculation. 
I',1 If we denote the two new eigenvalues by e:-+ we see that 

;(s+'-,' + E:-,') =; + E&-,1) + j e - 2ss 
2 3 

and the center-of-gravity of the two J%l- , T=l levels is not affected by 

the '"mixing" introduced by v1 3 . 
SE 

v) "Center-of-Gravity" Theorem. 

From Eq. (21) we have 

$51 = 
cp-'s 

[151 
+ vps;ps ' 

This is the energy of the supermultiplet before the spin dependent forces 

are turned on. We can ask how s Cl53 is related to the actual spectrum, 

that is, do the spin dependent forces shift the position of the "center-of- 

gravity" of the super-multiple-t ? pet us define this new quantity by 

SGG = C[151(2J+l)(2T+l)EJT 
C115'(2J+l)(2T+l) 

where EJT is the actual energy of the level J,T. If the spin-orbit force 

is of the form Hs o = -E(r) 1-s then it is a simple matter to see that . . 
(note that Eii"' = 0): 

$51 (2J+1)(2T+l) cFo z 0 l 

(45) 

(46) 

(47) 

(W 
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If we now take the energy shifts obtained from Eq.(29) and sum them over the 

supermultiplet we obtain 

%G = EP - cs + 
. 

c1151(2J+l)(2T+l) - 

In the sum we have to take the correct combination of matrix elements for 

the ,3,, T=O state (see Eq. (35)) and we can forget the configuration mix- 

ing in the l-, T=l states since the'benter-of-gravity" of these states is 

unchanged by the mixing as we saw in (45). Carrying out the sum we arrive at 

"CG = "P-'s - c 
-$aw+aM)Io + $(aw-aM)I1 

3 " 
- $as+at)I1 

= eP-cs 
-t vr151 '(a +a )I1 = c'15'- 2(a +a )I ps;ps - 7 s t 5 s t 1 

We conclude therefore that the central spin dependent forces give rise an 
l 

additional shift in position of the center-of-gravity beyond that given by 

the supermultiplet theory according to Eq. (46). 

Numerical Results: 

We shall calculate the spectra of He4 with three different nucleon- 

nucleon potentials. 18 The first is a potential of the type used by Kurath 

in his systematic attempt to fit the spectra of light nuclei in an intermediate 

coupling calculation. This potential is of the form 

V(r) = - V. [PM + + P J S- 
-v 

0 111 

( w 

( 50) 

(51) 

We give the numerical value of the parameters we use in Table 5. The second 
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and third potentials are taken from fitting low-energy nucleon-nucleon scatter- 

ing. 19 We chose a Serber force (which fits the data up to about 90 MeV). Note 

that if we really have a Serber force then the tensor force does not contribute 

to the splitting of the supermultiplet since we have shown that it can only 

contribute through the odd relative angular momentum states. We take 

V = [IV(r) j$l- gt1-02) + 3V(r) +(3+j~1-0~)1 $l+PM) 

which we can also write as 

v = + i "v+%)(l+PM) I f (3v-1v)(P0-P$ ( 
/ 

and calculate the energies using both a Yukawa and Exponential radial 

dependence. The parameters are also summarized in Treble ';. 

We can immediately evaluate the necessary Tslmi integrals, and the 

results are given in Table 6. (We use 2 = 1.95f.) 

Let us first concentrate on the splittings within the supermultiplet 

since these are really the quantities which we can calculate most reliably. 

The resulting spectrum with the Kurath force is shown in Fig. 2. The spin- 

orbit splitting was taken as 

E = 4- 3.2 MeV 

to fit the O- - 2- T=l separation in 44 Li . We therefore predict five 
c 6 

spacings. The experimental spectrum is shown in Fig. 3.'r'J7 The agreement 

is very satisfactory. We note that the l- and O-, T=l state have not 

been seen so far in He*, and these energies were taken from H" and Li4. 

The spectrum with the free Serber force depends on two parameters 

(52) 

(53) 

chosen to be positive: 
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aZ- ;(310-110) . 

We give the general spectrum in Fig. 4. (Recall that a Serber-tensor force 

does not contribute to the splittings.) The values of the parameter a 

which we get from T:Lble 6 are 

a = + 2.1~5 MeV (Yukawa) 

= + 2.90 MeV (Exponential) . 

The resulting spectra, again using 

g = + 3.2 MeV (Li") 

from the O--2- T=l splitting in Li", is given in Fig. 5. The Yukawa and 

Exponential potentials give almost identice. spectra and the results are 

very similar to those of the Kurath force, although somewhat closer to the 

experimental splittings. 

