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Summary

A method of computing the quality of fileld
in a quadrupole magnet by means of two-dimensional
relaxation is described. The vector potential
field at every point in the gap and in the copper
is derived, using the given pole tip contour and
an irregular pattern of current inputs and assuming
infinitely permeable iron. The vector potential
is used to calculate flux density at any point in
the gap and to estimate flux density in the iron
boundaries and in return yokes, and to estimate
the inductance of the wmagnet. The field quality
is expressed in terms of its harmonic coefficients,
which are directly measurable on the actual
magnet. The results of several calculations are
presented, which show the effect of changing the
location of the windings adjacent to the aperture.

Introduction

In the design of the spectrometers used in
the end station of the Stanford Linear Accelerator,
several very large and precise quadrupole magnets
were required. A numeric method, based on two-
dimensional vector potential relaxation was
developed, by means of which a programmer of only
moderate skill can derive the field of a
quadrupole or of any reasonable combination of
iron boundaries, air, current inputs or boundaries
at infinite distance.

Since the magnets of the Stanford
spectrometer are required to work between 5% and
full field, the assumption of infinite permesbility
was considered justified, although, the method of
relaxation in the iron using veriable permeability
is lengthy but straight forward. The corresponding
modification of the field in the air 1s simple,
and a good deal faster than the initlal relaxation.

The mechanical arrangement used in a typical
magnet, our nominal 15" quadrupcle, is shown in
Figure 1. The clean rectangular form of the
parts is expected to minimize the introduction of
sub-harmonics in the field, which often are a
good deal more serious than the higher harmonics
possible 1n a perfectly symmetrical arrangement.

The contoured portion of the pole tip is
being machined on a planer which follows a template
to get the correct cross section. A feature not
shown on any of the figures, 1s the shaping of the
ends of the pole tip to minimize the change in
effective length as the field 1s increased. The
end contours consist of a family of hyperbolas
with successively larger pole distances. This
portion of the machining is being done by three-
dimensionel numerically controlled equipment.

Vector Potential vs Scalar Potential

If one assigns a positive potential to one of
the poles of a quadrupole, negative to the next
one and so on, the sketches in the equipotential
lines, 1t will readily be seen that the principal
axes are axes of symmetry and have zero potential.
One quadrant is shown in Figure 2(a). The potential
field obtained in this way is called a scalar field.

If, on the other hand, as shown in one
quadrant in Figure 2(b), the positive and negative
potentials are applied to the ends of the current
slots and the equipotential lines drawn in, this
will represent a vector potential field. These
lines evidently correspond to the magnetic lines
of force.

The numeric value of each point in either of
these fields can be obtained by use of the relaxation
rules, and in each case the magnetic flux density
at every point is readily obtained.

For a scalar field @,

B = S-Q , and B_ = gQ (1)
v Y X ox
for a vector field A
B=-Curl & (2)
and since A is only A
JA -OA
By—-z_)';, and BX ——Z_Yy_- (3)

Vector fields have one big advantage, and that is
the effect of current sources can easily be included
in the computation since Poisson's equation obtains:

VA = - J ()

where the current term u J can be assigned any
arbitrary value 1f the field is generated entirely
by the current sources, which is the only case
considered here.

The effect of current sources can be included
in the scalar field also, by the use of a modified
scalar potential function due to M. H. Blewett, but
a degree of skill is required to get valid results.

Scalar potential was the only practical
relaxation method until the advent of high speed
computers. The reason for this is that the
number of passes required to relax a given number
of points varies roughly inversely as the number
of fixed value points. A comparison of Figure 2(a)
with Figure 2(b) will show the advantage of the
scalar field in this respect.

An even more serious handicap which the vector
potential method has in the speed of relaxation,
is the behavior of current points when one is
generating a field entirely by its current inputs.
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These points lilerally charge up to their equili-
brium potential in the manner of a leaky capacitor
being charged with a current Qourue and 41l the
while the enlire field must be 1ronﬁd" oub.

