NON-COLLINEAR DIAGRAME AND THE JOHNSON-TTREIMAN RELATIONS*

by
H. Harari
Stanford Linear Accelerator Center, Stanford University, Stanford, Califorria
and
H. J. Lipkin
Argonne National Laboratory, Argonne, Illinois
and
Weizmann Institute of: Gcience, Rehovoth, Israel

(Submitted to Phrsical Review Letters)

[^0]if we assume that the differences between the elastic cross sections are dominated by the exchange of any system which belongs to an SU(3) octet, we obtain: ${ }^{5}$
\[

$$
\begin{equation*}
\left(K^{+} p \mid K^{+} p\right)-\left(K^{-} p \mid K^{-} p\right)=\left(K^{0} p \mid K^{0} p\right)-\left(\bar{K}^{0} p \mid \bar{K}^{0} p\right)+\left(\pi^{+} p \mid \pi^{+} p\right)-\left(\pi^{-} p \mid \pi^{-} p\right) \tag{2}
\end{equation*}
$$

\]

This is well satisfied by experiment. On the other hand, exact $\mathrm{SU}(3)$ predicts: $\in, 7$

$$
\begin{align*}
&\left(K^{+} p \mid K^{+} p\right)-\left(\pi^{+} p \mid \pi^{+} p\right)=\left(\pi^{+} p \mid K^{+} \Sigma^{+}\right) \tag{3}\\
&\left(K^{-} p \mid K^{-} p\right)-\left(\pi^{-} p \mid \pi^{-} p\right)=\left(K^{-} p \mid \pi^{-} \Sigma^{+}\right) \tag{4}\\
&\left(K^{+} p \mid K^{+} p\right)-\left(K^{-} p \mid K^{-} p\right)=\left(K^{-} p \mid K^{+} \Xi^{-}\right)+\frac{3}{2}\left(K^{-} p \mid \eta \Lambda\right)+ \\
&+\frac{\sqrt{3}}{2}\left(K^{-} p \mid \pi^{0}\right)+\frac{\sqrt{3}}{2}\left(K^{-} p \mid \pi^{0} \Lambda\right)+\frac{1}{2}\left(K^{-} p \mid \pi^{o} \Sigma^{0}\right) \tag{5}
\end{align*}
$$

These relations are not satisfied by the data. The inelastic amplitudes are negligible at high energies, whereas the differences between the elastic amplitudes are, in some cases, of the order of $15-20 \%$. It is, hence, clear that $S U(3)$ symmetry breaking is involved here. This does not mean, however, that it affects both sides of Eqs. (3)-(5). One oversimplified explanation for the discrepancy between Eqs. (3)-(5) and the data may be based on the assumption that the symmetry-breaking contributions somehow reduce the amplitudes of the inelastic processes and do not affect the differences between the elastic amplitudes. This is the only interpretation of Eqs. (3)-(5) which is consistent with the Johnson-Treiman relations as obtained from exact $\operatorname{sU}(6)_{W}$, and with the successful relation (2).

If we try to include an $\mathrm{SU}(3)$-octet symetry-breaking term in the matrix elements for the elastic processes we obtain no relations.

However, il: we restrict our discussion to energies which are high enourh su hat: all inelastic processes with one meson and one baryon in the final stabe are negligible, we ovtain from broken $S U(3)$, a Gell-Mann Okubo-typo relation:

$$
\begin{equation*}
2(K p \mid K p)+2(\overline{K p} \mid \bar{K} p)=(\pi p \mid \pi p)+3(\eta p \mid \eta p) \tag{6}
\end{equation*}
$$

($K \| \mid K_{p}$) is oither the $\left(K^{+} p \mid K^{+} p\right.$) or the ($K^{\circ} p \mid K^{\circ} p$) amplitude (these are equal in the absence of the charge exchange amplitudes); ($\overline{\mathrm{K}} \mathrm{p} \mid \overline{\mathrm{K}}_{\mathrm{p}}$) and ($\mu p / \pi p$) represcnt, respectively, elastic scattering amplitudes of any charged state of \bar{K} or π on protons. Equation (6) cannot be compared with experiment, as there is no way of measuring the $\eta-p$ scattering cross section.

We now turn our attention to the non-collinear terms which break SU(() W. For the forward elastic scattering processes appearing in the Johnou-l'reiman relations, the simplest non-colinear diagrams are those of two-meson exchange shown in Fig. 1. We now show thet the contribution of huso two-meson oxchange djagrams also satisfy the Johnson-Treiman relations if the constituent three-point vertex functions are invariant under $\operatorname{sU}(6) W^{\circ}$.

The Johnson-'treiman relations have two peculiar features which dietinguish them from other relations obtained from higher symmetries.

1. Mu mimentum liransfer for all amplitudes considered is rigorously zere.
wion whon the physical masses of the particles are used;
2. Mue linuar combinations of amplitudes which appear in the relations
are Women that there is only a single contribution in the -

 iunily:ij: of the iwo-meson exchange sraph.

