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ABSTRACT 

The transformation properties of the mass-splitting strong 

interaction are discussed in the framework of the SU(6)-scheme. 

Using the experimentalma,ss values of the 56 baryons and the 35 

mesons, the reduced matrix elements of all the possible mass 

tensor operators are calculated. It is found that the SU(3) 

symmetry breaking terms transform mainly as the 3J representa.- 

tion of SU(~) whereas the SU(3)-conserving, SU(G)-violating 

terms do not have simple transformation properties, 
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I. INTRODUCTION 

It is well known that an exact determination of the transformation 

properties of the symmetry breaking interactions is crucial for under- 

standing the relevance of any given approxima-te symmetry to physica. 

phenomena. An "almost exact symmetry" like isotopic spin is usually 

capable of describing various properties of particles within a reasonable 

accuracy, and we do not have to worry about its symmetry breaking terms 

while dealing with ordinary strong interaction processes. However, when 

we discuss, for example, the SU(3) symmetry, we must always consider 

symmetry breaking contributions. These contributions may turn out to be 

of the same order of magnitude as the SU(3)-symmetric terms of the inter- 

action. This is the case for the 7(-q mass difference or for certain de- 

cays and scattering processes. The predictive power of the symmetry is, 

of course, reduced when non-symmetric terms are allowed but some results 

can still be obtained, using the well-known SU(3) transformation proper- 

ties of the medium strong symmetry breaking interaction.' The knowledge 

of these transformation properties is mainly based on the great success 

of the Gell-Mann-Okulo mass formula2 which is derived by neglecting all 

symmetry breaking contributions transforming like SU(3)-representations 

which are higher than the octet. Similar a.ssumptions concerning the SU(3) 

behaviour of the electrcunagnetic3 and weak interactions* led to additional 

results which were found to be in good a.greement with experiment, 

The introduction of the SU(~) symmetry5 scheme led immediately to 

various suggestions of mass formulae for the known multiplets, and to 

other applications in which the SU(~) transformation properties of the 

strong electromagnetic and weak symmetry breaking interactions were involved. 
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It is our purpose in this paper to explore further the problem of mass 

formulae in the framework of SLJ(~), trying to arrive at definite conclu- 

sions concerning the SU(~) properties of the various symmetry breaking 

terms of the strong interactions. 

It should be immediately noted that the significance of a given mass 

relation is closely related to the number of possible contributions to 

the symmetry breaking mechanism that are amitted from the final formula. 

It is generally true that all the masses of all states within a multiplet 

of a given group can be correctly expressed by a linear combination of all 

the allowed symmetry breaking terms for the given multiplet. A trivia.1 

example might illustrate -this: Consider an SU(3) triplet of quarks and 

assume that the mass operator transforms like a linear combination of a.11 

I, = Y = 0 (but not necessarily I = 0) components of a,ll SU(3) representa- 

tions. For the triplet, we find that the allowed contributions come from 

the SU(3) singlet and from the I = 0 and I = lmembers of the octet. We 

have three terms in the mass formula and three masses in our multiplet. 

Without additional assumptions the formula is trivially satisfied for any 

three mass values. Furthermore, if we introduce an exact isospin symmetry, 

we reduce the number of allowed terms in the formula (no I = 1 term) but 

also reduce the number of different masses in the SU(3) triplet. This 

property is a general property of all mass formulae in which the mass is 

expressed as the most general linear combinations of tensor operators with 

a given set of quantum numbers. What we do in such cases is simply to 

express one complete set of states in terms of another and the equality 

between the number of independent terms in the general mass formula and 

the number of independent mass values is a trivial consequence of the 

equal number of linearly independent states in any two equivalent set of 

states. -3- 



This leads us to the main idea of this work. The simplest way (in 

principle) of finding which terms in the most general mass formula can 

be omitted and which are needed, is to ca.lculate the reduced matrix 

elements of all possible tensor operators for a given multiplet of particles, 

a,nd then - to neglect those contributions which are consistent with zero 

or are extremely small with respect to the other terms. This simple method 

had been applied to many other physical problems involving complete sets 

of tensor operators. It wa.s also applied to the problem of SU(3) mass 

formulae.6 We feel that applying it to the analogous SU(~) problem could 

clarify the somewhat obscured situation with respect to mass formulae of 

SU(6) which is a consequence of incomplete "guesses" concerning the trans- 

formation properties of the mass operator according to this algebra. In 

Section II, we discuss some previous suggestions and describe the deta.ils 

of the method that we apply. The 56 baryons and the 3-$j mesons are dis- - 

cussed in detail in Sections III and IV. We analyze the results in 

Section V. 

