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Summary 

A method of computing the quality of field 
in a quadrupole magnet by means of two-dimensional 
relaxation is described. The vector potential 
field at every point in the gap and in the copper 
is derived, using the given pole tip contour and 
an irregular pattern of current inputs and assuming 
infinitely permeable iron. The vector potential 
is used to calculate flux density at any point in 
the gap and to estimate flux density in the iron 
boundaries and in return yokes, and to estimate 
the inductance of the magnet. The field quality 
is expressed in terms of its harmonic coefficients, 
which are directly measurable on the actual 
magnet. The results of several calculations are 
presented, which show the effect of changing the 
location of the windings adjacent to the aperture. 

Introduction 

In the design of the spectrometers used in 
the end station of the Stanford Linear Accelerator, 
several very large and precise quadrupole magnets 
were required. A numeric method, based on two- 
dimensional vector potential relaxation was 
developed, by means of which a programmer of only 
moderate skill can derive the field of a 
quadrupole or of any reasonable combination of 
iron boundaries, air, current inputs or boundaries 
at infinite distance. 

Since the magnets of the Stanford 
spectrometer are required to work between 5% and 
full field, the assumption of infinite permeability 
was considered justified, although, the method of 
relaxation in the iron using variable permeability 
is lengthy but straight forward. The corresponding 
modification of the field in the air is simple, 
and a good deal faster than the initial relaxation. 

The mechanical arrangement used in a typical 
magnet, our nominal 15’ quadrupole, is shown in 
Figure 1. The clean rectangular form of the 
parts is expected to minimize the introduction of 
sub-harmonics in the field, which often are a 
good deal more serious than the higher harmonica 
possible in a perfectly symmetrical arrangement. 

Ihe contoured portion of the pole tip is 
being machined on a planer which follows a template 
to get the correct cross section. A feature not 
shown on any of the figures, is the shaping of the 
ends of the pole tip to minimize the change in 
effective length as the field is increased. The 
end contours consist of a family of hyperbolas 
with successively larger pole distances. ThiS 
portion of the machining is being done by three- 
diauansionsl numerically controlled equipment. 

Vector Potential vs Scalar Potential 

If one assigns a positive potential to one of 
the poles of a quadrupole, negative to the next 
one and so on, the sketches in the equipotential 
lines, it will readily be seen that the principal 
axes are axes of symmztry and have zero potential. 
One quadrant is shown in Figure 2(s). The potential 
field obtained in this way is called a scalar field. 

If, on the other hand, as shown in one 
quadrant in Figure 2(b), the positive and negative 
potentials are applied to the ends of the current 
slots and the equipotential lines dralm in, this 
will represent a vector potential field. These 
lines evidently correspond to the magnetic lines 
of force. 

The numeric value of each point in either of 
these fields can be obtained by use of the relaxation 
rules, and in each case the magnetic flux density 
at every point is readily obtained. 

For a scalar field $, 

“Y = 
, and B = X 

for a vector field A 

B =-Curl A 

and since A is only AZ ) 

aA -aA By = z , and Bx = a;; (3) 

Vector fields have one big advantage, and that is 
the effect of current sources can easily be included 
in the computation since Poisson's equation obtains: 

D'A = -u,J (4) 

where the current term u J can be assigned any 
arbitrary value if the f?eld is generated entirely 
by the current sources, which is the only case 
considered here. 

The effect of current sources can be included 
in the scalar field also, by the use of a modified 
scalar potential function due to M. H. Blewett, but 
a degree of skill is required to get valid results. 

Scalar potential was the only practical 
relaxation method until the advent of high speed 
computers. The reason for this is that the 
number of passes required to relax a given number 
of points varies roughly inversely as the number 
of fixed value points. A comparison of Figure 2(a) 
with Figure 2(b) will show the advantage of the 
scalar field in this respect. 

An even more serious handicap which the vector 
potential method has in the speed of relaxation, 
is the behavior of current points when one is 
generating a field entirely by its current inputs. 
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'Ihccc poi.ntn li Lcr4ly c1l:rrc:c up Lo tllcir cquill- 
brium potential jn the manner of a le:~kr cnnacitor 
beiny: charr;cd wiLh a currenf, source, :,",I Ali. i;he 
while the enLire field must be "ironed" out. 

A final difficulty of the vector potential 
method is the trentmont of iron boundaries. Unlike 
a scalar iron boundary, which is assi[:ncd a fixed 
value, ench point on a vector potential iron 
boundary has its own potential, which must carry 
the information on the behavior of the field line 
at the air-iron interface. The field line may 
enter at right angles, as in a pole tip of infinite 
permeability, at a small angle away from 
perpendicular as for finite permeability, or even 
run parallel with the iron surface as in the case 
of a return yoke of infinite permeability. 

