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ABSTRACT

Assuming that the equai—time commutation rules for the
vector and axial-vector current octets proposed by Gell-Mann
are valid and that the divergence of the AS = 0, AL = 1 axial
current-is a strongly convergent operator obeying unsubtracted
dispersion relations and daminated by low fregquency contribu-
tions, we derive a sum rule for the rcnormalization of the
neutron axial B-decay constant, Gp, by the strong interactions.
The result agrees with that previously obtained from the assump~
tion that the axial-current divergence is proportional to the
pion field. The results are generalized to the strangeness-
changing leptonic decays in the context of Cabibbo theory and
generalized Goldberger-Treiman relations and used to compute
The d/f ratio for the weak baryon-axial current coupling and

an independent value of GA’

Work supported by the U. S. Atomic Energy Commission.



I. IWTRODUCTION

Reeent calculations of the effects of the strong interactions in
renormalizing the axial-vector coupling coustant in B-decay,l’2 gAzGA/GV’
sive good agreement with the experimental value. These resulls were
derived from the following three asé—:umptions°

1. The equal-time commutators of the spatial integrals of the time
camponents of the hadron currents measured to first order in the weak and
¢lectronegnetic interactions, the "charges,” obey the algebra of su(3) x =u(3)
as postulated by Gell-Mann et al.”

2, The effective Hamiltonian for leptonic decay of the hadrons 1s
a current-current interaction which couples the appropriate members
vector and axial-vector current octets of the strongly interacting
particles to the usual 7“(1—75) current of the leptons through the simple
ccmbination VH + AH°4

3. Partially Conserved Axial Current (PCAC) hypothesis. The
divergence of the AS = 0 axial-vector current is proportional to the

. P 5—-8
pion field.”

i Oa(0), 1= 1,23 (1.1)

BOCACix(X) = - iv2 1" Mg /e

wvherae @i(x) iz the renormalized Heisenberé field of the sn-mesons, p is
the viva muso, M is the nucleon mass, gy, is the rationalized renormalized
w-nuclcon coupling constant. .
T thie article, we derive the sum rule for g, [Eg. (TI.14)], from
o more general form of PCAC analogous to that used by Bernstein gz'gl.g

to derive the Goldberger-Treiman relation. We assume that the divergence

of the axial current is a highly convergent operator whose matrix elements
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satisfy unsubtracted dispersion relations in the four-momentum transfer
cquared, q“. TFor small g€ and certain values at the other variables in
the problem, these matrix elements may be daminated by nesarby poles.

These notions will be made more precise in the theoretical develop-
ment of Section IT where we treat the problem of formulating an unambig-
uous definition and region of validity for pole daminance of matrix -
elements of the axial current divergence when these matrix elements are
functions of more than one invariant varisble. In Section III the results
are generalized to include the AS = 1 leptonic decays in the context
of Cabibbo fheorylo and generalized Goldberger—’l‘reimanll relations. The
numerical evaluation of the sum rules is discussed in Section iV. The
results give !gA‘ﬂ 1.2, and a d/f ratio similar to other estimates.
While there are considerable numerical uncertainties in the evaluation
of the sum rule for &S = 1 decays, the general consistency with Cabibbo
theory is good and is strong evidence against the explanation of the
suppression of AS = 1 decays relative to &S = O decays as a strong inter-

action renormalization effect.

IT. THEORETICAL DEVELOPMENT FOR AS = O DECAYS

As a starting point we consider a matrix element of the time-ordered
product of two components of the axial-vector current between one-proton

states of equal mamentum

Rog =fd4x etaeX < P]T (Ag(x) Aé(o)) ]P > - '(II-l)

+

with Ay = A5 = 1A% .
.