A final difficulty of the vector potential
method is the treatment of iron boundaries. Unlike
a scalar iron boundary, which is assigned a fixed
value, each point on a vector potentisl iron
boundary has its own potential, which must carry
the information on the behavior of the fiecld line
at the air-iron interface. The field line may
enter at right angles, as in a pole tip of 1nf1n1te
permeability, at a small angle away from
perpendicular as for finite permeability, or even
run parallel with the iron surface as in the case
of a return yoke of infinite permeability.

Relaxation Method

The approximations to Laplace's equation
which are used for the relaxation of points in a
square mesh are well known and are summarized in
Figure 3 (a-d). 1In each case a unit mesh
distance is used. Only the cases useful for the
vector potential field are given.

Figure 3(e) indicates the method of
inserting a current input. J may have any value
since the solution is non-dimensional. For
example, a configuration of ours which had asbout
400 current input points of J = .001 levelled
out finally with potentials as high as 6.

Boundary Computations

Vector potential requires special treatment
at the iron boundaries: this is the most likely
step to cause distortions in the derived field
due to sloppy arithmetic. The points adjacent to
the boundary can be relaxed as in steps 3(¢) and

3(d), but then the potential of the boundary points
themselves must be adjusted to suit the new values
of the adjacent polnts. 1If iron of infinite
permeability is assumed the field lines must enter
the pole tip at right angles to the surface. This
is illustrated in Figure 4(a), together with a
typicel expression for its new potential.

The straight, perpendicular portion of the
field line must be as short as possible in order
not to distort the field; in general the boundary
point assumes the interpolated value of the point
vhere the perpendicular crosses the first mesh
line. If the adjacent mesh point is closer than
about 0.1 mesh units from the boundary point, the
two points will lock together and not relax. In
this case the perpendicular must reach a greater
distance for its terminal value.

Computer Program

The computations described below were written
in Fortran II and IV, but the same techniques are
applicable in any of the user languages.

Eightfold symmetry can be assumed 1n a
quadrupole, so that only a portion from the x
axis to 45~ needs be considered. This could be
done with reasonable resolution with a network
about 30 x 100 points, but for brevity let us
consider an 8 x 20 nctwork.

A corres pondJnn network, termed an
"Instruction Matrix" y, TMipure h(b) is read into
memory. By means of a "DO" statement and a
"Computed.Go TO", the computer makes repeated
passes up each line, performing the specisl
instruction called for by the number. TFor instance:
1. Is the normal opcration for the anorJty

of points, Figurc 3(a).
2. 5 the axis of symmetry operation Figure
3(1).

3. Requires the Vector potential at that
point, called "A", to be set to 0, and
a return to the bottom of the next line.

4. Is a boundary calculation, such as 3(c)
or 3(d) followed by a boundary potential
operation such as Figure 4(a) for each
boundary point and then a retumn to
‘next line.

5. 1Is a similar operation to 2, which
describes a field line entering the
iron vertically, followed by a return
to next line.

6. Requires all such points to be set equal
to the maximum value reached by the
field, describing the condition existing
at an infinitely permeable return yoke.

Input Data

Each point 4 requires either one or two
boundary points to be described. The boundary
information consists of an intercept distance
a or b, Figure 3(d), a siope of the curve at
that point, tan &, used in Figure 4(a), and
finally the potential of the boundary point which
can start at zero but must be revised each pass.

The instruction matrix Figure 4(b) usually
has a simple geometric form and can be read into
memory with a few statements.

Relaxation Speed

A gquadrupole field can be solved by setting
all of the A wvalues initislly to zero and
employing the relations as given. The potential
values will increase each pass and eventually
level off at the correct values, but the process
is far too slow, even with a high speed computer.
An array of 90 x &5 points could require 6000
passes and take 30 minutes of 7090 time.

The first time saver is over-relaxation:
Consider operation Figure 3(a).

Let R = (B+C+D+E)/4 - A (5)

R is the "Residual" in relexation terminology.
The revised value of A 1s expressed:

A' = A + GR (6)

in which G, the
have a value between 1 and 2.
speeds up considerably as G 1is increased, and
finally becomes unstable near G = 2. Most
sutomatic computation routines have a method for
optimizing G, but we found a fixed value of
G = 1.8 worked well.