Relaxation Method 

The approximations to Laplace's equation 
which are used for the relaxation of points in a 
square mesh are well known and are summarized in 
Figure 3 (a-d). In each case a unit mesh 
distance is used. Only the cases useful for the 
vector potential field are given. 

Figure 3(e) indicates the method of 
inserting a current input. J may hnve any value 
since the solution is non-dimensional. For 
example, a configuration of ours which had about 
400 current input points of J = .OOl levelled 
out finally with potentials as high as 6. 

Boundary Computations 

Vector potential requires special treatment 
at the iron boundaries: this is the most likely 
step to cause distortions in the derived field 
due to sloppy arithmetic. Tne points adjacent to 
the boundary can be relaxed as in steps 3(c) and 
3(d), but then the potential of the boundary points 
themselves must be adjusted to suit the new values 
of the adjacent points. If iron of infinite 
permeability is assumed the field lines must enter 
the pole tip at right angles to the surface. This 
is illustrated in Figure 4(a), together with a 
typical expression for its new potential. 

The straight, perpendicular portion of the 
field line must be as short as possible in order 
not to distort the field; in general the boundary 
point assumes the interpolated value of the point 
where the perpendicular crosses the first mesh 
line. If the adjacent mesh point is closer than 
about 0.1 mesh units from the boundary point, the 
two points will lock together and not relax. In 
this case the perpendicular must reach a greater 
distance for its terminal value. 

Computer Program 

The computations described below were written 
in Fortran II and IV, but the same techniques are 
applicable In any of the user languages. 

Eightfold symmetry can be assumed in a 
quadrupole* so that only a portion from the x 
axis to 45 needo bc considered. This could be 
done with reasonable resolution with s network 
about 30 x 100 points, but for brevity let us 
consider an 8 x 20 network. 

A corrcnpondjn!: nckwork, tcrmctl -jn 
"Instruction Matrix", Fii:are II(b) , is road into 
memory. By means of a "Uo" r.l,:~tcmcnl; and n 
"Computed Go To", the computer nakc:; ~pca?tcrl 
passes up each line , pcrrorminr, the special 
instruction called for by the numhcr. For instance: 

1. 

2. 

3. 

4. 

5. 

6. 

Is the nonnll operation for the majorjt,y 
of points, Fi~urc ;i(a). 
Ir, the axis of' symmetry operation F‘iCure 
?(I,) * 
Requires the Vector potential st that 
point, called "A", to be set to 0, and 
a return to the bottom of the next line. 
Is a boundary calculation, such as 3(c) 
or j(d) followed by a boundary potential 
operation such as Figure 4(a) for each 
boundary point and then a return to 
next line. 
Is a similar operation to 2, which 
describes a field line enterinC the 
iron vertically, followed by a return 
to next line. 
Requires all such points to be set equal 
to the maximum value reached by the 
field, describing the condition existing 
at an infinitely permeable return yoke. 

Input Bata 

Each point 4 requires either one or two 
boundary points to be described. The boundary 
information consists of an intercept distance 
a or b, Figure 3(d), a slope of the curve at 
that point, tan a, used in Figure 4(a), and 
finally the potential of the boundary point which 
can start at zero but must be revised each pass. 

The instruction matrix Figure 4(b) usually 
has a simple geometric form and can be read into 
memory with a few statements. 

Relaxation Speed 

A quadrupole field can be solved by setting 
all of the A values initially to zero and 
employing the relations as given. The potential 
values will increase each pass and eventually 
level off at the correct values, but the process 
is far too slow, even with a high speed computer. 
An array of 90 x 2j points could require 6000 
passes and take 30 minutes of 7090 time. 

The first time saver is over-relaxation: 
Consider operation Figure 3(a). 

Let R = (B+C+DtE)/4 - A (5) 
R is the "Residual" in relaxation terminology. 
The revised value of A is expressed: 

A' = A+ GR (6) 
in which G, the "over-relaxation factor", can 
have a value between 1 and 2. The relaxation 
speeds up considernbly as G is increased, and 
finally becomes unstable near G = 2. Most 
automatic computation routines have a method for 
optimizing G, but we found a fixed value of 
G = 1.8 worked well. 

The second essential davice is to let the 
initid. A VISITS be set closer to the final 
value rather than simply settin;: them nil equal 
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to zero. A new arrangcmcnt can be run once with 
guessed values and the final I'icld read out on 
cards for future use. , 

The computati.on can be run a fixed number 
of passes, or stopped when the relaxation hss 
reached a satisfactory point. 