A%, 1 = 1,2,3, are the isovector members of the octet of axial-vector

currents. The tensor, Rop, 1s related to second-order forward scattering
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of a proton by an axial-vector field. From general invariance arguments,
Raﬁ can be written as a sum of kincmetic second-rank tensors formed from
combinations of p,Aq, and the y-matricec evaluated between Dirac spinors,
cach multiplied by appropriate normalization factors and a Lorentz-
invariant scalar function. In the usual manner, the arguments of the -
scalar functions are chosen as the invariant variables in the problem,

which in this case are

pz = M2
qz
Poq = MV

or some linear cambination of these three. V can be considered as the
energy of the particle incident on the proton in the rest system of the
proton, the "laboratory system.”

Fram Eq. (II.1) we obtain

7 (8%%(x) Aé(o)) P>

. A _
qoﬁaﬁ(qg,v) = i\/ Atz e %X {< P

(I1.2)
+8(x ) <P [A;(x), Aé(o)] P >]
and
%P = =fd‘1‘x e 1e-X [< P‘T(BO‘A*"(o) BBA_(X)) P>
oB a p
- a(xo) <P [aO‘Aa(o), A;(x] P> (II.3)

+ a(xo) iq_B <P

: >}

We have integrated by parts to cast Eq. (II.3) in the given form.

[Ag(o), Aé(x)]

Eq. (II.3) is the basic equation for deriving our results. The sum rule
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is obtained from Eg. (II.3) as a low energy theorem™® in the limit g®—0,
v —0. We proceed to evaluate the teruws in Eq. (II.3) up to first order
in Ve Fof fixed space-like or light-like q2, the 'invariant functions in
the decamposition of Rpg can be shown from the axicns of local field theon'.‘y;L3

to satisfy dispersion relations in V. For v = O the only singular term .

1§

as q2—+0 is the one—neutron pole at qe + 2Mv = 0. That is, the contri-
bution to Rog(V = 0, g% = 0) from the cuts is finite in this limit.
Therefore, if we consider qQQBRoﬁ and take the lim qOL+O, the cut contri-
butions are at least of second order, and the finite and first ordér terms
onbthe left side of Eq. (II.3) come entirely fram the one-neutron Born
term.

This Eorn term will give a factor gi. On the right side of Eq.
(II.3), the term involving the time-ordered product of the axial current
divergences will be related to the forward n-p scattering amplitude on the
mass shell via analyticity in q2. The assumed equal-time commutation
rules determine the last term on the right. The combination of these
various factors leads finally from Eq. (II.B)Ato a sum rule for gﬁ,

Eg. (II.14).

In deriving Eq. (II.3) we have integrated by parts with respect to
space and time variables and discarded surface terms. The spatial surface
terms give no contribution if we use wave packets. The temporal surface
terms at t© = + o vanish in the same menner if all the intermediate states
inserted in our expressions lead to oscillating time behavior, that‘is,
if 2ll intermediate states have different energy from the one-proton
state.** TFor q2 = 0, the only dangercus term comes from the one-neutron

intermediate state; in our calculation we shall explicitly assume the
i
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neutron mass, My, to be different from the proton mass, M?. In final
result we let M, = MP and ascume charge independence; the answer is
insensitive to the order in which we let the various small quantities
in the problem tend to zero. This procedure of keeping Mh % M? until
the end of the calculation will have the additional advantage of allow-
1ang the derivation to be generalized immediately to renormalization of
the strangeness changing decays, (Sec. III), where the Born terms involve
nucleon-hyperon transitions and the masses are manifestly unequal.

For reference we note that the matrix element of the axial-vector

current between proton and neutron is given by

e

< P(pl>[;x§(x)[ N(p,) > = (2x)"? [MNMp/(EnEp)]
' (II.k)

eiq'XgAﬁﬁ(pl) [7Oy531(qg) - qoyst(qz)] T+hh(p2)-

Yot oo F(O) =1
1, =P, - P ; F(0) =1

+ 1 . . . . . .

T =3 (Tl + 1T2) is a nucleon isotopic spin matrix.

