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I. 

Since the introduction of the static SU(~) symmetry scheme' many 

attempts have been made to formulate a relativistic version of the theory, 

incorporating both the internal SU(3) symmetry and Lorentz inva,riance into 

a larger symmetry group. It is now clear that all attempts to write a 

complete theory which will describe all strong interaction processes in 

an SU(3) and Lorentz invariant way, and will imply a symmetry la.rger than 

the direct product of these two groups are doomed to failure unless some 

revolutionary unconventional new ideas are introduced into the game.2 On 

the other hand, it had been pointed out3J4 that certain sets of processes 

could be treated according to a covariant version of SU(~). In these 

notes we shall discuss same of the difficulties encountered in the various 

versions of "relativistic SU(6)" arriving at the conclusion that a non- 

trivial chain of subgroups is obtained3J4 which may serve as a chain of 

approximate symmetries for some special sets of processes. In particular 

we study the group SU(~)~~'~ which has been proposed as a possible under- 

lying symmetry for collinear processes, and we discuss scme of its experi- 

mental tests, showing that in most cases a good agreement is obtained 

between the theoretical predictions and the experimental data, 

In the original static version of SU(~) the relevant algebra is 

defined by the set of operators DiAaj i = 0,1,2,3; cx = 0,1,2,...,8; where 

CT. 1 a.re the Pauli matrices, ha are the U(3) generators and rso = A, = 1, 

We denote this SU(~) group by SUM. The low-lying baryons and mesons are 

represented by the well-known 35 and 56 dimensional supermultiplets of - - 

SW, and it is clear that this description can be meaningful only when 

the particles are at rest, as only then their intrinsic spins are well- 

defined and might be considered as good quantum numbers. It is not 
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surprising that discussions of deca.y processes or scattering reactions lead 

to catastrophes (e.g. the forbiddenness of the P --+a and N*--+N?r decays). 

One cannot expect to get any useful information concerning such processes 

by using this static approach, as in all cases, at least one of the particles 

which are involved in the process is highly relativistic. The first dif- 

ficulty of the symmetry scheme is hence obvious: Some of the quantum 

numbers (namely those related to the intrinsic spin space) are well- 

defined only for particles at rest. The classification is static in its 

nature and cannot be applied to nonstatic problems, 

It should be noted, however, that this difficulty is only one part 

of the ccmplete picture, Another obvious reason for the failure of the 

theory stems frcm the fact that the "intrinsic" degrees of freedom are 

ccunpletely decoupled frcm the 'space-time" degrees of freedom and the model 

implies separate conservation of the intrinsic spin 5 and the orbital 

angular momentum 5 instead of conserving their vectorial sum S=X+& 

While studying SU(~), it seems that the two difficulties mentioned above 

are identical or at least intimately related. However, we shall see later 

that it is possible to overcome the first difficulty by defining a rela.- 

tivistic generalization of SU(2), which will be adequate for describing 

a particle with an arbitrary momentum. However, the separate conservation 

of an "intrinsic spin space' operator again leads to predictions which are 

in clear contradiction with experimental data, 

The difficulties can be summarized briefly by noting that SUM fails 

to describe high energy processes because: 

a> It can be applied only to static situations. 
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b) It leads to the conservation of quantum numbers defined by 

operators which are applied only to the "intrinsic spin space' 

( i.e. they act only on the s-pin indices of the wave functions). 

The first step toward a. relativistic generalization of the llstatic' 

approach is trivial: Instead of ta.lking about a "spin-unitary-spin" six 

ccmponent quark, we discuss a relativistic free quark which satisfies the 

Dirac equation. This is a twelve-component object which might be regarded 

as our basic multiplet and could imply that some kind of a twelvefold 

symmetry exists. We then write the free field equation for an arbitrary 

particle while its spin is mathematically constructed from an appropriate 

number of basic spinors ‘(or spin indices, or quarks). This can be done 

according to the generalized7 Bargman-Wigner formalism08 While doing this 

it becomes clear that the various spin states can be classified according 

to the finite dimensional representations of SU(4) or any of its noncompact 

versions, including SU(2,2). (As far as only the classification is con- 

cerned, the differences smong these groups are irrelevantO) If we further 

want to include the SU(3) quantum numbers we may classify all the states 

according to the representa.tions of U(l.2) or U(6,6). Again, both 

classifications are equivalent. 