We nomsidor the diagram as consisting of two four-point vertices ${ }^{5}$ as Andintul ju Fir. lo: a four-meson vertex, which we denote by M, and a 1.w-memol lwo-baryon vortex, which we denote by B. Because of the zero momentum Lransfor, each of two four-point vertices is collinear in a suitable Jorentz frame; namely the rest frame of the baryons for the $B-$ verlex and the rest frame of the initial and final mesons for the M-vertex.

W? lefine $\operatorname{su}(6)_{W}$ groups for each vertex, and denote them by $S(6)_{W}^{B}$ and su(6$)_{W}^{M}$. Thesu are defined to have the z-axis in the direction of the inlermedialn meson momenta in the rest frame of the initial baryon or initial meson respectively. Note that these two $S U(6)$ groups are different, and that; neither is the same as the one which is used normally to obtain the dohnson-Treiman relations. The latter is the group defined in thu rust frome of the baryons with the $z-a x i s$ in the direction of the initial and final meson momenta. If each of the four three-point vertices. is invariant separately under its own $S U(6)$ group, the B-vertex is seen to he invariant under $\operatorname{SU}(6)_{W}^{B}$ and the M-vertex under $\operatorname{SU}(6)_{W}^{M}$. However, therc is no $\mathrm{nJ}(0)_{W}$ group under which the entire diagram is invariant. Considur first the B-vertex and assume invariance under $\operatorname{sU}(6)_{W}^{B}$. The
 sonkotons ot $\mathcal{S U}(0)^{13} W^{\prime}$ We first examine the case where both are in 35 's. Who two mosons comple together to some linear combination of the repre-

 prasent in the conplime of the two mesons in the initial and final state i: not :imple because $\mathbf{S U (6)})^{\mathrm{W}}$ is rot conserved in the M-vertex. Even if we assume conservation of $\mathrm{SU}(6)_{W}^{M}$ in the M vertex, the classification of a riven two-meson state in $S U(6)_{W}^{\mathrm{M}}$ is different from the classification in
 In aj(5$)_{W}^{B}$ can contribute to the Johson-Treiman relations, namely 35 , at. and Fo. From the assumption of invariance of the M-vertex either untor oharge conjugation or under $\operatorname{SU}(6)_{W}^{M}$, it follows that the symmetric state of two exchanged mesons contributes equally to the elastic scattering amplitudes $(M B \mid M B)$ and $(\overline{M B} \mid \overline{M B})$. Those contributions cancel in the differences which appear in the Johnson-Treiman rolations. ${ }^{9}$

We rinte that invariance of the B-vertex under $\operatorname{SU}(6)_{W}^{B}$ requircs that the contributions of 280 and $\overline{280}$ vanish as these do not appear in the produt $0 \times$ We are therefore left with a pure 32 contribution. This menns a pure octel in $\operatorname{SU}(3)$, since the 35 contains only $\operatorname{SU}(3)$ octets and Eimples, and the SU(3) singlet contribution to the Johnson-Treiman relaLinn: (ancols if the M-vertex conserves $\operatorname{SU}(3)$.

These conclusions are unchanged if one of the exchanged mesons is a sinslet in $S U(6)$. The two-meson system then must be a 35 . If both mesins are singlets, the contributions to the Johnson-Treiman relations cancel.

We have now ustablished that the coupling of the B vertex in the $t-$ chame is puro in $\operatorname{SU}(6)_{W}^{B}$ and pure octet in $\operatorname{SU}(3)$. We now show that only he w-spinsinglet contributes. In the rest system of the baryons
all ine tour meson momonta lie in a plane, which we can call the yz-plane. Irvarinne of tho scotering amplitude under rotations and reflections requires inat it be invariarit under a reflection in this plane, or the equivalent combination of a space inversion and a 180° rotation about the x-axis. ${ }^{10}$ This transformation has been shown to be equivalent to a 180° W-apin rotation about the x-axis. ${ }^{11}$ The W-spin eigenstates with $W_{z}=0$ arw ojemshates af this tranformalion with the eigenvalue +1 if W is ever and -d if W is odd. Thus, even though W-spin is not conserved in the: ovorid i process, oven and odd eigenvalues of W are not mixed. If w: "hoose our z-axis in the direction of the initial and final meson momentia, bhese mesons arc in a state which is a mixture of W - 0 ani $W=2$ with no $W=1$ component. The $W=1$ component of the couplinp, of the two baryons therefore does not contribute to this ampliturd. Although the W-spin in this system is different from that used in $\mathrm{OU}(6)_{W}^{B}$, the difference in the baryon classification is only a rotation of the 2-axis, keepine the baryons at rest. Since the W-spin of a boryon at reat is the same as ils ordinary spin, the rotation cannot introduce a $W=1$ component. Imus only the $W=0$ component contributes to the amplitwhe in miv $(0)_{W}^{B}$.
"he dohnson-lmeiman relations now follow directly from the result thst the ondy nonvanishing contribution in the t-channel is an $S U(6)-35, S U(3)-$ odet and W-spin singlet. ${ }^{12}$ The coupling at the B-vertex is unique, under the assumption of $\mathrm{SU}(\mathrm{O})_{\mathrm{W}}^{\mathrm{B}}$ invariarce. The coupling at the M -vertex is unique, just from $S U(3)$, as the symmetric D-type coupling cancels out in Lhe dohson-Treiman relations and only the pure octet F remains.

