PARTICLE MASSES AND SU(6) SYMMETRY BREAKING*
 by
 H. Harari ${ }^{\dagger}$
 Stanford Linear Accelerator Center, Stanford University, Stanford, California
 M。A。Rashid
 Atomic Energy Centre, Lahore, Pakistan

ABSTRACT

The transformation properties of the mass-splitting strong interaction are discussed in the framework of the $\operatorname{SU}(6)$-scheme. Using the experimental mass values of the 56 baryons and the 35 mesons, the reduced matrix elements of all the possible mass tensor operators are calculated. It is found that the $\operatorname{sU}(3)$ symmetry breaking terms transform mainly as the 35 representation of $\operatorname{SU}(6)$ whereas the $\mathrm{SU}(3)$-conserving, $\mathrm{SU}(6)$-violating terms do not have simple transformation properties.
(Submitted to Physical Review)

[^0]
I. INTTRODUCTION

It is well known that an exact determination of the transformation properties of the symmetry breaking interactions is crucial for understanding the relevance of any given approximate symmetry to physical phenomena. An "alnost exact symnetry" like isotopic spin is usually capable of describing various properties of particles within a reasonable accuracy, and we do not have to worry about its symmetry breaking terms while dealing with ordinary strong interaction processes. However, when we discuss, for example, the $S U(3)$ symmetry, we must always consider symmetry breaking contributions. These contributions may turn out to be of the same order of magnitude as the $\operatorname{SU}(3)$-symmetric terms of the interaction. This is the case for the $\pi-\eta$ mass difference or for certain decays and scattering processes. The predictive power of the symmetry is, of course, reduced when non-symmetric terms are allowed but some results can still be obtained, using the well-known SU(3) transformation properties of the medium strong symmetry breaking interaction. ${ }^{l}$ The knowledge of these transformation properties is mainly based on the great success of the Gell-Mann-Okulo mass formula ${ }^{2}$ which is derived by neglecting all symmetry breaking contributions transforming like $\operatorname{SU}(3)$-representations which are higher than the octet. Similar assumptions concerming the $\operatorname{SU}(3)$ behaviour of the electromagnetic ${ }^{3}$ and weak interactions ${ }^{4}$ led to additional results which were found to be in good agreement with experiment.

The introduction of the $\operatorname{SU}(6)$ symmetry ${ }^{5}$ scheme led immediately to various suggestions of mass formulae for the known multiplets, and to other applications in which the $S U(6)$ transformation properties of the strong electromagnetic and weak symmetry breaking interactions were involved.

It is our purpose in this paper to explore further the problem of mass formulae in the framework of SU(6), trying to arrive at definite conclusions concerming the $S U(6)$ properties of the various symmetry breaking terms of the strong interactions.

It should be immediately noted that the significance of a given mass relation is closely related to the number of possible contributions to the symmetry breaking mechanism that are omitted from the final formula. It is generally true that all the masses of all states within a multiplet of a given group can be correctly expressed by a linear combination of all the allowed symmetry breaking terms for the given multiplet. A trivial example might illustrate this: Consider an $S U(3)$ triplet of quarks and assume that the mass operator transforms like a linear combination of all $I_{Z}=Y=O$ (but not necessarily $I=0$) components of all $S U(3)$ representations. For the triplet, we find that the allowed contributions come from the $S U(3)$ singlet and from the $I=0$ and $I=I$ members of the octet. We have three terms in the mass formula and three masses in our multiplet. Without additional assumptions the formula is trivially satisfied for any three mass values. Furthermore, if we introduce an exact isospin symmetry, we reduce the number of allowed terms in the formula (no $I=I$ term) but also reduce the number of different masses in the $\operatorname{sU}(3)$ triplet. This property is a general property of all mass formulae in which the mass is expressed as the most general linear combinations of tensor operators with a given set of quantum numbers. What we do in such cases is simply to express one complete set of states in terms of another and the equality between the number of independent terms in the general mass formula and the number of independent mass values is a trivial consequence of the equal number of linearly independent states in any two equivalent set of states.

This leads us to the main idea of this work. The simplest way (in principle) of finding which terms in the most general mass formula can be omitted and which are needed, is to calculate the reduced matrix elements of all possible tensor operators for a given multiplet of particles, and then - to neglect those contributions which are consistent with zero or are extremely small with respect to the other terms. This simple method had been applied to many other physical problems involving complete sets of tensor operators. It was also applied to the problem of $S U(3)$ mass formulae. ${ }^{6}$ We feel that applying it to the analogous $S U(6)$ problem could clarify the somewhat obscured situation with respect to mass formulae of SU(6) which is a consequence of incomplete "guesses" concerming the transformation properties of the mass operator according to this algebra. In Section II, we discuss some previous suggestions and describe the details of the method that we apply. The 56 baryons and the 35 mesons are discussed in detail in Sections III and IV. We analyze the results in Section V.