The real difficulties arise when we try to suggest that one of these 

groups is a good symmetry of nature. It is clear that even the simple 

one-quark Dirac equation is not invariant under the transformations of 

these groups and that we cannot expect SU(4) or U(2,2) to be an exact 

or an approximate symmetry of the strong interactions. Similarly, a 

complete U(2,2) invariance cannot be reconciled with the known symmetry 

properties of the kinetic energy term of the total Lagrangian, We could, 
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however, try to formulate a phenomenological field theoretic approach in 

which we distinguish between the kinetic energy part which is definitely 

not invariant under anyone of these groups and the interaction part which 

might be invariant under one of them.7yg In other words, instead of 

trying to find a universal symmetry which is the basic symmetry of physics 

we might adopt the less ambitious approach of developing a formalism which 

allows us to calculate simple diagrams for various processes while using 

the first Born approximation and inserting the proposed symmetry only into 

the intera.ction vertices,i* thus obtaining new relations between coupling 

constants and form factors. In order to do this we notice that the "spin 

group" could be U(2,2) which contains the homogeneous Lorentz group and 

the best choice of a total spin-unitary spin symmetry of the interaction 

would apparently be U( 6,6). The U(6,6) algebra is obtained by considering 

all possible products of the nine U( 3) generators Aa and the sixteen U(2,2) 

operators which can be identified with the sixteen Dirac gamma matrices. 

The unitarity problem which arises" should not worry us more than it 

worries us while doing any ordinary calculation in the first Born approxi- 

mation. It is well known that this approximation usually leads to solu- 

tions which do not satisfy the unitarity condition, and it is usually 

expected that higher contributions will correct this crude approximation. 
+b 

On the other hand we find that the pfi17c and N Nfi vertices are no more 

forbidden by this approximation, thus curing one of the major practical 

difficulties of SUM. A detailed investigation of the selection rules 

implied by this "vertex-sy?m.uetry" shows, however, that one difficulty in 

principle still remains. The theory still implies the conservation of a 

set of quantum numbers (those of U(2,2)) which apply only to the intrinsic 

spin degrees of freedom. Once more, the orbital angular momentum is not 
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coupled to the "intrinsic" U(2,2)0 Although p-wave decays are usually 

allowed by U(2,2) because of the inclusion of first-order derivatives 

within the U(2,2) multispinors of the low-lying states, higher cvalues 

are forbidden in most cases. An analysis of this point12 shows that the 

following vertices are forbidden by U(2,2): 2+ --+O- f O-; 2+ --+l- -f- O-; 

2+-+-o- 1+ 
+ 5 

+ o- + o-; g -f2 + o-; z- -$+ + o-; 2 
Ik If -+2 + o- + o- 

etc, (2+, O-, etc. are the Jp = spin-parity values of the particles 

involved.) These forbid the direct coupling of most of the known reso- 

nances to their decay products12 (e.g. f" '231, AZ -+pfi, most N*'s 
* 

cannot decay into Nfl, most Y ft CK, AS etc.) One might argue that the 

introduction of vertex corrections such as triangular diagrams could allow 

these decays to proceed. However, in this case the predictive power of 

the approximate symmetry is reduced to nothing. 

The inevitable conclusion of all this is, of course, that even the 

interaction part of our Lagrangian cannot preserve the U(2,2) (consequently 

the U(6,6)) symmetry. We must break it by introducing derivative couplings 

to all orders and we have no apriori reason to believe that the low deriva- 

tives are dominant. We find ourselves facing a completely broken symmetry 

in which the symmetry breaking terms might be much larger than the symmet- 

rical contributions. However, we know the exact nature of all our symmetry 

breaking terms! They are linear combinations of products of momentum 

-terms PC1 or derivative terms a P• All these terms transfomn under 

U(2,2) or U(6,6) like products of the four gamma matrices y P 

Our next step is, hence, obvious. We try to analyze the symmetry breaking 

effects of our non-symmetrical terms and see if we can find a subsymmetry 

which is unaffected by these terms. As we do not believe that low-order 
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contributions, either in the kinetic energy or in the derivative couplings 

are dominant and we do not wish to introduce a perturbative approach for 

dealing with such terms, we assume symmetry breaking to all orders and 

look for a good subsymmetry which survives after including all these 

corrections. This amounts to solving the following problem: Which 

generators of ~(6~6) commute with the four gamma matrices Yo' YXJ Yyr Y, 

(and consequently with all products of these matrices). Only such a set 

of operators can be rega.rded as a set of a,pproxima.tely conserved quantities 

even in the presence of all our symmetry breaking terms. Unfortunately, 

the answer to our question is very simple. In fact, it is too simple: 

The only generators of U(6,6) which commute with all four yP matrices are 

the nine U(3) generators &. This is, of course, an extremely poor final 

result for the enormous effort which has been done in the direction of 

combining the spin and SU(3) symmetries. However, this result is not as 

bad as it sounds. We must not forget that most of the interesting processes 

(at least from the various symmetries point of view) are restricted to a 

plane and the assumption of having symmetry breaking terms transforming 

like all four yp matrices is too general for such processes. Moreover, 

there are no more than half a dozen known SU(3) predictions concerning 

five-point functions and almost all the work that has been done in particle 

symmetries wa.s done for two, three and four point functions. The fact that 

we can say nothing more than what is predicted by SU(3) for five (or more) 

point functions is not such a terrible loss, But what happens if we 

consider co-planar processes? We assume that all our symmetry breaking 
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terms transform like y,, Y,, y, or their products but not like y, . 