II. METHOD OF CALCULATION 

The simplest possible assumption concerning the transformation 

properties of the mass-splitting interaction is, naturally, to assume 

that it transforms like the J = I = Y = 0 member of a 35.7 This is an - 

operator which transforms like a component of an SU(3) - octet but as a 

singlet of SU(4),, the group generated by the matrices GiTj> where 

i,j = 0,1,2,3; o. = 'r. = 1; ai are the Pauli spin matrices and 'rj a.re 

tile isospin (Pauli) matrices. Consequently, all states within the same 

su(4)2 representation remain degenerate even when the symmetry breaking 
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mechanism included contributions of this 3 - operator to all orders. 

The following mass equalities remain when only this kind of a symmetry 

breaking interaction is introduced: 

K = K* J -Jr = p, A = c = Y", N=N*,s * =z (1) 

It is clear that the symmetry breaking interaction must contain terms 

which transform like the components of higher representations of SU(~). 

For the mesons these terms may transform like the J = I = Y = 0 members 

of the 189 and 3 representations whereas for the baryons - the higher 

contributions are included in the 9 and s. Mass expressions for 

some of these terms were written down by Beg and Singh' who noticed that 

one of the meson terms (the SU(3) octet of the 2) can be cnnitted without 

getting into contradictions with experiment. 

If we allow all SU(3) representations to contribute we have, for the 

baryons, eight terms which describe the eight masses of the N, *, c, z, 

N*, Y*, z*, n. These terms can be denoted by I?, 3P8, 405l, 4058, 4O527, 

If we assume that the 64 of SU(3) d oes not contribute, we remain with 

seven terms but only seven masses, as the Q-mass is already fixed by: 

R = N* + 3 E* - 3Y” (2) 

If we further assume that the SU(3) 27 - is negligible we remain with 

five SU(~) terms and five independent masses, say - N, A, C, N*, Y* while 
* 

z a.nd E are given by: 

z=- ; (3A + C - 2N) 
* -2 - = 2y* - N” 

(3) 

(4) 
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Finally, if we assume that even the SU(3) - octet contribution is 

small (in the approximation where every SU(3) multiplet is degenerate) 

we remain with two SU(~) terms (11 and 405l) and two independent masses - - 

a common octet mass and a common. decuplet mass. 

In every stage of this chain of approximations we are able to cal- 

culate the allowed reduced matrix elements of the mass-splitting. We will 

be able to say that the SU(~) transformation properties of the symmetry 

breaking interaction are simple and that a useful SU(~) mass formula is 

obtainable only if some of the SU(6) reduced matrix elements will turn 

out to be negligible with respect to the others. The simplest way of 

deciding this is to calculate explicitly all eight reduced matrix elements, 

and consider their relative magnitudes. We expect, of course, that the 

terms which transform like the 27 and 64 of SU(3)‘will be always small - - 

and we shall see whether some of the SU(3) - octet terms are also small. 

We include the 27 and 64 terms in the calculation in order to obtain some - - 

information on the relative magnitude of these terms (which are known to 

be very small from SU(3) considerations) and the SU(~) terms that we will 

try to neglect. 

Note that in the case of the 56 baryons there are no two states with 

the same spin, isospin andhypercharge. Consequently, no mixing problems 

arise. This is not the case for the mesons, as the u) and cp are mixed and 

a nonvanishing off-diagonal matrix element existsin the mass operator. The 

possible contributions for the meson masses.may come from the following 

SU(6) tensor operators: 

2, g, 1891, 1898, 18927, 4051, 4w8, 222.Z 
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Note that the product 3J X z contains three additional representa- 

tions: A second 221 a 2& and a a. However, these are antisymmetric 

with respect to the exchange of the two multiplied 2's and hence cannot 

contribute to the meson masses. The physical masses are those of the 'JI, 

K~ II., p, K*J wJ cp and an w tscp "transition mass'. These can be expressed 

in terms of our eight tensor operators. We cannot calculate all the re- 

duced matrix elements without additional assumptions, as we do not know 

the experimental value of the w ,t3cp term. We shall discuss this diffi- 

culty later and consider the different possibilities of defining the 

physical ~1, and cp in a way which enables us to calculate the required 

reduced matrix elements; 

The explicit calculation is carried out by applying the Wigner-Eckart 

theorem and using the SU(~) Clebsch-Gordan coefficients.l' The reduced 

matrix elements are defined by: 

h’J )I’ are the dimensionalities of the SU(~) and SU(3) representa- 

tions of the mass term, A, I, Y and c are respectively, the SU(~) dimen- 

sionality, the isospinJ the hypercharge and the spin of the considered 

states, p1 and p2 are their 
* 

SU(3) representations (which are not necessarily 

identical) and A 
> P2U 

is the appropriate Clebsch-Gordan coefficient. 