II. METHOD OF CALCULATION

The simplest possible assumption concerning the transformation properties of the mass-splitting interaction is, naturally, to assume that it transforms Iike the $J=I=Y=0$ member of a $35 .^{7}$ This is an operator which transforms like a component of an $S U(3)$ - octet but as a singlet of $\operatorname{SU}(4)_{I}$, the group generated by the matrices $\sigma_{i} T_{j}$, where $i, j=0,1,2,3 ; \sigma_{0}=\tau_{0}=I ; \sigma_{i}$ are the Pauli spin matrices and τ_{j} are the isospin (Pauli) matrices. Consequently, all states within the same $S U(4)$ I representation remain degenerate even when the symmetry breaking
mechanism included contributions of this 35 - operator to all orders. The following mass equalities remain when only this kind of a symmetry breaking interaction is introduced:

$$
\begin{equation*}
K=K^{*}, \pi=\rho, \Lambda=\Sigma=Y^{*}, N=\mathbb{N}^{*}, \Xi=\Xi^{*} \tag{I}
\end{equation*}
$$

It is clear that the symmetry breaking interaction must contain terms which transform like the components of higher representations of $\mathrm{SU}(6)$. For the mesons these terms may transform like the $J=I=Y=0$ members of the 189 and 405 representations whereas for the baryons - the higher contributions are included in the 405 and 2695. Mass expressions for some of these terms were written down by Beg and Singh ${ }^{8}$ who noticed that one of the meson terms (the $\operatorname{SU}(3)$ octet of the 189) can be omitted without getting into contradictions with experiment.

If we allow all $\mathrm{SU}(3)$ representations to contribute we have, for the baryons, eight terms which describe the eight masses of the $\mathbb{N}, \Lambda, \Sigma, \Xi$, $N^{*}, Y^{*}, \#^{*}, \Omega$. These terms can be denoted by $1^{1}, 35^{8}, 405^{1}, 405^{8}, 405^{27}$, $2695^{8}, 2695^{27}, 2695^{64}$.

If we assume that the 64 of $S U(3)$ does not contribute, we remain with seven terms but only seven masses, as the Ω-mass is already fixed by:

$$
\begin{equation*}
\Omega=\mathbb{N}^{*}+3 \Xi^{*}-3 Y^{*} \tag{2}
\end{equation*}
$$

If we further assume that the $\mathrm{SU}(3) \underline{27}$ is negligible we remain with five $\operatorname{SU}(6)$ terms and five independent masses, say $-N, \Lambda, \Sigma, N^{*}, Y^{*}$ while Ξ and Ξ^{*} are given by:

$$
\begin{align*}
\Xi & =\frac{1}{2}(3 \Lambda+\Sigma-2 N) \tag{3}\\
\Xi & =2 Y^{*}-\mathbb{N}^{*} \tag{4}
\end{align*}
$$

Finally, if we assume that even the $S U(3)$ - octet contribution is small (in the approximation where every $\operatorname{SU}(3)$ multiplet is degenerate) we remain with two $\operatorname{SU}(6)$ terms (1^{1} and 405^{1}) and two independent masses a common octet mass and a commor. decuplet mass.

In every stage of this chain of approximations we are able to calculate the allowed reduced matrix elements of the mass-splitting. We will be able to say that the $\operatorname{SU}(6)$ transformation properties of the symmetry breaking interaction are simple and that a useful SU(6) mass formula is obtainable only if some of the $\operatorname{SU}(6)$ reduced matrix elements will turn out to be negligible with respect to the others. The simplest way of deciding this is to calculate explicitly all eight reduced matrix elements, and consider their relative magnitudes. We expect, of course, that the terms which transform like the 27 and 64 of $\operatorname{SU}(3)$ will be always small and we shall see whether some of the $S U(3)$ - octet terms are also small. We include the 27 and 64 terms in the calculation in order to obtain some information on the relative magnitude of these terms (which are known to be very small from $\operatorname{SU}(3)$ considerations) and the $S U(6)$ terms that we will try to neglect.