The mathematical problem is, again, extremely simple: We have to find 

all U(6,6) generators which commute with the three matrices Y,Y Yy’Yz’ 

There are eighteen such operators: ha and y, ox ha , and they form 

a U(3) @ U(3) algebra. The two commuting U(3)'s are defined by 

(12 YoDx) Aa' This symmetry is larger than the ordinary SU(3) 

symmetry and we expect it to hold for all coplanar processes including 

three-body decays of resonances and scattering processes with a two- 

body final sta.te, It is here that we are almost helpless. Although 

the symmetry is larger-than that of SU(3), its additional predictive 

power is fairly small. We are forced to define most spin sta.tes of 

the physical particles a.s mixtures of various irreducible represen- 

taticnns of U(3) @ U(3) and it is difficult to derive clear pre- 

dictions of the symmetry, The only conclusion of U(3) @ U(3) 

which has been derived so far states that the spin component per- 

pendicular to the scattering plane is conserved in certain sets of 

scattering processes, 

If we now restrict our interest to a still smaller number of 

dimensions, we may ask: What is the residual symmetry which survives 

for collinear processes? In this case we look for all U( 6,6) 
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generators which cornmUte with. y, and y, but not necessarily with 

yX 
and y O 

Y 
We find a' full U(6) group, different from U(6),. It 

is defined by the matrices Aa, Yo~x$p Y 0 A 0 y w., and o A 
Za’ 

Follow- 

ing Lipkin and Meshkovy5 we shall call this group u(6),, and its 

"W-spin" subgroup defined by yoax, y cs , u - SU(2),. We can use 
OY z 

this subsymmetry for analyzing two-body decays or forward and back- 

ward scattering amplitudes, a.nd we can derive a. tremendous amount of 

predictions which ca,n be tested experimentally at present or in the 

near future. In the second part of these notes we will mainly con- 

centrate on the application of this symmetry to various processes. 

But before that we carry our analysis one more step further and dis- 

cuss the "degenerate" case of a "zero-dimensional" physical problem, 

namely - the problem of describing particles at rest. Here we re- 

quire that our symmetry generators commute only with y, and we ob- 

tain a ~(6) @ ~(6) group defined by the matrices 
(1” Y,) 0.h 

la 

l 

This group includes both SUM and ~(6)~ as its subgroups and 

may serve as a generalization of SW, for classifying particles 

at rest. Its application to physical problems is limited to cases 

like pp annihilation at rest, and even there - at most to one vertex 

of the assumed dynamical mechanism.' The alassification'of the low- 

lying meson and baryon states is, however, clear. The mesons are in a 

(;,z) representation which splits into jJ+l under both SU(~), and SUM. 
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(We shall see later that these two 2's are not identical.) The low- 

lying baryonic states are assumed to be in a (s, 1) while their anti- 

baryons are in (I-, 6). - Higher states can be in the (2, E) or the 

(21,E) for mesons and in (70, 1) or (126, 5) for baryons. These repre- 

sentations are reduced by SU(~), or SUM in the following way: 

(g,g)-t~+~ 

Once again - the SU(~), multiplets are not necessarily identical to 

the LX(~), multiplets. Note that there are no U(6) @ ~(6) invariant 

B% and MMM vertices. However, we do not expect to find such vertices as 

there is no vertex in which all three particles are at rest, 

Before we proceed to the actual detailed analysis of various processes, 

let us summarize our conclusions and see precisely what our assumptions are, 

how we managed to overcome the two basic difficulties of SU(~), and wha.t 

is the price that we had to pay for it. We notice that U(6,6) cannot 

serve as a good symmetry even for one free particle. It ca.n provide us, 

at most, with a classification scheme for the free particles, but this 

classification is completely equivalent to that of the static ~(6) @ ~(6)~ 

In fact, we could forget about U(6,6) and start our analysis from 

~(6) 0 ~(6) and we would still get the same chain of subgroups3 which 

are the suggested approximate symmetries for 0,1,2 and 3 dimensional 

processes, namely: 