If the effective Hemiltonian has V - A coupling, then gy equals QA/GV 5
the ratio of axial-vector to vector coupling constants measured in

ordinary f-decay. From Eq. (II.h4)

1 | |
o - 2 iq. —
<P16 A:;,}N > = (21)7? [MmMp/(EnEp)]2 e ¥ gAD(q?)up(pl)75'r+un(p2>- (II.5)

D(q®) = (th+ MP) F (a®) - anz(qz) .

The assumption that D(qz) obeys an unsubtracted dispersion relastion and

that D(0) 1is dominated by the one-pion pole at q2 = p® leads to a



derivation of the Goldberger-lreiman, (G-T), relation,

fﬂ == —\/5 GAM/Gnn . (11.6)

L dic the decay constant of the charged pion defined by

n

-1 -
< ofp%k(0) x” > = ~(2n) /2 (28 ) w2 (11.7)

With these definitions the Born contridbution to RaB can be evaluated
'as

@ B.Born _ . 2 220 2Y _ om (o2
Fog™ = gl [0+, + V) - a5 (@)

2 2 2 2 2 (II.'8)
+ D%(qg )(MP-MN+V)/(q + M_p - My o+ QMPV)} .

-3
N = (2rx) M /E .
b (&) P/ b

The last term on the right-hand side of Eg. (II.3) is determined

Trom the assumed equal-time commutation rules:

6(x ) [85(0), a5(0)] = 2v3()s{*)(x) (11.9)

+ (more singular terms).

V; is the third camponent of the total isotopic spin current. We
generalize the SU(3) x SU(3) algebra to include camutators of time-
canponents of currents with spaée—componentso

The more singular terms of the equal-time commutator involve deri-
vatives of delta fun‘c;tions.15 In the integral of Eg. (II.3a) these terms
give npolyncmials in g. Since the results of interest will be obtained
in the IimqX -0, the derivatives of delta functions do not contribute

in this calculation. From the delta function term in Eq. (II.9) one has

fd"‘x e.iq'xé(xo)iqﬁ3 <p [AZ(O): Aé(x)]

p>= inv . (11.10)
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Returning to Eq. (II.3) we Jave still to evaluate the first two terms

. . o, + -, .
on the right side. The equal-tii: commutator, [5 Aa(O), AB<X,OXL is pre-
{
>y . .
sunably proportional to 6(3)(x).i This leads to a finite g-independent

tern in Eq. (III.3a), \
)
|

C = fa‘*xe‘iq‘xa(xof; < Pi[aoi'x;(o), A;(x)] P>. (II.11a)

J
Let the first term on the left side of (II.3) be denoted by

R(q3,V) = fd“xe'iq°}: < P|T <aaA;(o), BBAé(X)>

P>, (II.11p)

It is straightforward to show that R(0,0) = C. Thus, after eval-
uating. R(q,V), we need keep only terms proportiocnal to V. Since R
involves matrix elements of the divergence of the axial current, we assume
that for fixed v, R satisfies un unsubtracited dispersion relation in a®.
For v =0, q2 = 0, we assume that R is dominated by nearby singularities.
These are the one-neutron Born pole at q2 + M; - M§ + 2Mpv = 0 and the
one-pion poles at q2 = ueo

There is, however, a possible ambiguity in defining the residues of

[

the poles.l In this problem, the independent variables may be taken as

o

=~ 2 - 3 3
g” and ¢ =V + ag”, and we can disperse in q2 with ¢ = 0. As we vary

"a", different parts of the total dispersion relation for

the constant,
R(0,0) are ascociated with the residues of the poles and the integral over
the continuum. The problem is to choose "a" to give the best pole approx-
imation, to put as much as possible of the contribution to R(0,0) into
the nucleon and pilon poles and make the corrections due to the integfal
over the branch cut, which will be neglected, as small as possible.