The second essential device is to let the
initinl A values be set closer to the final
value rather than simply setting them all equal

"over-relaxation factor", can
The relaxation
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to zero. A new arrangement can be run once with
guessed values and the final f{ield read out on
cards for future use. .

The computation can be run a fixed number
of passes, or stopped when the relaxation has
reached a satisfactory point.

Oubtput

The basic output is the potentisl at each
mesh point, and should be reproduced to seven
significant digits. The field between each
mesh point, by means of Equ(3), is equal to the
normalized difference between the mesh point
values. The normalization factor is obtained by
requiring the B field on the x axis at the
nominal aperture”’radius to be equal to the design
pole tip field.

In this way the field at any point can be
calculated, and an estimate made of iron flux
densities. The flux density in the return yokes
1s easily estimated since the largest value of A,
which should be at points 6 in Figure 4(b), is a
measure of the total flux crossing the air gap
from one pole to another.

Since each value of the vector potential
allows one to calculate the-amount of flux between
that point and zero potential, then the inductance
of the cross section follows easily using the
relationship:

. 8nd

P )
in which L is the low field IC inductance per
meter in henrys, n is number of turns per
pole, ¢ 1is the flux in webers linking the turns

n, and I is the calculated excitation current
for the required field. This excitation current
should include no leakage or reluctance losses,
since the inductance is at low field. The
constant 8, is for the four poles, of course, and
also that the flux ¢ estimated from the vector
potential also links another n turns on the

ad jacent pole.

To arrive at the correct numerical value
for , one must exercise care. The total amount
of flux indicated by the maximum value of A does
not link all turns. Otrictly speaking, each
current input point should have its A value
summed, and the totsl divided by the number of
points, but the operation can be lumped into four
or even two pieces with little change in final
value.

The average value of A for this calculation
must be scaled correctly, in a wmanner described
above for calculating flux densities in the return
yoke, in order to have ¢ in proper units.

A useful form of the output is to extract
the second differences of the A values, either
in the x direction or the y direction. These
second differenceg are proportional to the gradient
of the field, and provide the quickest woy to
assess the quality of the field, since an ideal
quadrupole has a uniform gradient in the reglon of
interest.

If one adds successive second differences
in a straight line, ssy 1in the x dircction, and
comparcs 1t with an equal number of typical
second differences around mid aperturc, the amount
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of deviation of field from ideal can be seen.

This has been done on Figure 9; in which the

error in the field valucs B have been plotted
against x Tor threc horizohtal rows corresponding
to row 1, which is the x axis, row 6, and row 13.
These plots have becn done for four different
arrangements:  the full winding and then for each
of the turns A, B, and C, successively removed.

It is apparent that the quality of fiecld is not
described adequately by the amount of fall-off of
field from ideal along the x axis, as is
customary, or along any other line for that matter.
A little change made in winding position, or
modification of the contour of the pole tip,
improves one area at the cxpense of another.

Harmonic Analysis

It was suggested by C. Peck that for magnet
optics purposes, a harmonic analysis of the
vector potential would provide the best description
of the field snd a means of calculating first and
second order aberrations in the use of these lenses.

This is @ particularly interesting idea,
since, as noited above, the A values are a
measure of the total flux between a given point
and the zero A value which exists, for instance,
at the center of the aperture. Thus, if one
swings an arc about the center, and interpolates
for the A value at each crossing of a mesh line,
one obtains a set of values which are proportional
to the voltage induced in a coil rotated in a
quadrupole field. These values, as a function of
their corresponding angular measure, may be
reduced to a set of harmonic coefficients in the
same way that the harmonic analyzer used by the
magnet measurement group measures the guality
of a quadrupole Tield.l This analysis was
performed by John Levy in a least squares Titting
routine.

If a quadrupole has perfect physical symmetry,
the vector potential at radius a wmay be written:

A=A a°cos 20 +A 8°cos 66 +A al©
2 & 10

cos 100 + A al® cos 1k (8)

14
In the results below, the radius a in
each case 1s normalized to 1, and the coefficients
are given as percentages of A , the quadrupole
coefficient. 2

Results

A variety of quadrupole configurations were
run, varying such things as coil slot width,
radial distance to the conductors, radial width
of the conductor bundle and so on. It soon became
apparent the lactors which control quadrupole
field guality arec quite inflexible, and all one
can do, once the principle parameters of the
magnet are fixed, is to play with the windings
closest to the aperture, moving them nearer or
farther from the center, or leaving out turns.