Note that in the case of the 56 baryons there are no two states with the same spin, isospin and hypercharge. Consequently, no mixing problems arise. This is not the case for the mesons, as the ω and φ are mixed and a nonvanishing off-diagonal matrix element exists in the mass operator. The possible contributions for the meson masses may come from the following SU(6) tensor operators:

$$
1^{1}, 35^{8}, 189^{1}, 189^{8}, 189^{27}, 405^{1}, 405^{8}, 405^{27}
$$

Note that the product 35×35 contains three additional representations: A second 35, a 280 and a 280 . However, these are antisymmetric with respect to the exchange of the two multiplied $35^{\prime} \mathrm{s}$ and hence cannot contribute to the meson masses. The physical masses are those of the π, $K, \eta, \rho, K^{*}, \omega, \varphi$ and an $\omega \leftrightarrow \varphi$ "transition mass". These can be expressed in terms of our eight tensor operators. We cannot calculate all the reduced matrix elements without additional assumptions, as we do not know the experimental value of the $\omega \leftrightarrow \varphi$ term. We shall discuss this difficulty later and consider the different possibilities of defining the physical ω and φ in a way which enables us to calculate the required reduced matrix elements:

The explicit calculation is carried out by applying the Wigner-Eckart theorem and using the $\mathrm{SU}(6)$ Clebsch-Gordan coefficients. ${ }^{10}$ The reduced matrix elements are defined by:

$$
\left(\left.\lambda_{1} I Y \sigma\right|_{\lambda^{\prime}} \mu^{\mu^{\prime}} \mid \lambda_{2} I Y \sigma\right)=\left(\lambda| | M_{\lambda^{\prime}}^{\mu^{2}}| | \lambda\right)\left(\begin{array}{ccc}
\lambda & \lambda^{\prime} & \lambda \tag{5}\\
\mu_{1} \sigma & \mu^{\prime} O & \mu_{2} \sigma
\end{array}\right)
$$

$\lambda^{\prime}, \mu^{\prime}$ are the dimensionalities of the $\operatorname{SU}(6)$ and $\operatorname{SU}(3)$ representations of the mass term, λ, I, Y and σ are respectively, the $S U(6)$ dimensionality, the isospin, the hypercharge and the spin of the considered states, μ_{1} and μ_{2} are their $\operatorname{SU}(3)$ representations (which are not necessarily identical) and $\left(\begin{array}{ccc}\lambda & \lambda^{\prime} & \lambda \\ \mu_{1} \sigma & \mu^{\prime} 0 & \mu_{2} \sigma\end{array}\right)$ is the appropriate Clebsch-Gordan coefficient. In the two cases that we consider, no contribution appear twice and only one reduced matrix element is obtained for a given set of ($\lambda^{\prime}, \mu^{\prime}$). We normalize all reduced matrix elements in the same way, guaranteeing that the $\operatorname{SU}(6)$ - singlet contribution will be equal to the average mass of the multiplet.

Using the Wigner-Eckart theorem (Eq. (5)) we now express the masses of the eight baryons within the 56 in terms of the reduced matrix elements $B_{1}, B_{2}, \ldots, B_{8}$ which stand for the $1^{1}, 35^{8}, 405^{1}, 405^{8}, 405^{27}, 2695^{8}$, $\underline{2695^{27}}$ and 2695^{64} representations, respectively. The transformation matrix is given by:

$$
\left|\begin{array}{l}
N \tag{6}\\
\Lambda \\
\Sigma \\
N^{*} \\
Y^{*} \\
\Xi^{*} \\
\Omega
\end{array}\right|=\left|\begin{array}{cccccccc}
1 & 1 & -5 & -7 & 3 & -2 & -21 & 0 \\
1 & 0 & -5 & -4 & -9 & 6 & 63 & 0 \\
1 & 0 & -5 & 4 & -1 & -6 & 7 & 0 \\
1 & -1 & -5 & 3 & 3 & 8 & -21 & 0 \\
1 & 1 & 2 & 1 & 6 & 1 & 3 & 1 \\
1 & 0 & 2 & 0 & -10 & 0 & -5 & -4 \\
1 & -1 & 2 & -1 & -6 & -1 & -3 & 6 \\
1 & -2 & 2 & -2 & 18 & -2 & 9 & -4 \\
\frac{1}{\sqrt{10}} & B_{3} \\
\frac{\sqrt{14}}{10} & B_{4} \\
\frac{\sqrt{14}}{\frac{1}{30}} & B_{5} \\
\frac{\sqrt{21}}{15} & B_{6} \\
\frac{1}{15} & B_{7} \\
\frac{1}{\sqrt{10}} & B_{8}
\end{array}\right|
$$