Output 

The basic output is the potential at each 
mzsh point, and should be reproduced to seven 
significant digits. The field between each 
mesh point, by means of Equ(?), is equal to the 
normalized difference between the mesh point 
values. The normalization factor is obtnincd by 
requiring the B field on the x axis at the 
nominal apertureYradius to be equal to the design 
pole tip field. 

In this w4y the field at any point can be 
calculated, and an estimate made of iron flux 
densities. The flux density in the return yokes 
is easily estimated since the largest value of 
which should be at points 6 in Figure 4(b), is a 

A, 

mensurc of the total flux crossing the air gap 
from one pole to another. 

Since each value of the vector potential 
allows one to calculate the-amount of flux between 
that point and zero potential, then the inductance 
of the cross section follows easily using the 
relationship: 

(7) 
in which L is the low field IX! inductance per' 
meter in henrys, n is number of turns per 
pole, $ is the flux in webers linking the turns 
n, and I is the calculated excitation current 
for the required field. Tnis excitation current 
should include no leakage or reluctance losses, 
since the inductance is at low field. The 
constant 8, is for the four poles, of course, and 
also that the flux $ estimated from the vector 
potential also links another n turns on the 
adjacent pole. 

To arrive at the correct numerical value 
for 4, one must exercise care. The total amount 
of flux indicated by the maximum value of A does 
not link ~11 turns. Strictly speaking, each 
current input point should have its A value 
summed, and the total divided by the number of 
points, but the operation can be lumped into four 
or even two pieces with little change in final 
value. 

The average value of A for this calculation 
must be scaled correctly, in a manner described 
above for calculating fl~uc densities in the return 
yoke, in order to have 9 in proper units. 

A useful form of the output is to extract 
the second differences of the A values, either 
in the x direction or the y dlrcction. These 
cccond differences are proportional to the gradient 
of the field, and provide the quickest way to 
assess the qunlity of the field, since an idcal 
quadrupolc has a uniform gradient in the region of 
interest. 

If one add:; successive cccond differences 
in a straight line -, GUY in the x direction, and 
compares it wlth an equal number of typical 
second differences around mid aperture, the amount 

of deviation Of field from jdc,al can bc ,scen. 
This has bcCn done on Figure 3; j.n which i;hc 
error i.n the field vnluco B have been plotted 
against x for three horizoXtn1 rows corresponding: 
to row 1, which is the x axis, row 6, and row 13. 
These plots have been done for four different 
arrangcmento: the full w-indinr; nnd then for each 
of the turns A, B, and C, successively rcmovctl. 
It :i.s nppa mnt Lhat the qual~~l,y or -field i:; not 
described adcquatcly by the amount of fall-off of 
field from ideal along the x axis, as is 
customary, or along any other line for that matter. 
A little change made in winding position, or 
modification of the contour of the pole tip, 
-‘nWroVos one arca at the cxpcncc of another. 

Harmonic Analysis 

It was suggested by C. Peck that for magnet 
optics purposes, n harmonic analysis of the 
vector potential would provide the best description 
of the field and a means of calculating first and 
second order aberrations in the use of these lenses. 

This is a particularly interesting idea, 
since, as no{& above, the A vnlues are a 
measure of the total flux between a given point 
and the zero A value which exists, for instance, 
at the center of the aperture. Ti,us, if one 
swings an arc about the center, and interpolates 
for the A value at each crossing of a mesh line, 
one obtains a set of values which are proportional 
to the voltage induced in a coil rotated in a 
quadrupole field. These values, as a function of 
their corresponding angular mcn:surc, may be 
reduced to a set of harmonic coefficients in the 
same way that the harmonic analyzer used by the 
magnet measurement groklp measures the quality 
of a quadrupole field.1 This analysis was 
performe$ by John Levy in a least squares fitting 
routine. 

If a quadrupole has perfect physical symmetry, 
the vector potential at radius a may be written: 

A = A a2 cos 20 + A aG cos 613 + A alo 
2 G 10 

COG 100 + A ai* cos 140 (8) 
1‘1 

In the results below, the radius a in 
each case is normalized to 1, and the coefficients 
are given as percentages of A , the quadrupolc 
coefficient. 3 

Rcsulto 

A variety of quadrupole configurations were 
run, varying such things as coil slot width, 
radial distance to the conductors, radial width 
of .the conductor bundle and so on. IL soon became 
apparent the factors which control qundrupole 
field quality are quite inflexible, and all one 
can do, once the principle poromcters of the 
magnet are fixed, is to play with the windings 
closest to the aperture, moving them nearer or 
farther from the center, or Icoving out turns. 