u(6) @ U(6mJ(6)W~U(3) @ u(3) x(3) 
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When we apply these groups as approximate symmetries, we essentially 

make a very strong dynamical assumption. We assume that if a certain 

process is Rexternallyn col1inea.r (i.e .J all the real particles which are 

involved are moving along the same line in a certain frame of reference), 

then all its intermediate states are also collinear. This is certainly 

true for one-pole diagrams; it is even true for a superposition of any 

number of pole diagrams in all possible channels of the process, However, 

we cannot expect, for example, that a two-pion exhange diagram for a 

scattering process will be strictly collinear with its external lines, 

The most that we can say is that we hope that somehow the one-pole diagrams 

plus other collinear contributions of more complicated nature are the 

dominant mechanisms for most processes. In this respect we are in a 

better position than that of most phencmenological calculations which 

usually include, at most, a few one-pole-diagrams (whereas we allow any 

number of them, in all channels). However, our situation is worse than 

the one usually encountered in most symmetry schemes, in which at least 

some of the predictions are valid irrespective of any dynamical assump- 

tions, In any case, we would like to point out that the ultimate test 

of our assumptions is the experimental situation and this looks at present 

favorable. 

It is interesting to see, at this point, how we have solved the basic 

difficulty of SU(6), and U(6,6), namely - the separate conservation of 

quantities which are defined only in the intrinsic spin space, If we 

consider U(6)w, which is practically the only new useful symmetry in our 

chain we find that apart from the SU(3) quantum numbers the only conserved 

additive quantum number is Wz which is identical with the ordinary 
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helicity. It is well known that the helicity is conserved in collinear 

processes, as the orbital angular momentum has no component a.long the 

direction of motion. This means that our symmetry does not include any 

new additive quantum number. As for the other symmetry operators which 

are involved, namely yoox and y 0 , 
OY 

we shall see that they lead to a 

classification of the particles which will allow, in principle, all ?- 

values to occur in a given vertex, a feature which is not surprising in 

view of the inclusion of an arbitrary number of derivative couplings in 

the interaction. The Lorentz group is, of course, not a subgroup of any 

group in our chain. It is also clear that a collinear process can be 

transformed into a non-collinear one by a Lorentz transformation, This 

only means that we are not able to solve our original problem, namely - 

to introduce a symmetry larger than SU(3) @ LO This does not mean that 

our chain of residual symmetries is not fully covariant. The "W-spin laws 

of nature" are not changed when we go from one Lorentz frame to another. 

They are, however, formulated most easily in the special frame in which 

all particles are collinear, and there we obtain our relatively simple 

~(6)~ grow0 When the same system is described in any other frame we will 

obtain a group which is isomorphic to U(6)w but is defined in terms of 

more complicated functions of the gamma matrices, 

We have obtained a ewariant version of SU(~) which does not contra- 

dict either the basic principles of physics or the known experimental data 

(to the extent that it was tested), However, we paid the price of being 

able to deal effectively, almost only with collinear processes. 
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II. 

We now turn our attention to a detailed study of u(6),, the collinear 

symmetry group. The three W-spin operators are defined by: 

wz = 2 uz 

It is easy to verify that these operators satisfy the ccmmutation relations 

of ordinary spin operators and hence constitute an SU(2) a.lgebra. We note 

that, apriori, there is a certain sign ambiguity in the definitions of Wx 

and W 
Y0 

We could change the signs in the definitions of Wx asd WY, define 

them by Wx = - $ yoox; WY = - $ YoUy and they would still form an SU(2) 

algebra and commute with y, and y,, as required, In order to resolve 

this ambiguity we go back to u(6) @ ~(6) and diagonalize y, and crx, 

simultaneously. We find, of course, that Wx is also diagonal in the same 

scheme. The question now arises: Is it possible to define Wx as f 2 o x 1, u 

for all representations of u(6) @ u(6)? This is a special ease 

of a more general problem: Given two diagonal generators of an algebra 

(which, consequently, represent two additive quantum numbers), we define 

a third additive quantum number by taking their product, Can we use this 

same definition of our new quantum number for all the representations of 

the given algebra? 