We use the experimental masses given by Rosenfeld et al. and include the electromagnetic mass differences (where they are known) in the quoted experimental "errors." This is, of course, necessary in any procedure which assumes equal masses within any given isospin multiplet. The values which we use are:

$$
\begin{array}{ll}
\mathbb{N}=939 \pm 1 & \mathbb{N}^{*}=1236 \pm 2 \\
\Lambda=1115 & \mathrm{Y}^{*}=1382 \pm 1 \\
\Sigma=1193 \pm 4 & \Xi^{*}=1529 \pm 1 \\
\Xi=1318 \pm 3 & \Omega=1675 \pm 3
\end{array}
$$

The information concerning electromagnetic mass differences between the different components of the N^{*}, Y^{*} or Ξ^{*} is extremely poor and we did not include it in the quoted "errors."

The results of the calculation are the following (in MeV):

$$
\begin{align*}
& B_{1}\left(\underline{1}^{1}\right)=1316 \pm 2 \\
& B_{2}\left(\underline{35^{8}}\right)=-142 \pm 1 \\
& B_{3}\left(\underline{405^{1}}\right)=104 \pm 2 \\
& B_{4}\left(\underline{405^{8}}\right)=23 \pm 1 \\
& B_{5}\left(\underline{405^{27}}\right)=0 \pm 1 \tag{8}\\
& B_{6}\left(\underline{2695^{8}}\right)=-4 \pm 2 \\
& B_{7}\left(\underline{\left.2695^{27}\right)}=1 \pm 1\right. \\
& B_{8}\left(\underline{2695^{64}}\right)=0 \pm 1
\end{align*}
$$

As expected, al1 27 and $64 \mathrm{SU}(3)$ contributions are consistent with zero. The $S U(3)$ octet terms transform mainly like a 35 of $S U(6)$, a smaller contribution being obtained from the 405 and a still smaller contribution from the 2695. Neglecting the 2695 we predict

$$
\begin{equation*}
\Xi^{*}-Y^{*}=\Xi-\Sigma \tag{9}
\end{equation*}
$$

which is not too well satisfied (125 MeV versus 147 MeV). Neglecting the 405^{8} we obtain the following formula:

$$
\begin{equation*}
m=a+b Y+c J(J+I) \tag{10}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
\Sigma=\Lambda \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
N^{*}-N=Y^{*}-\Lambda=\Xi^{*}-\Xi \tag{12}
\end{equation*}
$$

This can be used at most as a crude approximation which tells us that the masses are changing in both the octet and the decuplet with no strong isospin dependence and approximately with the same dependence on the hypercharge.

IV. THE MESONS

We denote the $1^{1}, 35^{8}, 189^{1}, I 89^{8}, 189^{27}, 405^{1}, 405^{8}$ and $405^{27} \mathrm{re}-$ duced matrix elements by $M_{1}, M_{2}, \ldots, M_{8}$, respectively and use them for expressing the eight "experimental" quantities $\pi, K, \eta, \rho, K^{*}, \omega_{8}, \omega_{1}, X$ where ω_{3} and ω_{1} are defined as members of the $\operatorname{SU}(3)$-octet and $\operatorname{SU}(3)$ singlet and X is the $\omega_{1}-\omega_{8}$ "transition" mass. Note that ω_{8} does not have to satisfy a Gell-Mann - Okubo relation with K^{*} and ρ as we allow mass terms which transform like a 27 of $\mathrm{SU}(3)$. We know that:

$$
\begin{align*}
& \omega_{1}+\omega_{8}=\omega+\varphi \tag{13}\\
& \omega_{1} \omega_{8}-X^{2}=\omega \varphi \tag{14}
\end{align*}
$$

This means that two of the three quantities $\omega_{1}, \omega_{8}, X$ can be expressed in terms of the experimental values of ω and φ and the value of the third quantity. The transformation matrix for the mesons is
π
π
η
K_{1}^{*}
ω_{1}
ω_{8}
X
1 $\left|\begin{array}{cccccccc}1 & 2 & -1 & -9 & -9 & -3 & -9 & 9 \\ 1 & -2 & -9 & -18 & 9 & -9 & 18 & -27 \\ 1 & 2 & 1 & 2 & -1 & 5 & 14 & -1 \\ 1 & -1 & 1 & -1 & 3 & 5 & -7 & 3 \\ 1 & -2 & 16 & 0 & 0 & -16 & 0 & 0 \\ 0 & 2 \sqrt{2} & 0 & -10 \sqrt{2} & 0 & 0 & -10 \sqrt{2} & 0 \\ \frac{\sqrt{70}}{16} M_{2} \\ \frac{\sqrt{14}}{2^{4}} M_{3} \\ \frac{\sqrt{7}}{24} M_{4} \\ \frac{\sqrt{42}}{24} M_{5} \\ \frac{\sqrt{10}}{24} M_{6} \\ \frac{\sqrt{14}}{48} M_{7} \\ \frac{\sqrt{14}}{24} M_{8}\end{array}\right|$