We can next ask what the prediction is for the position of the center- 

of-gravity of the supermultiplet. This dependends on the Wigner and Majorana 

parts of the force. There is some ambiguity in this calculation because of 

the difficulty of locating the unperturbed particle-hole energy E -es. We 
P 

summarize the results in Tuble 7. 
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The experimental value, using the Landd interval rule to locate the missing 

1- and O-, T=O states is 

e c.G. = + 25.8 MeV (experimental) . 

In all cases YU = 18.0 = s -6 
Ps 

gives too low a result and should probably 

be discounted. In the other cases the Kurath force does very well and the 

free force is 2-3 MeV too high. The free force also gives a result too high 

by l-2 MeV in the giant resonance region in CL2 and O1". It is difficult 

to draw any definite conclusions from this however since the levels we are 

discussing are not really bound states but broad continuum resonances. 

Finally we discuss electric dipole transitions from the T=l, l- 

states to the ground state. In the case of the Serber force the matrix 

equations (28) for the states T=l JT=l- are of the form 

[We have shifted our energy origin to simplify things. This does not change 

any results. A is the new eigenvalue. 1 

The eigenvalues are 

(56) 

and if we define the coupling parameter 

‘xz:aE: I 
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then the ratio of coefficients is 

Now electric dipole transitions to the ground state, can only take place 

from the llpl T=l) components of theses states. Using the above and 

Eq. (2'0 we can compute the ratio of the probabilities for finding the upper 

and lower J==l-, T=l states in a 'I~ configuration to be . 

This ratio has the following limiting values for pure L-.S or J-j coupling 

(j-j coupling) 

J. 
3 2 x? +m 

x 3 a; 2 
(L-S coupling) 

[.?I+ > is the upper state and I*-) .the lower state. As x -+ 0 the upper 

state becomes pure I(ls~)-l(lPl.)l-) 2 5 and the lower state pure I(l~$-~(lp~)l-) 
2 

1 and 2 is just the square of the ratio of the i"P ) content of these states. 1 
As x-+cc we have pure L-S coupling and the upper state becomes pure jlP ? 1 
while the lower state is Iz3p ) . Tlierefore El transitions from the lower 

1 
state are forbidden in this limit. The results for the free force are given 

in Ta.ble 8 which says that the upper ‘i?==l, l- state should have most af .l;he 
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El strength (phase'space only increases this ratio). Ti!is appears to be in 

contradiction with the eXperimer:tal results where the poa,k in the ph~t,~absorptf~n 

cross section is at the lower state. The only way out of this dilemma within 

the framework of the present calcula.tion is through the us::r3 of more c3mplicated 

forces. In the calculation which we have carried out, ;I and 'E can be 

tliought of as being determined experimentally from the observed spectrum and 

the above ratio is therefore fixed. '[The Kurath force igives the s:une results.] 

One must go farther an d include for example the two-b&j tensor ar!d spin-orbit 

forccz with the hope of improving the wave functions without drastically 

changing the spectrum. Cne would like to be closer to t2;e ;j+-,j ccupling 

limit for tllen I'(lP 14~~~)I"/l('P11P-: I2 - l/2 which is in agreement with 3. 
h :. 

the experiments. Since all the splittin@;;within the sup~rmultiplet come 

onl?r from the sgiil-dependent parts of the nucleon-nucleon force, these other 

cqmponents of the force may well play a non-negligible role even ti~ugh they 

enter only i.n rclativc p sta.tes . 

Conclusions --___ 

The negative parity excited states of 1;e 4 at n.n c_lxcitation erler5::; of 

about t%D arc described by excq)t:;~nally symmetric wave functions. l3~causc 

of this symmetry their spli.ttinr: cnn be due only to B part of the nucleon- 

nucleon intera,ction: W 'igner and Mn;ior,ana forces can lead to 113 splittirqs 

among these levels, and 0116; has to resort to spin dependent interactions to 

obtain the observed structure of the s"p 15 dimensional sup~5rmultiple-t.. 

Furthermore if we use harmonic oscillator wave functions as described before 

only two averages of the interaction come in - those take11 il. :L relative 
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s-state and relative' p-state. If we believe that the He4 structure is not 

too sensitive to off-energy shell matrix elements of the interaction and that 

only low relative energies play an important role there, a further simplifi- 

cation results. The low energy nucleon-nucleon scattering data is well 

accounted for by a Serber-type force, and this force leads to no interaction 

in relative p-state. We are then left with just one integral of the inter- 

action, in addition to the pz - p 
2 3 

splitting, which determines the structure 

of the configuration s3p. Hence the "selectivity" of these states as far 

as information on the nuclear force is concerned. 