Let us study a trivial example. Consider the original Wigner super- 

multiplet theory,l' based on identifying the four spin-isospin components 

of the nucleon with the components of a four-dimensions1 representation 
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of su(4). We know that as a group of rank 3, SU(4) contains three indepen- 

dent additive quantum numbers. In Wig-her's theory, two of them are tZ 

and (sz, the third components of isotopic spin and ordinary spin. How is 

the third additive quantum number, X, defined? It is ea,sy to find its 

eigenvalues for the nucleon representation by requiring tha.t X cannot be 

expressed as a linear combination of oz and t,. The values of tZ, oz 

and X for the nucleon are (up to multiplicative factors): 

We see that, for the nucleon, X can be defined as: 

X(nucleon) = + tZ 0 (Tz 

The antinucleon is in the conjugate 5 representation of SU(k), Recalling 

that all the additive quantum numbers change sign when we go to the con- 

jugate states, we find the following set of values: 

Consequently: 

X(antinucleon) = - tz'az 
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It is easy to see the reason for this sign-flip: We cannot reverse 

the signs of all quantities in a relation of the form A = B.C, while pre- 

serving the relation itself. The relevant conclusion for us is, of course, 

that in the framework of ~(6) @ ~(6) there is no generator which can be 

defined as f 1 2 yoox for all the representations. If we define: 

Wx(quark) = + 

Wy(quark) = f 

It implies:14 
Wx(antiquark) = 

Wy(antiquark) = - 3 YoUy 

for higher representations (2, etc.) neither relation is correct, in 

general, and more complicated forms are usually obtained, 

Now that we know the exact definition of the W-spin generators for 

quarks and antiquarks we can classify all particles by using the quark 

algebra as a mathematical device (without ever assuming that these elusive 

creatures exist).15 We notice that all W-spin operators commute with the 

Lorentz transformation in the z-direction. Consequently, we may classify 

all particles at rest, knowing that the obtained classification will be 

valid for a particle moving in the z-direction with an arbitrary momentum. 

We first discuss the quarks and the antiquarks. The eigenvalues of 

2 for both a quark and an antiquark at rest are i- 1,16 We can see this 

ea.sily if we start from a positive energy (y, = + 1) solution for the 

Dirac equation for a quark and then go to the conjugate state which is an 

E < 0, y, = - 1 antiquark. We are, however, interested in a positive 

energy state of the antiquark, and this, of course, has y, = f 1, We can, 
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therefore, drop all yds in the definitions of the W-spin operators for 

particles at rest aad obtain: 

For a quark at rest: la WL = W, e iWy = + 2 + 
- 

1 For an antiquark at rest: W+ = W, f iW = - 2 D+ 
Y 

The total W-spin of a quark or an antiquark is, hence, equal to $, and 

they belong to the 6 and 5 representations of SUM, respectively. We 

also conclude that the W-spins of all states which are either pure multi- 

quark states (with no antiquarks) or pure multi-antiquark states, are 

equal to the ordinary spins of these states, The baryons are, consequently, 

in a 56 of SU(~), 3 
- which contains a W = 2 , S = $ decuplet. The antibaryons 

are in a 5-6 and their W-spins are the same. The peculiar sign-flip in - 

the definitions of W+ for the antiquarks induces only one change in 

the classification of the low-lying states. This is found in the mesonic 

quark-antiquark systemo5 A quark and an antiquark can be combined to 

form two ordinary spin multiplets: S = 0 and S = 1, They also construct 

two W-spin multiplets: W = 0 and W = 1. In order to find the relation 

between these two sets of multiplets, let us consider the four different 

helicity states which are obtained: There are two states with Sz = 2 1 
.~~~.. 

which necessarily belong to the S = 1 triplet. Now, W, = S, for all par- 

ticles, hence the Wz-values of these two states are also 2 1 and they belong 

to the W = 1 triplet, The two other helicity states have S, = W, = 0. We 

identify the zero-helicity state of the S = 1 triplet by applying the lower- 

ing operator S- to the S, = 1 state. The obtained state isa 2, 2 -L{jl -A>* j-$$} 

where the two numbers in each state vector denote the helicities of the quark 

and the antiquark, respectively. The orthogonal state $ 
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is, consequently, the S = 0 singlet. The same procedure can be followed 

while resolving the W = 1 state from the W = 0 sta.te. This time we apply 

W _ to the S, = W, = 1 state and find that the S-spin singlet is a member 

of the W-spin triplet and the W-spin singlet is the zero helicity component 

of the S-spin triplet.5 The W-spin triplet is constructed from the follow- 

ing helicity states: 

1 wz = 1 I Z' 12, 2 s = 1; sz = 1 

W=l wz=o 11 
2 29 2 (I - l>- I IL - 2' 1> 1 s = 0; sz = 2 0 

wz = -1 I -59. 1 - 2 l> s = 1; sz = -1 

For example: the four helicity states of the p9n9 system (which are 

the flf and P+ mesons ) are grouped in the following W-spin multiplets 

w= 1: +++ 
t 9 I 

w = 0: 
-1 i 

Pfl 
4 

where the subscripts denote the helicities. 