Thus, Figure 6 summarizes the calculutions
for three mugnets, a 15" quad and two 11" quads,
one of which has smuller windings with higher
current density because the overall size of the
magnet was restricted. In cach magnet the
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coefficients are given for the full coil and for
leaving out one turn at a time, and finally for
the middle turn driven in reverse.

Conclusions

With respect to the configurntion of -
Figure 1, one would be safe in deducing these
rather obvious rules for obtaining the best
quadrupole field.

1. Make the mechanical design as simple

and rigld as possible, since often

the multipoles which are not supposed
to exist, can greatly exceed all other
errors.

2. Make the pole tip contours simple
hyperbolas, as broad as possible.
Naturally the longer the contour, the
narrower the current slot, permitting
only low field magnets, unless very
high current density is used.

3. If the current slot is narrow, keep the
windings away from the aperture. If
you are forced to have a wide current
slot, as in our 11" quads, the normal
fall off of the field along the principal
axis can be compensated by moving the
windings closer to the aperture, and
in a sense, employing correction windings.

4. The amount of flux which has to go
through the return yokes is reduced 1f
high density windings, close to tie
aperture, are used. This is the choice
for quads which must have fields above
13 kilogauss at the pole tip.

lJ. K. Cobb and J. J. Muray, "Mapnetic Field
Measurement and Spectroscopy in Multipole Fields"
SLAC Report Number 39.

2. Levy, "Harmonic Analysis of Vector Potential
Fields", SLAC TN-G5-09.
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Figure 3.

— Conductor:

{

(a) For the most general point

(b)

(e)

(d)

A= (B+C+D+E)/k

For an exis of symmetry in which
another point C 1is implied below A

A= (B+ 20+ D)4

When the presence of a boundary causes

one point to be closer than the normal
mesh distance

A= (B+¢C/c+D+E)/(3+1/c)

When the presence of & boundary causes
two points to be closer than the normal
mesh distance

A=(B/b+Clc+D+E)/(2+¢+ %)

-3

For a point at which a' current input is
desired

A=(B+C+D+E)/4+J

Approximations used for relaxation.
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Row j+1

Row j

Row j-1

Figure U4(a).

Boundary Point
Cc

Equipotentj

Column i-1 i+l

C=A(,j) -ctan @ (A(i,]) - Al-1, j)

23

Typical calculation of the potential of an iron boundary point.
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Full Winding  Omit Omit Reverse Omit
A B B C
15" Quad ‘
at R = .9a 66/26 .05 kg .01k bk .033 .086
106/26 .00k -.011 .002 .000 .016
146/ 28 -.003 ~ -.006 -.002 -.001 .000
at R = .T5a 66/20 .026 .007 .021 .016 Ok2
106/26 ' .001 - -.003 ..000 .000 004
149/26 .000 -.001 .000 .000 .000
11" Quad-High Density Coils ,
at R = .9a 66/20 .058 . ..066 .01l -.032 .158
106/26 080 ~.060  -.015 -.019 .030
146/26 -0l -.027 - -.006 .002 - .006
at R = .Toa 60/20 028  -.032 .007 -.016 076
100/ 20 -.002 -0k -.003 —.005  .007
1ko/20 ~.002 ~.003 -.001 .000 -.001
11" Quad-Normal Density Coils .
at R = .9a 66/29 .030 -.051 .001 -.046 093
108/26 -.01h -.046 -.016 -.031 .012
1lhe/26 -.010 -.019 -.006 -.001 -.006
at R = .Toa 66/26 .015 -.0%5 .001 -.01k .0k5
106/26 -.003 -.011 -.00k - -.005 .003
1le/26 © -.001 -.002 - -.001 .000 -.001
37% ~4 ~A

Figure 6, Harmonic €ontent of various quadrupoles.