We use the following experimental (mass) ${ }^{2}$ values (in (BeV$)^{2}$):

$$
\begin{array}{ll}
\pi=0.019 \pm 0.0005 & \rho=0.582 \pm 0.005 \\
K=0.244 \pm 0.002 & K^{*}=0.794 \pm 0.002 \tag{16}\\
\eta=0.301 \pm 0.001 & \omega=0.613 \pm 0.001 \\
& \varphi=1.040 \pm 0.001
\end{array}
$$

There are various possibilities of defining ω_{8}, ω_{1}, and X. We can assume that ω_{8} is defined by a Gell-Mann - Okubo mass relation for the ρ, K^{*}, ω_{8} octet. This gives us two different solutions for X. If we analyze these two solutions we find that in one of them the physical φ is almost a pure singlet of $\operatorname{SU}(4)$ and the ω is almost purely in a 15 of $\operatorname{SU}(4)$ while in the other solution the φ is very close to a pure 15 and the ω is almost purely an $S U(4)_{\text {I }}$ singlet. In the first case the decay $\varphi \rightarrow \rho+\pi$ will be very small (and forbidden if φ is a pure $\operatorname{SU}(4)_{I}$ singlet $\left.{ }^{11}\right)$; in the second case $\omega \rightarrow \rho+\pi$ should be small. We
naturally prefer the first possibility which is consistent with the experimental data. Experimentally $\varphi \rightarrow p \pi$ is of the order of 15% of the total width of the φ, but the appropriate matrix element is much smaller as the phase space factor tends to enhance the 0π and 3π modes over the dominant KK decay mode of the φ.

Alternatively we could use the small $\varphi \rightarrow \rho+\pi$ decay matrix element in order to say that the φ is a pure $S U(4)_{I}$ singlet to a very good approximation and to use this as a definition of ω_{1}, ω_{8} and X. In this case ω_{8} will not satisfy the GMO mass formula exactly but will be within 4% from the GMO prediction. This discrepancy is of the same order of magnitude as the discrepancy of the pseudoscalar meson masses, and both are very easily accounted for by a small contribution of an $\operatorname{SU}(3) \underline{27}$ operator. We, hence, choose to define the physical φ as a pure $\operatorname{SU}(4)_{I}$ singlet. The physical ω is consequently a pure 15 of $\mathrm{SU}(4)_{I}$ and the ω_{1} and ω_{8} masses satisfy:

$$
\begin{align*}
& \omega_{1}=\frac{2}{3} \omega+\frac{1}{3} \varphi=0.755 \pm 0.001 \\
& \omega_{8}=\frac{1}{3} \omega+\frac{2}{3} \varphi=0.899 \pm 0.001 \tag{17}\\
& X=\frac{2}{3}(\omega-\varphi)=-0.200 \pm 0.001
\end{align*}
$$

The reduced matrix elements which are obtained from (15) are:

$$
\begin{array}{rll}
M_{1}\left(I^{1}\right)=0.602 \pm 0.002 & M_{5}\left(189^{27}\right)=-0.008 \pm 0.001 \\
M_{2}\left(\underline{35}^{8}\right)=-0.139 \pm 0.002 & M_{6}\left(\underline{405^{1}}\right)=0.147 \pm 0.002 \tag{18}\\
M_{3}\left(189^{1}\right)=0.186 \pm 0.001 & M_{7}\left(405^{8}\right)=-0.002 \pm 0.002 \\
M_{4}\left(189^{8}\right)=-0.001 \pm 0.001 & M_{8}\left(\underline{405^{27}}\right)=-0.002 \pm 0.001
\end{array}
$$