The 35 representation of SU(~), contains: - 

1. A W = 0 octet of the zero helicity vector meson octet $8) o . 

2. A W = 1 octet which includes: 

a. The non-zero helicity states of the vector meson octet 

v(8) J8) . 
Cl' -1 

b, The pseudoscalar meson octet ha) . o 

3. A W = 1 unitary singlet which includes: 

a. The non-zero helicity state of a unitary singlet vector meson 

,w Jl)* 
4-l -1 

b. A unitary singlet pseudoscalar meson (presumably the 

X0(959) meson), 
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This last state of the 2 of SU(~), belongs to an SU(~)~I singlet. 

(4 On the other hand, the zero helicity, unitary singlet, vector meson V, , 

which is an S = 1 state of a a of ET(~), is the W = 0 state of an 

~(6)w singlet. 

This completes the classification of the low-lying mesons a.nd baryons. 

The classification of higher states can be done in the same way, using 

the raising and lowering W-spin operators, and the higher W-spin states 

are usually found to be mixtures of va,rious ordinary spin states. We 

will not go here into the details of all this but simply note that the 

calculations of processes involving these higher resonances are usually 

more tedious but not more complicated in principle. In particular, 

particles with high spins include components with small values of W, 

thus allowing the coupling of a high-spin state to two low-spin states. 

Such couplings may involve, in general, any value of the orbital angular 

momentum t. 

Now that we have classified all relevant states according to the 

representations of SU(2)w and SU(~),, we go on to discuss various experi- 

mental tests on the symmetry. We start by listing the predictions which 

are obtained by assuming SU(2)w invariance (without referring to the 

SU(3) part). 

1. The PoPoPo, VoVoPo and ToVoPo vertices are forbidden by SU(2), 

where P 
0) 

V,, To are the zero-helicity states of a pseudoscalar, a 

vector and a JP = 2+ meson, respectively. More generally: W-spin con- 

servation forbids any vertex of the form Co -+A0 + B. if 

PA"PB'P(+) 
SAeB++% 

= -1, where Ao,Bo,Co are three zero-helicity states 

of mesons A,B,C with intrinsic parities PA,PB,PC and spins SA,SB,SC. 
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This prediction of W-spin is "trivially" satisfied by the experimental 

data as the same selection rules can be obtained frcm conservation of 

ordinary angular momentum and parity. Consequently, it cannot serve as 

a test of the symmetry. 

2. Fhotoproduction of ~*(~38). In general, there are two indepen- 

3f dent amplitudes in the photoproduction of a Jp = 2 state. These can 

be defined either as helicity amplitudes (which are the same as the W-spin 

amplitudes) or as the usual Ml and E2 transition amplitudes, where 1 

and 2 represent the total angular momentum of the photon. The two helicity 

states of the real photon belong to the same W-spin triplet, thus leading 

us to a unique ratio between the two helicity amplitudes. This ratio is 

obtained from the unique way of coupling a W = 1 state (photon) and a 

wz$ state (proton) to a W = z object (N*). The prediction, expressed 

in terms of the usual eleetroma.gnetic multipoles, is that the transition 

is a pure Ml transition4 and that the E2 contribution vanishes. This 

is known to be consistent with the experimental data to a good accuracy. 17 

3. Electroproduction of N*(1238). The ym vertex in the process 

e- 
*+ 

+p-+e-+N differs from our previous case of photoproduction only 

in the existence of a third amplitude, contributed by the longitudinal 

virtual photon, This term is, however, forbidden by W-spin conservation 

as the zero-helicity component of the photon is a W = 0 object and cannot 

be coupled to a W = $ state to form a W = $ particle, Consequently, 

the only amplitude which contributes to the electroproduction of the 
* 

N is, again, the Ml smplitude,4 and the experimental data, again, 

indicates that the transition is predominantly a magnetic dipole one0i8 

4. Neutrino production of ~*(1238). We consider separately the 

contributions of the vector and axial vector parts of the coupling of the 
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N*% current to the leptonic V - A current. For the vector part, again, 

only the Ml contribution is allowed4 by W-spin. For the axial vector 

part, W-spin conservation predicts that there is no M2 transition 

amplitude, while a.11 other contributions are, in principle, allowed. 4 

5. The coupling of a vector meson to a baryon and a baryon resonance 

with S = W = 2 (e.g. the SU(3) decuplet states) is also predicted to be 

of the Ml type.4 This can be tested, of course, only in cases where 

the one-particle exchange picture is known to give a good description of 

the experimental situation. In various such cases, Ml dominance is 

found to be in agreement with the data.lg 

We now proceed to the predictions of the f'ull SU(~), group. 