In the two cases that we consider, no contribution appear twice and only 

one reduced matrix element is obtained for a given set of (A', PI). We 

normalize all reduced matrix elements in the same way, gua.ranteeing that 

the SU(~) - singlet contribution will be equal to the average mass of the 

multiplet. 
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III. THE BARYONS 

Using the Wigner-Eckart theorem (Eq. (5)) we now express the masses 

of the eight baryons within the & in terms of the reduced matrix elements 

B 1.’ B2" . ..) Ba which stand for the 1", &, 405', 4058, 40527r 26%j8, 

26g527 and 26g564 representations, respectively. 

is given by: 

= 

1 1 -5 -7 3 -2 -21 0 

1 0 -5 -4 -9 6 63 o 

1 o -5 4 -1 -6 7 o 

1 -1 -5 3 3 8 -21 o 

11216 131 

1 0 2 0 -10 0 -5 -4 

1 -1 2 -1 -6 -1 -3 6 

1 -2 2 -2 18 -2 g -4 

The transformation matrix 

(6) 

We use the experimental masses given by Rosenfeld et al. and include 

the electromagnetic mass differences (where they are known) in the quoted 

experimental "errors." This is, of course, necessary in any procedure 

which assumes equal masses within any given isospin multiplet. The values 

which we use are: 

N = 939 2 1 N* = i236 2 2 

A= lll5 Y* = 1382 k 1 

c = 1193 4 4 5 = 1529 2 1 

E= 1318 3 2 n = 1675 fi 3 
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The information concerning electromagnetic mass differences between 

the different components of the 'N*, Y* or E* is extremely poor and we 

did not include it in the quoted "errors." 

The results of the calculation are the 

I+) = 1316 2 2 

B8(a8) = -142 2 1 

B5(a1) = 104 2 2 

B4($J8) = 23 + 1 

B5(*'7) = O-l-1 

~~(2695~) = -4 2 2 

following (in MeV): 

(8) 

B7(26g527) = 141 

B8( 269564) = 021 

As expected,all 27 and & SU(3) contributions are consistent with 

zero. The SU(3) octet terms transform mainly like a. 2 of SU(6), a. 

smaller contribution being obtained frcm the 3 and a still smaller con- 

tribution frcm the 2695. Neglecting the 

* 
s -*"=z-C (9) 

which is not too well satisfied (125 MeV versus 147 MeV). Neglecting the 

405 a we obtain the following formula: 

m = a + bY + cJ(J + 1) (10) 

which implies: 

Z=A 
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NX - N = y* -z 0.a 

This can be used at most as a crude approximation which tells us that 

the masses are changing in both the octet and the decuplet with no strong 

isospin dependence and approximately with the same dependence on the 

hypercharge. 

Iv. THE MESONS 

duced matrix elements by M,, M,, . ..J M aJ respectively and use them for 
* 

expressing the eight "experimentalH quantities fiJ K, 7, P, K , us, ml, X 

where me and CD~ are defined as members of the SU(3)-octet and SU(3) 

singlet and X is the wl-u)a "transition" mass. Note that cog does not 

have to satisfy a Gell-Mann - Okubo relation with K* and P as we allow 

mass terms which transform like a 27 of SU(3). We know that: - 

UJ -f-u! =co+cp 03) 1 8 

wu - x2 = q 
18 (1.4) 

This means that two of the three quantities 
"1) Y3) X can be ex- 

pressed in terms of the experimental values of w and q and the value 

of the third quantity. The transformation matrix for the mesons is 
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K 

P 

K* 

cu 
1 

W 
8 

X 

1 2 

1 -1 

1 -2 

12 

1 -1 

10 

1 -2 

-9 

-9 

-9 

1 

1 

16 

1 

0 2P 0 

18 1 

-9 -3 

-18 9 

2 -1 

-1 3 

0 0 

-2 -9 

-lop 0 

-9 -18 -3 

-9 9 9 

-9 

5 

18 -27 

14 -1 

5 

-16 

5 

0 

-7 3 

0 0 

-14 -9 

-106 0 
8 I 

We use the following experimental (mass)2 values (in (EeV)2): 

2l = 0.019 + 0.0005 P = 0.582 + 0.005 

K= 0.244 2 0.002 K* = 0.794 2 0.002 

IJ = 0.3012 0.001 cb = 0.613 2 0.001 

v = 1.040 2 0.001 

(15) 