The $\operatorname{SU}(3) \underline{27}$ contributions are both small but are not consistent with zero, as expected. The octet symmetry breaking transforms like a pure 35 of $\operatorname{SU}(6)$, both the 189^{8} and 405^{8} being consistent with zero ${ }^{12}$ (and smaller than the 189 ${ }^{27}$:). The complete meson spectrum can be explained in terms of three symmetry breaking terms: $35^{8}, 189^{1}$, and 405^{1}. The general formula is:

$$
\begin{equation*}
m^{2}=a+b J(J+1)+c C_{2}^{(3)}+d\left[2 S(S+1)-C_{2}^{(4)}+\frac{1}{4} Y^{2}\right] \tag{19}
\end{equation*}
$$

and the obtained relations are: ${ }^{11}$

$$
\begin{gather*}
K^{*}-\rho=K-\pi \tag{20}\\
(\omega-\rho)(\varphi-\rho)=\frac{4}{3}\left(K^{*}-\rho\right)\left(\omega+\varphi-2 K^{*}\right) \tag{21}
\end{gather*}
$$

V. DISCUSSION

It is clear that no simple mass formula for $S U(6)$ may be obtained, which describes the mass spectra of both the 56 and the 35 representations. However, apart from the expected small values of all SU(3) 27 and 64 contributions, we find some interesting regularities in the calculated reduced matrix elements. The $\operatorname{SU}(6)$ symmetry is broken in two steps. In the first stage $\operatorname{SU}(6)$ is broken without breaking $\operatorname{SU}(3)$. This is usually done by an interaction which has large contributions from all possible SU(3) singlets within the various $S U(6)$ representations. It is found that the transformation properties of the symmetry breaking in this stage are not simple in any sense. However, when we investigate the SU(6) transformation properties of the $S U(3)$-symmetry breaking term we find in both cases that the 35 representation of $S U(6)$ is dominant. For the mesons this dominance is very clear and all other contributions vanish. For the
baryons the situation is not that clear and the contribution of the 405^{8} is about 18% of the 35° term. In fact, the 35 -dominance in the $\operatorname{SU}(3)$ octet term is a good approximation to the extent that the $\Sigma-\Lambda$ mass difference can be neglected. Unfortunately, the simplest case in which we would like to apply this ${ }^{13}$ is the well-known discrepancy between the exact SU(3) prediction and the experimental branching ratios of the Y^{*} decays. It is obvious that the $\Sigma-\Lambda$ mass difference is playing an important role in this problem and our approximation is not valid. The application of this 35 dominance to other problems could be very interesting, provided that all other symmetry breaking effects [i.e., breaking of W-spin symmetry or the $\operatorname{SU}(6)$ symmetry breaking while reducing $S U(6)$ to $S U(3)]$ are proved to be irrelevant to the considered problem.

The authors would like to thank H. J. Lipkin for helpful discussions. They acknowledge the hospitality of the International Centre for Theoretical Physics where part of this work has been done.

1. For applications of a broken $\operatorname{SU}(3)$ symmetry to reactions and decays see, e.g.: V. Gupta and V. Singh, Phys. Rev. 135, B1443 (1964);
M. Konuma and K. Tomozawa, Phys. Letters IO, 347 (1964);
C. Becchi, E. Eberle and G. Morpurgo, Phys. Rev. 136, B808 (1964);
S. Meshkov, G. A. Snow and G. B. Yodh, Phys. Rev. Ietters 13, 213 (1964);
M. Konuma and K. Tomozawa, Phys. Rev. Letters 12, 493 (1964);
H. Harari, Proceeding of the Elementary Particles Seminar, Trieste 1965, to be published.
2. M. Gell-Mann, "The eïghtfold way," CTSL report, unpublished; S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
3. S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 (1961).
4. N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
5. B. Sakita, Phys. Rev. 136, B1756 (1964); F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173 (1964).
6. J. Ginibre, Nuovo Cimento 30, 406 (1963); J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
7. T. K. Kuo and T. Yao, Phys. Rev. Letters 13, 415 (1964).
8. Particle labels denote particle masses for baryons and (mass) for mesons.
9. M.A.B. Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964).
10. We use the coefficients calculated by C. L. Cook and G. Murtaza, Imperial College preprint.
11. H. J. Lipkin, Phys. Rev. Letters 13, 590 (1964).
12. This was noted by H. Harari and H. J. Lipkin, Phys. Rev. Letters 14, 570 (1965).
13. H. Harari, D. Horm, M. Kugler, H. J. Lipkin and S. Meshkov, Phys. Rev. to be published.

[^0]: *Work supported by the U.S. Atomic Energy Commission.
 †on leave from the Israel Atomic Energy Commission.