In the context of dominance by nearby singularities there is a natural,

if somewhat arbitrary, criterion for a best pole approximation, namely,
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choose "a" to keep the threshold of fhe cut as far from the poles as
vessible. The locations of the singularities in the Real q2 - Real v
viane which follow from perturbation theory are plotted in Fig. 1. For
any fixed v, R satisfies é dispersion relation in qa. For q2 fixed
and not too timelike, R should obey a dispersion relation in Vv with -
singularities on the Real v-axis. The anomalous thresholds come from
the dispersion-perturbative diagram shown in Fig. 2. From Fig. 1, it

is seen that the criterion given above leads to the value a = 0, or

g =%V =0, as the best choice of the fixed second variable for writing

a pole-dominated dispersion relation for R(0,0). For Vv = 0, the cut
has an anamalous threshold at qa & 8p2.

The choice of Vv =0, (a = 0), can be justified also by general
symmetry arguments. The thresholds are determined by the masses of inter-
mediate states in the s and u channels, where s, t, u are the usual
Mandelstam variables. Here t =0, so s and u are related to q2
and Vv by (i>= M2 + qe + 2MV. Tor the purpose of specifying intermediate
states in R, both s and u channels look like m-nucleon scattering
and have the same intermediate states available. For a particular choice
of "a'", denote the residue of the pion pole by §(v = -ap®/M, u®). It
follows from the statements above that R is an even function of a.

To retain the symmetry between the s and u channels one should dis-
perse in q2 with a = 0.
For fixed ¢ =0, R(q®v), which resembles a forward scattering

amplitude, should satisfy a dispersion relation in VY, and we can separate

R into contributions from the Born énd continuum terms of the



V-dispersion relation. Thus, for small qg,v

ol 2 s =Re=Yi-/ _ 2 g2 _ 2 Ry - .
R(q5,v) = 1Np [;AD (q.)(M_p Mo+ v)/(q® 4 Mp M-+ 2MPV) + R(q ,vﬂ
(I1.12)
- . a_B.Born
This Born term cancels the singular term of q q Ryp » Eq. (11.8), -
and clearly satisfies an unsubtracted dispersion relation in q2. There-
fore, ﬁ has no one-neutron pole and must itself obey an uunsubtracted

~

disperéion relation in qZ. R has double and single one-pion poles at
¢ = u® and a cut starting at g2 = 8u®. In the spirit of our approach,
the pole contributions daminate for q2 = 0 and the integral over the
branch cut is neglected. In the same manner it will be shown that the
single pole contributions are small. The result fram keeping only the

double pion pole term is

5 - 2'ﬁ 2
R{O,v) = -f- 'In__p(p. ,V) (I1.13)

where Tﬂ_p(ug,v) is the invariant forward n-proton scattering ampli-
tude on the mass shell and with the Born terms subtracted. From the

. . . 7 . .
usual dispersion relations®’ for the forwerd n-nucleon scattering amplitude,

R(0,v) = ~fp/m fdv' [An-P(Hz:V'VV_‘ - V) +Aﬂ-p(H2,—v‘_,)/v‘+ v)] .
g (I1.132)

From unitarity and crossing symmetry,

A (V) = T (V) = ka (V)

Aﬂ-P(—w = ko (V) v>u,

where the o's are total cross sections and k is the magnitude of +the

pion three-monentum in the laboratory system.
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Recalling that we are intercoted in equating the terms O(v) as
Vv =0 in Eq. (II.3) we collect the results fram Egs. (II.8), (II.10) and

(IZ.13a). Substituting we obtain the sum rule

gi =1 - fj/nf k;j;’ [an_p(v) - Gﬂ”’p(v)] (II.l’-!-).
K

If we eliminate £ by the G-T relation, we can determine gy from

strong interaction cross~sections only

1/g§= 1+

2M2
Il
g

f% [gﬁ_P(v) - cﬁ+P(V):l_ (II.1ka)
il

n

We discusg the neglected single pion-pole terms. These can be
- written as

R(0,0) = £ r(12,0) + h.c. (II.15)
5.D.D-

As an analytic function of ¢2,r has no pion-pole

1 Tar(o”
w(6%,0) = 2 [ Zlos0) g2
2 9 -k

(0]
(1I1.16)

N o
Ty « Z <Pﬂ:ljplm><ml5AalO>
mic '
If wve considered the matrix element for forward creation of a pion from
a nucleon by scattering of the axial-current divergence, pole dominance

at o~ = 0 (off-mass-shell pions) would imply

‘fﬂTﬁN(pe,O)l>> 'r(0,0)] .