Thus, Figure 6 suIrmk?rizes the cnlculations 
for three ,mgnets, a 1j" cluad and two 11" quads, 
one 0r which ha:: smlller windings with hi::hcr 
current density bccnusc the overall size of the 
magnet was rcstrictcd. In euch maCnct the 
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coefficients are given for the full cojl.and for 
leaving out one turn at a time, and finally for 
the middle turn drlven in reverse. 

Conclusions 

With respect to the confiqurntion of 
Figure 1, one would be cafe in dcducinc these 
rather obvious rules for obtaining the best 
quadrupole field. 

1. Make the mechanical des-ien as simple 
and rigid as possible, since often 
the multipoles which are noL fiupposed 
to exist, can SrenLly exceed all other 
error6. 

2. Make the pole tip contours simple 
hyperbolas, as broad as possible. 
NatuKLly the longer the contour, the 
narrower the current slot, permitting 
only low field maenets, unless very 
hiSh current density is used. 

3. If the current slot is narrow, keep the 
windings away from the aperture. If 
you are forced to have a wide current 
slot, as in our ll" quads, the normal 
fall off of the field along the principal 
axis can be compensated by moving the 
windings closer to the aperture, and 
in a sense, employing correction windings. 

4. The amount of flux which has to go 
through the return yokes is reduced if 
high density windings, close to ths 
aperture, are used. 11718 is the choice 
for qund.o which must have fields above 
13 kilogauss at the pole tip. 

1 J. K. Cobb and J. J. Muray, "Magnetic Field 
Measurement and Spectroscopy in Multipole Fields" 
SLAC Report Number 39. 

2 
J. Levy, "Harmonic Analysis of Vector Potential 

Fields", SLAC TN-65 -69. 
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(a) For the most general point 

A = (B + C -t D-f- E)/4 

(b) For an axis of symmetry in which 
another point C is implied below A 

A = (B f 2C + D)/4 

(c) When the presence of a boundary causes 
one point to be closer than the normal 
wsh distance 

A = (B f C/c + D + E)/(3 + l/c) 

(d) When the presence of a boundary causes 
two points to be closer than the normal 
mesh distance 

A = (B/b c C/c + D + E)/(2 + $ + $ 

c.2 -3 

(e) For a point at which a'current input is 
desired 

A = (B + C + D+ E)/4 i- J 
, .-m ___ .,-,. ._..-&,"- 7 

jr2 -I -A _ 
Figure 3. Approximations used for relaxation. 
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: ’ Figure 4(a), Typical calculation of the potential of an iron boundary point. 
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Figure 5. Plot of error By vs. x. ! 
372 -3-A 



@“Quad 
at R=.ga 6e/2e 

LO0/20 
148/28 

at R= .na 60/2@ 

log/28 
14.8/28 

11" Quad-High Density Coils 
iat R = .9a 6e/2e 

108/2e 
148/28 

at R = *Da 68/2e 
108/28 
i48/2e 

11' Quad-Normal Density Coils 

at R=.ga 6e/2s 
loe/ee 
x48/28 

at R = .7fja 60/2G 

x08/26 
140/20 

. 

Full Winding '. omit Omit Reverse Omit 
A B B C 

9054% .014 
.004 -.?l,l 

-6003 - .ooB 
.026 .007 
.OOl 8 -.003 
.ooo -.OOl 

.058 -.066 
_ . c-‘:! f-l 

a ’ -.060 
-.014 -.027 

,028 -.032 
-.002 -.014 
-.002 I -.003 

, 

.030 -.051 
-.014 -.04-6 

-.OlO -.01g 

,015 -*025 

-.003 -.Oll 

1 -.OOl -.002 

.044 1033 ,086 

.002 ,000 ,016 
-.002 -.OOl ,000 

.021 .016 .042 
..ooo ,000 ,004 
. 000 . 000 ,000 

,014 -.032 .158 
-.015 0.019 ‘030 
-.oot; ,002 -.006 
.007 -.016 ,076 

-.003 -.005 .007 
-.OOl ,000 -,OOl 

*Ok -.046 0093 
-:016 -.031 .012 

-.006 - .OOl -.006 
.OOl -.014 ,045 

-.004 -.005 ,003 
- .OOl ,000 -.OOl 

272 -$ -A 
Figure 6. Harmonic Bontent of various quadrupoles. 