(16) 

There are various possibilities of defining w8, LUG, and X. We can 

assume that a8 is defined by a Gell-Mann - Okubo mass relation for the 

PI K*, a8 octet. This gives us two different solutions for X. If we 

analyze these two solutions we find that in one of them the physical 'p 

is almost a pure singlet of SU(4)I and the cu is almost purely in a lJ 

of SU(4), while in the other solution the Q, is very close to a pure lJ 

and the u) is almost purely an SU(4)I singlet. In the first case the 

decay cp -to + fi will be very small (and forbidden if rp is a pure 

SU(4)I single-P); in the second case u)+p+fl should be small. We 
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naturally prefer the first possibility which is consistent with the ex- 

perimental data. Experimentally cp +@I .is of the order of 15% of the 

total width of the cp, but the appropriate matrix element is much sma.ller 

as the phase space factor tends to enhance the pn and 3n modes over the 

dominant K?? decay mode of the Cp. 

Alternatively we could use the small cp +p + K decay matrix element 

in order to say that the cp is a pure SU(4)T singlet to a very good 

approximation and to use this as a definition of wl, us and X. In this 

case w 
8 

will not satisfy the GM0 mass formula exactly but will be within 

4% fram the GM0 prediction. This discrepancy is of the same order of 

magnitude as the discrepancy of the pseudoscalar meson masses, and both 

are very easily accounted for by a small contribution of an SU(3) 2J 

operator. We, hence, choose to define the physical cp as a pure SU(4)T 

singlet. The physical 03 is consequently a pure lJ- of SU(4)T and the 

CD~ and pus masses satisfy: 

w ,2u+ 
3. 3 

$ cp = 0.755 4 0.001 

w ,rl,+ 
8 3 0.899 2 0.001 (17) 

X 
2 =- 
3( w - cp) = -0.200 2 0.001 

The reduced matrix elements which are obtained from (15) are: 

Ml@) = 0.602 2 0.002 M5(189_27) = -0.008 2 0.001 

M,(228) = -0.139 2 0.002 Mg(&? = 0.147 4 0.002 
(18) 

M3(a1) = 0.186 4 0.001 M7(%8) = -0.002 2 0.002 

M,(l&8) = -0.001 2 0.001 M8(&27) = -0.002 2 0.001 

-l2- 



I ” F 

The SU(3) 27 contributions are both small but are not consistent with - 

zero, as expected. The octet symmetry breaking transforms like a pure 2 

of SU(6), both the l&" and &" being consistent with zero I2 (and smaller 

than the a27! ). The complete meson spectrum can be explained in terms 

of three symmetry breaking terms: s8, I&', and 405l. The general 

formula is: 

(3) m" = a f bJ(J + 1) f cc2 + d[2S(S f 1) - C(4) + + Y2] 
2 

09) 

and the obtained relations a.re:ll 

K* - P =K-fi (20) 

(a - ~)(cp - P) = ; (K* - P>(W + cp - =*I (21) 

v. IXX!ussIoN 

It is clear that no simple mass formula for SU( 6) may be obtained, 

which describes the mass spectra of both the 56 and the z representations. 

However, apart from the expected small values of all SU(3) 27 and 64 con- 

tributions, we find some interesting regularities in the calculated re- 

duced matrix elements. The SU(~) symmetry is broken in two steps. In the 

first stage ~(6) is broken without breaking SU(3). This is usually done 

by an interaction which has large contributions from all possible SU(3) 

singlets within the various SU(~) representations. It is found that the 

transformation properties of the symmetry breaking in this stage are not 

simple in any sense. However, when we investigate the SU(~) transforma- 

tion properties of the SU(3)-symmetry breaking term we find in both cases 

that the 2 representation of SU(~) is dominant. For the mesons this 

dominance is very clear and all other contributions vanish. For the 
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baryons the situation is not that clear and the contribution of the 4058 *. 

is about 1% of the 2" term. In fact, the z-dominance in the SU(3)- 

octet term is a good approximation to the extent that the Z-h mass dif- 

ference can be neglected. Unfortunately, the simplest case in which we 

would like to apply thisX3 is the well-known discrepancy between the exact 

SU(3) prediction and the experimental branching ratios of the Y* decays. 

It is obvious that the X-A mass difference is playing an important role 

in this problem and our approximation is not va.lid. The application of 

this 22 dominance to other problems could be very interesting, provided 

that all other symmetry breaking effects [i.e., breaking of W-spin symmetry 

or the SU(~) symmetry breaking while reducing SU(~) to SU(3)] are proved 

to be irrelevant to the considered problem. 
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