Since cg ~ 8uZ, r(p2,0) = r(0,0) and r(p3,0) is similarly unimportant

couparcd to fﬁTﬁN(uz,O).



IIT. ©SUM RULES FOR &S = 1 DECAYS

The results of the preceeding section can be applied to the 485 = 1
decays in the context of the Cabibbo theory of weak interactions if one
accepls the generalization of the G-T relation to K-meson polé dominance ~
Tor the divergence of the strangeness-changing axial currents. We
briefly review the Cabibbo theory of leptonic decays.

The SU(3) X SU(3) commutation rules fix the relative scale of the

veetor and axial vector currents. The ccmbinations

ot = [ L (e +ale)ad, 1= 1,..08,

form two mutually commuting octets of chiral changes. The hadron
current which couples to the leptons and is measured in decay processes,
is a camponent of one of these chiral octets

shed _ s (v“la- Al+12) + 5ind (v‘?+is - A‘*“s) (III.1)
v o o L i

The Cabibbo angle, 6 , which determines the suppression of the
A5 = 1 decays relative to the 4AS = 0 decsys is an input parameter to
the structure of the effective weak Familtonian. The problem of whether
the right-handed or left-handed current appears is determinéd from ex-~
periment. In the limit of exact SU(3) symmetry the vector currents
are unrenormalized, and their matrix elements between one baryon states

have only f£-type coupling. For the corresponding matrix elements of the

axial current, we have in the 8U(3) limit
B.B

<EO)AL0[F 02> = g Wedy g ulo) = g, (o2, 5y + aay JRe)7 7 ().

1,3,k =1, ..., 8. - (III.2)



o

where 1 end d are the usual Gell-Mann coupling coefficients, and we
have neglected trivial normalization factors.

Empirically*s+8 this description gives a satisfactory £it to the
presently available data on leptonic decays even though SU(3) is a badly
broken symmetry. The origin of the lack of renormalization for the vegtor ~
currcnts is suggested by the theorem of Ademollo and Gatto,l9 which shows
that there is no renorﬁalization of the vector currents to first order in
the symmetry breaking' because the space integrals of the time components
of the vector currents are the genergtors of SU(3). There is no such
theorem for the axial~vector current.

However, if we believe that the cammutation rules of the vector and
axlal-vector currents are unchanged by the SU(3) breaking interactions,
then the axial currents transform exactly as an irreducible octet tensor
even in the presence of symmetry brezking. The experimehtal success of
Eg. (ITI.2) in describing the axial matrix elements suggests then that the
one-particle states méy be nearly pure octet despite the large mass split-
ting due to SU(B) breaking.=°

The divergence of the axial current, howéver, does not transform
like a pure octet tensor if SU(3) is broken. Indeed, the Cabibbo theory
mives explicit SU(3) violation of the matrix elements of Boké due to the
mass splittings. The generalization of the G-T relations to the strange-
ness changing decays implies that the meson-baryon couplings have the
came ¢/ ratio as the axial current-baryon vertex but the meson couplings
show explicit dependence on the physical baryon masses. The results are
the same a5 those of Freund and Nambu®' who assumed that the currents are

conserved but the states are not pure.
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To cheek the consistency of this picture we obtain sum 1rules for the
A3 = 1 decays. The procedurce ic exactly the same as in Section II. Start
.. - N 4+15 4-15 . .
with mutrix elements of T(AL ™ (x) Ag (0)). Consider matrix elements
of this time crdered product between toth one-neutron states and one-
proton states respectively. In the first case the Born terms are due to
a »” pole. In the second both £° and A° contribute. These give the

sum rules®®

[~e)