6. The Johnson-Treiman20 relations, Using SUM we can easily 

prove the Johnson-Treiman relations for the forward elastic amplitudes of 

K&p, fl'p and K'n scattering (the K'n amplitudes a.re the same a.s the 

K'p, x"p amplitudes by isospin invariance). The derivation is easiest 

if we look at the t-channel for these processes, in which, in ~(6)~ 

language, the reaction is: 

The allowed channels are &, 35,’ 35,, L0 However, the differences 

between the K+K- and K-K' states, etc., are contributed only by repre- 

sentations which are antisymmetric in the two mesons, i.e., only by the 

35,. The two mesons have W = 1, Wz = 0 and can be coupled only to 

W = 0 (there is no W = 2 in the 35, and W = 1 is forbidden because 

the C-G coefficient (,'i,") vanishes). The transition, hence, goes via 

the (8,&) part of the 35F. It can go through I = 0 or I = 1 channels, 

but using the V-spin subgroup of SU(3) we find that it goes only through 
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v = 1. That means that for all three pairs of elastic processes the 

difference between the mp and the mp amplitudes is given only by a 

V = 1, V, = 0, W = 0, SU(3)-octet term of a 3J of SU(G)W. Using the 

Wigner-Eckart theorem we obtain the final conclusion: 

A(mp) - A(i&) = C&n /Vz\ d 

Namely, the difference between the amplitudes is proportional to the 

eigenvalues of the operator Vz for the appropriate meson, where a is 

a common term which includes the reduced matrix element for the processes 

and the C-G coefficients for the pp system which are the same bn all 

cases. We know that: 

(K+\Vz/Kf) = 1; (K"jVZjKo 

Hence: 

I$ [A(K+p> - A(K-p)] = A(fi+p) - A(fi-p) = A(K'p) - A(??'p) = A(K'n) - A(K-n) 

Using the optical theorem we get 

$ [q$K+??) - at(K-p)] = at(K'n) - crt(K-n) 

= $ ; (xfjvzjlrf) = $ 

This is very well satisfied by the experimental data over a wide energy 

range, 21 The other relation, concerning the Kp and up cross sections, 

does not contradict the data, but the agreement here is poorer."l 

We should add that this success of SU(~), is extremely mysterious 

as the experimental situation with respect to SU(3) for these reactions 

indicates that strong SU(3) symmetry breaking effects are involved.22 
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7. pp annihilation at rest into two pseudoscalar mesons. The 

annihilation goes via a C = -1, 3S state and SUM predicts:4 

(&In+n-) : (&lK*IC-) : (j$3IK%q = 1:2:1 

The derivation of these ratios follows the same lines as that of the 

Johnson-Treiman relation, and the only contributing C = -1 channel is 

the 35,. The prediction for the ratio of the charged to neutral K 

pairs may serve as a cleaner tests of the symmetry than the predicted 

KK/ER ratio, as the K-R mass difference may induce large kinematical 

corrections for this last ratio. It is predicted that the number of 

K+K- pairs will be larger by a factor of four than the number of K>z 

pairs produced in the annihilation process at rest, 

It is interesting to note that if we consider the pp system to be 

really at rest (and not in a ffprotuniumtl state with finite relative 

momentum) we find that the si;pV vertex is forbidden in this a,pproximation. 

This follows from the fact that the j?p system at rest has y, = 6,16 

while a moving vector meson cannot have Y, > 29 The simplest allowed 

diagram for the annihilation process is, in this case, a one-baryon ex- 

change diagram. Similarly the pp annihilation at rest into an electron- 

positron pair cannot go through a one-photon intermediate state, if we 

assume that the static ~(6) 0 ~(6) invariance can be applied to the 

pp system. 

8. cp-t PJI. The cp is usually defined as the S = 1 state of the 

h'X9 system whereas the 0) is built out of (p'x)'+ n'n'). These defini- 

tions are motivated mainly by the approximately known octet-singlet 

mixing angle, predicted by the Gell-Mann-Okubo SU(3) mass formula. If 
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the cp is really identical with the h9x9 vector meson, we can show that 

the decay cp -+p'ic is forbidden by S-U(~),. The simplest way of seeing 

this is to consider the separate conservation23 of WA', the total W-spin 

of all A' and x9 "particles." The cp -fp'l: decay may go only through 

the non-zero helicity state of the cp as the VoVoPo vertex is forbidden 

(prediction No. l), However, this helicity state of the cp ha,s 

w = WA’ = 1 while the p,rc system contains no 1' or x1 quarks and 

has WA' = 0 (but W = 1 or 2), WA' conservation, then, forbids the process. 