The position of the known levels could be calculated to an accuracy 

which is an order of magnitude better than their widths. This was achieved 

by a calculation that assumed no width whatsoever. One would expect that 

energy shifts are less affected than widths of levels by small modifications 

of the wave functions. The observed widths of the levels indicates that a 

resonating nucleon is reflected ten or more times before it overcomes the 

centrifugal barrier and manages to escape from the excited He"; success of 

a bound state approximation is perhaps not unexpected. Still the fact that 

levels of different widths turn out to have equal shifts is surprising and 

may have interesting physics behind it. One is reminded that a similar 

situation exists in other nuclei as well as in elementary particle physics. 

The conclusion that the four I-multiplets in the SU(3) decuplet are equil 

distant in mass is basically a "bound state" approximation. Experimentally 

they are indeed found to be equidistant although one of them - the CL' - has 

practically a zero width, and the widths of the others vary wildly. The 
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understanding of these results may prove to be interesting, expecially if its 

seemingly general validity could be explained. 
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States in the [I51 SU(4) Supermultiplet [L-l]. 

L S Jr T 

1 .O 1- 1 
1 1 o-,1-,2- 0 
1 1 0-,1-,2- 1 
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TABLE 2 

Oscillator Parameters for He* 

Y12 - =+, 
Mb2 

Coulomb Energy 9 

10 
Electron Scattering 

ITP-193 

b 
2.1.5f 

1 l 95f 

cl! osc 
18.0 MeV 

21.8 MeV 
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TABU 3 

Matrix of coefficients to go from particle-particle (3%") to particle- 
u-w 

hole/interactions in He": -(2J'+1)(2T'+l) 

‘3 = P+ 

PjI = P+ 

‘j = %’ 
PjI = ps 

pj = P$ 

‘3’ 2 = Ps 

2K.l (o-,0) 
(O--P.) -l/4 

(Lo) w+ 

(0-4) 114 

(1-J) 44 

x (00 (0) (1-A (2-4) 

1 o-,0> 
-l/8 

318 

118 

-318 i 

(l-,0) (o-,1) (l-,1) 

,3/4 3/4- -914 

114 -314 -314 

-314 114 -3/4 

-l/4 -l/4 -l/4 

(2-A 
518 

118 

-5/8 

-l/8 

(1-A 
318 

-918 

l/8 

-3/8 

J'T' 
y b-,0> (1-A 

0-A -l/2 3/2 

WA l/2 112 

(2-J) 

-.15/8 

-318 

-518 

-118 
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Same as Table 3 only including the single-particle energy of Eq. 31. 

'3 = P$. (o-o) (l-o) (o-l) (l-l) 
\ 

Pjt = P$ (o-a) 0 312 312 0 

(1-o) l/2 1 0 3/2 

(o-1) l/2 0 1 3/2 

(l-l) 0 l/2 l/2 2 

‘j 2 
= P3 

'3' 2 
= Ps 

ITP-193 
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312 

514 
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TABLE 5 

Potential P,rnmeters 

Force Shape Vo(MeV) 

-Voe-ILr!.tr / 36 

ITP-193 

l.lW1) 

. '714 

0855 
1726 

l.kOc) 
1.506 



Talk. Integrds (i Z: 1.95f) 
(in MeV) 

Force 

Kur?,th -3 .R -9.2 -2.2 -.Ei 

Free (So:bc~~-Yukzwa) -14.5 -9.6 

-15.2 -9.4 
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Force 

Kurath 

TABLE 7 

Predictions for CC.-,. (all in MeV) 

Free (Serber-Yukawa) 6.0 0 

Free (Serber-Exponential) 

J51 
sP;sP 

-'2(a +a )I 5 t s 1 

+2.8 +*3 

6.1 0 

‘C.G. 

25.7 

24.9 

21.1 

28.6 

27.8 

24.0 

28.7 

27.9 

24.1 

(a) From neighboring nuclei (Eq. (25)). 

(b) From 3% as determined from electron scattering (Table 1). 

(c) From '3%~ as determined from Coulomb energies (Table 1). 
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Force 

TA.BLE 8 

15y Content of the J*=l', T=l States 

Free (Serber-Yukawa) -77 2.4 

Free (Serber-Exponential) -91 3.1 
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Fig. 1: 

Fi,g. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Structure of the J= = O- 7J and J = 2- levels. 

Splitting of the cl51 supermultiplet using the Kurath force. 

Experimental spectrum in the A = 4 system. 

General spectrum with a Serber force. 

Splitting of the 

force. 

[153 supermultiple t using the free Serber 
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