[^1]
FOOTNOTES AND REFERENCES

1. K. Johnson and S. B. Treiman, Phys. Rev. Letters 14 , 189 (1965).
2. H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670 (1965).
3. The Johnson-Treiman relations were obtained from various versions of broken $U(6,6)$ and collinear $S U(6)_{\mathrm{W}}$ by: J. Charap and P. T. Matthews, Physics Letters 16, 95 (1965); R. F. Dashen and M. Gell-Mann, Physics Letters 17, 145 (1965) ; H. Harari and H. J. Lipkin, Phys. Rev., to be published. The explicit $S U(6)_{W}$ derivation can be obtained either by using $\operatorname{SU}(6)$ Clebsch-Gordan coefficients or by the method described in: II. Harari, to be published in the Proceedings of the High-Energy Physics Symposium, Boulder, Colorado, August 1965.
4. Note that differences between the total cross sections are related by the optical theorem to differences between the imaginary parts of the elastic amplitudes. These cannot be contributed by one particle exchange diagrams which are described by real amplitudes.
5. It was noted by R. F. Sawyer, Phys. Rev. Letters 14, 471 (1965), that if we assume the exchange of one octet vector-meson Regge trajectory we obtain Eq. (1), provided that the vector-nucleon coupling is pure F. It should also be remembered that the simplest one-vector exchange picture cannot contribute to differences between the imaginary parts of the amplitude.

い. H. Harari and H. J. Lipkin, Phys. Rev. Letters 13, 208 (1964).
' 7 . H. Harme H ,, be published irt the Proceedings of the Trieste Seminar. 190.
3. We dicregard the time orderings of the various three-point vertices. Whese are irrelevant in our treatment which is valid for all time raterings. He $S U(3)$ and $S U(6)$ couplings are described in the $t-$ कhmul as a convenient algebraic device. The t-channel couplings are related ti s-channel couplings by algebraic transformations which reverse signs of $\mathrm{SU}(3)$ and $\mathrm{SU}(6)$ quantum numbers but which do not change partioles into anti-particles or reverse momenta. Despite the comfusing use of the term "crossing" to describe these algebraic transformalions, they have nothing to do with crossing symmetry. Thus the initial and final baryon states are coupled together in $S U(6)_{W}$ as $\therefore \times \sqrt{0}$, but both states remain baryons. The $W-\operatorname{spin}$ of the $\overline{56}$ is related to the ordinary spin with the baryon phases, not the antibaryon phasce. Itre initial and final state mesons and the two ex"homind mosons are likewise coupled, and the term "state of the twome:on astom" is used loosely to decribe the couplings obtained, even though the tiwn mesons in the "system" do not exist at the same time.
3. An equivalent alternative argument is to note that the contributions al twomeson states which are eigenstates of C with the eigenvalue H cancol in the Jonnson-Treiman relations. These include $\pi^{\circ} \pi^{\circ}$, \#T, $\pi^{\circ} \eta, X^{\circ} X^{\circ}, X^{\circ} \pi^{\circ}, X^{\circ} \eta, \rho^{\circ} \rho^{\circ}, \rho^{\circ} \omega, \rho^{\circ} \Phi, \Phi \Phi, \Phi \omega$, and wo. The partinalar janear combination of two-meson states which contributes to the Whnson-freiman relation can be defined as

$$
\left|X>=V_{M}\right|(\bar{M}-\bar{M} M)>
$$

Wher V_{M} is the operator describing the action of the M-vertex furclion and $\mid M \bar{M}-\bar{M}>$ is the antisymmetric combination of the initial anl Inal mesoris which contributes to the Johnson-ireiman relations in Lhe t-channel. From the requirement that the exchanged meson state $\mid x>$ have vanishing components for all the $C=+1$ states described above, it follows that the expansion of $\mid x>$ in the eigenstates of $S U(6)_{W}$ contains only the antisymmetric multiplets $35_{F}, 280$ and $\overline{280}$. 10. Hhis transformation has been used by T. D. Lee and C. N. Yang, Phys. Kev. 104, 254 (1956); A. Bohr, Nuclear Physics 10, 486 (1959). For detailed discussion of the application of this transformation to W mpin see rep. 11.
11. H. J. Lipkin and S. Meshkov, to be published.
12. H. Harari, ref. 3 .

FIGURL' CAP'IION

1. 'I'wo-meson excharige diagrams.

FIG. 1

[^0]: *Work supported in part by the U. B. Atomic Energy Commission.

[^1]: :imilar arimmonts can bo applicd to a larger class of diagrame, am

 max . Lf, antisymmetry of the two moson coupling must be preserved. dhis ju: all inal $\mathrm{i}:$: remuimen.