This prediction is found to be in very good agreement with the data as the 

cp --+pg partial width is experimentally very small (18 2 8% of the total 

C$ width)24 and phase-space considerations lead us to a still much smaller 

matrix element for the decay. 

9. - 5 The famous 3 ratio between the magnetic form factors of the 

neutron and proton is a,lso a result6 of SU(~),. 

10. Various interesting predictions concerning a large number of 

photon-baryon, meson-baryon, baryon-baryon and antibaryon-baryon forward 

scattering amplitudes have been derived25 from SU(~),. These are dis- 

cussed in detail by S. Meshkov in these proceedings. We mention here 

only two points concerning these predictions. First, there are various 

eases in which SU(~), gives a definite ratio between two otherwise 

independent isospin channels (i,e., fi +- N -+7c + N*). In these cases there 

are no problems of mass differences and the difficult problem of "how to 

compare the predictions of the higher symmetries to the experimental 

scattering data"" is avoided. However, we encounter here another diffi- 

cult problem: What is exactly meant by 'forward scattering amplitude?' 

It is, at present, impossible in most cases to measure differential cross 

sections in such small angles that will give us clear information about 
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the expected 0' angle amplitude. Compa.ring such predictions with experi- 

ment is, hence, very difficult. 

The other point that we would like to make is the following: consider 

the set of reactions P t- B +P I- B* where P, B and B* are respectively 

the pseudoscalar meson octet, the baryon octet and the decuplet of baryon 

resonances. If we consider the forward scattering amplitude in the t- 

channel we find that the two mesons can be coupled to W = 2 or W = 0 

while the BB* system can be in a W = 2 or a W = 1 state. The process 

can proceed only via the exchange of a W = 2 (but not necessarily S = 2) 

object. This is not surprising as we know that a pseudoscalar meson can- 

not be coupled to the two mesons and if we exchange a vector meson we 

get only an Ml contribution in the VNN* vertex and the Ml amplitude 

is known to vanish in the forward direction. This means that W-spin 

invariance I- one vector meson exchange predict zero forward scattering 

for all P + B -+P + B* reactions. It also means that the ratios 

predicted by W-spin for the cases of a dominant vector meson exchange 

refer to the "background" contribution of other terms which are induced 

by the exchange of a more complicated system or, possibly, by simple 

poles in the S-channel, In such cases we cannot expect both the predic- 

tions and their comparison with experiment to be too significant. 

ll. Using a broken SU(~)W, one can derive predictions for the non- 

leptonic decays of baryons.26 However, these predictions strongly depend 

on the assumed transformation properties of the non-leptonic weak 

Hamiltonian. We will not discuss them in detail in these notes. 

l2. It is well known that the SU(3) symmetry is badly broken for 

various scattering processes. " Consequently, we have to include these 
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symmetry-breaking terms in all our calculations. On the other hand, it 

is apriori clear that other symmetry-breaking effects are ccmparable to, 

if not greater than, the SU(3) breaking terms. These are the terms which 

break the SU(2)w symmetry (e.g., the g-p mass difference) or the ones 

which appear in the transition stage between an SU(3) @ SU(2), invariant 

theory and a complete SU(~), invariance (e.g., the N-N* mass difference), 

A detailed analysis of the SU(~), transformation properties of all the 

various symmetry-breaking terms is clearly needed, Such an analysis ha.s 

not yet been done. It is, however, known that the simplest possible 

assumption, namely that of a 35 dominance of the symmetry-breaking terms - 

is, in general, not correct02' 

We conclude that the assumption of an approximate W-spin and ~(6)~ 

invariance may lead us to a reasonable description of various physical 

situations, including certain vertex functions and forward-scattering 

amplitudes0 The agreement with experiment is in some cases remarkably 

good; in fact, it is by far better than what we should expect from a 

theory in which the P and R masses are degenerate. It is perhaps 

worth mentioning that all the major successes of SU(~), occur in cases 

where mass differences are irrelevant (~~/c~p, cp --+pn, Ml dominance, 

Johnson-Treiman relation, etc.). Is this an accident or a meaningful 

result? We do not know. 

Are we allowed (and if yes, why?) to exclude non-colinear inter- 

mediate states? 

How should one include all symmetry-breaking effects in the calcu- 

lations? 

What can be predicted by the coplanar U(3 > 0 u(3 ) group? 
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Is there any simple U(6) @ U(6) mass formula? 

How do the 0°-angle predictions of W-spin change when we go to small 

angles? 

These are characteristic problems which we still have to answer if 

we want to apply all these ideas consistently to strong interaction 

physics. 
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