-2 ' .
1= @E) +E S 2 a2y (V)] (11.38)
v
922 A
2 = (¢ DZO) + (g )2 + .}f %—z- [AK-n(v) - AK+p(V)] (III.3b)
v

- The A's are absorptive parts of forward scattering amplitudes. For
v > MK they are proportional to total cross-sections, but the K-nucleon
dispgrsion relations have cuts in unphysical region due to the hyperon-
pion channels. fK is a K-meson decay constant defined in analogy to
Eg. (II.7). In Cabibbo theory, fy = T, and the gp's are given by Eq.
(I1I.2). Meking these substitutions in Eq. (I1I.3) and using G-T one

obtains

i

. 2 %
1/g§ (1-20)2 + f [AK_ (v) - Awh(v)] (III.4)

ng

m O
M2 by .
2 _ n d
1/ef = (1-20 + (4/3)0) + ;-g;g: J \-}-Z— [V - AK%(V)] (III.5)
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Ivaluating the dispersion integrals in Eq. (III.4), one determines
sas and & or the d/f ratio. By concidering also the commutator of the
A3 =1, &9 = 0 axial currents and taking all possible diagonal matrix
c¢lements of the three canonical commutators between baryon states, one
can derive six more sum rules. They involve unmeasurable scattering
processes, but in the limit of exact SU(3), they can each be shown to

be cquivalent to Lgs. (IT.13), (IIiQBa) or (IIT.3b).

IV. NUMBERICAL RESULZS AND CONCLUSIONS

i) (o}

A S o= 0 Axial Current

The sum rule for the &S = 0 axiai-vector [Eq. (II.14a)] is evaluated®>
using tebulated values®t of the experimental pion;nucleon cross sections
to k=5 BeV/c. The very high-energy data is fitted with the exponential
form™>

o&ﬁp(v) - cﬂ_p(v) = py 07 (Iv.1)

The convergence of the integral in Eq. (II.1%a) depends on the validity
of the Pomeranchuk theorem but the numerical result is insensitive to the

details of the high-energy behavior. The result is

1 - 1/gf = 0.246 (IV.2a)

. lgAI = ,GA/GVI = 1.15 (IV.2h)

.

The best value calculated from experimental B-decay measurements is=>

(Gy/Gy) = -1.18 + 0.02 . (1Iv.3)
exp
The theoretical uncertainties in Eq. (II.14) are due mainly to the

continuum terms that have been discarded. This approximation is used for
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¥, . (II.13), and in deriving the CGoldbecger-Treiman relation. From
the couparison of G-T with experiments, the errors inherent in this type
ol approximation may be about 20% for the right-hand side of Eq. (III.2a)
but only about 5% for Gy For example, 1if we evaluate Eq. (IT.14)

using r.oas determined from experimental measurements of the lifetime -
3 .

of the charged pion,27 the sum rule yields
lgA‘ = 1.21 (Iv.2bt)
Errors in the calculated value of 8y from uncertainties in the
¢xact high-energy behavior of s-proton cross sections and the best exper-
Imental value of g g are about 1%. It is the effect of the (3,3)

resonance in Eg. (II.13) that mokes

gal> 1. In fact, the (3,3) resonance
contribution alone gives IGA/le ~1.35, and the higher energy I = 1/2
resonances reduce this value. Thus, the (3,3) resonance does not saturate
the sum rule.

From Fig. 1 same general conclusions can be drawn about the expected
domzin of validity of pion pole dominance in this problem. Fram the

postulated equal-time commutation rules for the weak charges, one can

obtain directlyl’14 a sum rule Tor 9%
e
62 =1+ f %ﬁ [0%(0,v) - D7(0,)] (Tv.k)
pp®/aM

wvith
:L.
D(0,v) = ImR (0,+ V), v>pu+ p3/oM . ‘

(1Iv.5)

1+

D can be measured in high-energy neutrino reactions when the lepton is

vroduced in the forward direction.=®
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This result is obtained by‘writing a disperion relation in v for
3(0,0) in Ig. (IT.3). The result, Eq. (I1.14), is obtained by first
toking the pole eppradmation in g for R(0,0) and then dispersing the
regidue of the pion pole in V. Tor the intégrand in Eq. (IV.4), however,
one cannot justify directly replacing the matrix element of D:t by their -
pion pole contributions.

This follows from Fig. 1 where it is seen that in the integration
region for v of Fas. (.1ha) and (IV.4), the threshold of the cut in g%
moves past the one-pion pole. That is, for physical VvV there is no
isolated pion pole, and multi-particle thresholds in q2 are as close
to qe = 0 as the one-plon state.o”

Nevertheless, as V —% w, a return to pion-pole dominance can be
Justified for Di(O,V). The position of the singularity from a state of

invariant mass, M7 , in the & or u channel is given by

e 0

-
Fad

q? + oMy = M2 - MF .,

Thus, as \v;—+w, the threshold for any state of finite mass moves off to

g
=

¢~ = -+ », The only singularities remsining near q2 = 0 are the one-~
pion pole end very heavy inelastic stetes. The normal threshold at

q® = 9 u° remaing Tixed. In the spirit of PCAC, with BHAH assumed to be
a hichly convergent operator satisfying unsubtracted dispersion relations
one expects that very heavy states are unimportant in the spectral

Y ™~ N *
Tunctions for OHA#° Therefore, as \v‘ —+w, the only important contri-

bution near q2 = 0 comes from the pion pole at q2 = p®, This leads
to a derivation of Adler®s proposed tests of PCAC in high-energy neutrino

reactions® The preceding argument explicitly uses the PCAC hypothesis
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in dignersion theory as a pbysicul ascumplion about small numerators as
well us a geametrical statewent wbout large denominators or far-away
cingularitics. Taith in cuch arguments in needed also to Justify K-meson

pole dominance of the divergence of 45 = 1 axial current.

13

ez}

Stroneeness~-Chancing Currents

The numerical evaluation of the sum rules for the A4S = 1 currents,
Eq. (III.l), is complicated by the presence of an unphysical region in
the K-nucleon channel extending below the elastic threshold. Above the
threshold the integral can be expressed in terms of total cross sections

ac in the w-nucleon case. The sum rules can be written as
1/g§ = (1-20)% + 2I(¥n) (IV.6a)

/e = (1 - 2a + (4/3)0) + I(Kp) (IV.6b)

The contributions of the different encrgy regions to the dispersion
intesrals for I(Kn) and I(Kp) are summarized in Table I and discussed
below.

(a) Unphysical region. Vv < Mg

We asgsume that the only important contributions come from the I = 1
DP-WEVE Tresonance Yi(1385), and the continuation of the I = 0,1 S-waves
below threshold. The YT is a member of the decuplet of spin 3/2
resonances. To estimate the Yi contribution to the K-nucleon integrals

we assumne a phenomenological B EM (resonance-baryon—meson), coupling

Loeel0) = = N T () ¥(x)0%(x). (v.7)

- 18 -



wvhere the W“(x), V(x), ¢(x) are the field operators for the spin 3/2

resonance, spin 1/2 baryon and pseudoscalar mesons respectively. The
‘ . . . . . ol
resonance 1ls described by the Rarita-Schwinger formalism.”

The decay width for a resonance is related to the effective coupling
constant, A, by ' -
P = (23%2he) [0+ )2 < 2] e (17.8)
where k 1s the momenta of the baryon and meson in the center-of—mass'
system. ME, Mp and Wy are the masses of the'resonance baryon and meson
respectively. We assume that the coupling constants, A, for all the
ﬁ%EM couplings are rclated by SU(3). The Y:NK coupling is éomputed
Tram the observed width3’ for A(1235) =N + 7. Then the Yi is inserted
as a pole in the KN scattering amplitudes. Various estimates“of the
effects of SU(3) breaking on the B EM couplings indicate that the Yi
contribution is uncertain within a factqr of 2.

To evaluate the I =0 and I = 1 the S-wave contribution below
threchold we use the complex-scattering length, zerco-effective range
K-matrix formalism of Dalitz and Tuan.-> Recent experiments on low ehergy
X~ proton ccattering by Kim and Sakitt et 32.33 give very similar solutions
for the two complex scattering lengths. Each of their solutioné shows
resonance tehavior below threshold in the I = O channel at the mass of
the }‘fxg(z_h@)o

Both sets of scattering lengths were used to evaluate the S-wave
contributions to the dispersion integrals below threshold. The integrals

vere truncated at the Z~x threshold.

-9 -
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(L) Phycical region vf> My .
i

In the physical region ﬁor KN and KN scattering, the integrands in

the dispersion integrals can be cxpressed in terms of total cross sections.
. lab . ) = . .

For low energies, P < 0.3 BeV/c, we use the KN cross sections given

by the Kim and Sakitt solutions. The KN cross sections at low energy -

have been measured; they are small and smoothly varying. We have collected

the available experimental data’? for the integrals up to Plab =6 BeV/c.

K
Ir'oxr Péab > 6 BeV/c, the experimental cross-section differences™ occurring
in Eq. (III.4) can be reasonably well-fitted with an exponential form as

in Eg. (IV.1). For KN cross sections we use-©

o -0 : =D v Os5, (Iv.9)

The contributions fram the asymptotic region, P%ab > 20 BeV/c, are about
10% of the total integral

The possible numerical errérs Tor these integrals are estimated to be
~20%. This is in addition to errors iatroduced by the pole dominance
approximation. Equations (IV.6a) and (IV.6b) can be solved simultaneously
for O and Bpe There are two solutions to the resulting quadratic
equation for . One solution gives & = 0 and g = 0.85 and is dis-

carded. With the indicated errors the other solution is>’

a 0.10

0.7

i+

(1Iv.10)

‘5A} 1.28 + 0.10

The solutions for the two sets of results in Table I are closer
than the statistical errors indicated above. Correcting the I's for the
errors in G-T does not affect the solution for & but gives
\gAl = 1.20 + 0.10 | (Iv.10')

- 20 -



e consistency with the value for () obtained from the &S =0 sum
rule i culte good. The colution for O agrees within error limits with
She beut Cits of Cobibbo theory to experimental deta on semi-leptonic

. TG e ed
Aeeays . These give

§0'67 + 0.03 (Brene et al.)
BN CRE (Willis et al.) (Iv.11) -

Theece results yield a consistent theoretical picture of low-energy
cemi-leptonic processes with only two imput parameters for the weak inter-
actions, Gy and the Cabibbo angle, € . One should expect, however,
that future precise measurcmente of seni-leptonic decays will show de-
parturcs from complete SU(3) symmetry of the matrix elements of the
currents. The evidence is quite strongz, however, that the suppression
of the 48 =1 decays relative to &S = O decays by tan 6 lies in the
structure of the weak interactions and camnot be explained as a strong

interzction renormalization effect.””
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Sinfularities of R(g v} in the Real g®-Keal v plane which follow

1rom perturbation theory.

ispersion-perturbative diueunm producing the ancamalous threshold
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shom in Fig. 1. Invariont passcs of the external and internal lines
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are indicated Tor (a) chianmeld.



i Unulysical Repion | Irysical Region F Total

3
]

v (1385) | S-Waves | 0 < 7P < 6 Bev/e | PRPP > 6 BeV/e
3 - "

-0.010 0.100 0205 0.0k8 0.349 (Kim)
-0.010 0.125 0,198 0.048 0.362 (Sakitt)

-0.021 0.055 SIE : 0.027 0.195 (Kim) |
-0.021 0.055 0107 0.027 0.168 (Sakitt)

.
!
| |

Huserical contributions to the dispersion integrals in the sum rules for

the A3 =1 axial current.
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