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Assuming that the equal-time commutation rules for the 

vector and ax&l-vector current octets proposed by Gell-Mann 

are valid and that the dprergence of the &S = 0, AI = 1 axial 

current-is a strongly convergent operator obeying unsubtracted 

dispersion relations and dominated by low frequency contribu- 

tions, we derive a sum rule for the renormaliza.tion of the 

neutron axial B-decay constant, GA, by the strong interactions, 

The result agrees with that previously obtained from the assump- 

tion that the axial-current divergence is proportional to the 

pion field. The results are generalized to the strangeness- 

changing leptonic decays in the context of Cabibbo theory and 

generalized Goldberger-Treiman relations and used to compute 

the d/f ratio for the weak baryon-axial current coupling and 

an independent value of GA. * 
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I. IKlXiODUCTION 

jli:ccnt calculations of the effects of the strong interactions in 

rcnorm:lliz ing the axial-vector coupling constant in B-decay,'J2 gA=GA/GV, 

;;-~vc good agreement with the experimental value. These results were 

dorivcd from the following thrcle assu:@ions, 

1. The equal-time commutators of the spatial integrals of the time 

components of the hadron currents measured to first order in the weak and 

electromagnetic interactions, the "charges, " obey the algebra of SU(3) X SU(3) 

as postulated by Gell-Mann et alo -- 

2. The effective Hamiltonian for leptonic decay of the hadrons is 

a current-current interaction which couples the appropriate members 

vector and axial-vector current octets of the strongly interacting 

particles to the usual ^/P(l-y,) current of the leptons through the simple 

ccmbinstion VP 2 APO4 

.3 * Partially Conserved Axial Current (PCAC) hypothesis. The 

divergence of the AS = 0 axial-vector current is proportional to the 

pion field,"-s 

(1.1) 

& 2;) . 
vhe ri: is the renormalized Heisenberg field of the Jr-mesons, CL is 

i;he i,'iill LLL"C, M is the nucleon mass, &n is the rationalized renormalized 

1:-nucleon coupling constant. 

:h this article, we derive the sum rule for gA [Eq. (II.l4)1, from 

:i more: general form of PCAC analogous to that used by Bernstein et al.' -- 

to derive the Goldberger-Treiman relation, We assume that the divergence 

of the axial current is a highly convergent operator whose matrix elements 
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satisfy unsubt-ratted dispersion relations in the four-momentum transfer 

cquared, q2. For small q2 and certain values at the other variables in 

the problem, thL- 'se ms.trix elemcn-ts may be dominated by nearby poles. 

These notions trill be made more */recise in the theoretical develop- 

meni; of Section II where we trea-t the problem of formulating an unambig- 

uous definition and region of validity for pole dominance of matrix _ 

elements of the axial current divergence when these matrix elements are 

functions of more than one invariant variable. In Section III the results 

are generalized to include the &3 = 1 leptonic decays in the context 

of Cabibbo theory" and generalized Goldberger-Treiman" relations. The 

numerical evaluation of the sum rules is discussed in Section IV. The 

results give 
i \ &I& N 1.2, and a d/f ratio similar to other estimates. 

While there are considerable numerical uncertainties in the evaluation 

of the sum rule for 05 = 1 decays, the general consistency with Cabibbo 

theory is good and is strong evidence against the explanation of the 

suppression of &3 = 1 decays relative to AS = 0 decays as a strong inter- 

action renormalization effect. 

Ii. THEORETICAL DEVELOIWNT FOR Ds = 0 DECAYS 

As a starting point we consider a matrix element of the time-ordered 

product of two components of the axial-vector current between one-proton 

states of equal mamentutn 

RW = d4X eiqnx < PIT (A;(x) A;(O)) 1~ > (II.1) 

with Ai = A; 2 i 4-G . 

Ai, i = l,2,3, are the isovector members of the octet of axial-vector 

currents. The tensor, Q, is related to second-order forward scattering 
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of a proton by an axial-vector field. From general invariance arguents, 

ii 
ii@ can be written as a sum of lcincmatic second-rank tensors formed fram 

cor:lbinations OP p, q, and the y-matrices evaluated between Dirac spinors, 

each multiplied by appropriate normalization factors and a Lorentz- 

invariant scalar function. In the usual manner, the arguments of the - 

scalar functions are chosen as the invariant variables in the problem, 

which in this case are 

P2 = M* 

q* 

p.q = MY 

or some linear ccmbination of these,three. V can be considered as the 

energy of the particle incident on the proton in the rest system of the 

proton, the "laboratory system.' 

From Eq. (11.1) we obtain 

q%a@(q2JV) = T (daA;(x) A;(O))/ P > 

";i(oij P > i 1 
(11.2) 

and 

q"sB Rcvp = 
s 

d"x e -iq*x T(aaA;(0) &@A,(x)) P > 

(1103) - 6(x0) < P lo%;, A;(d-j ip ’ 

+ 6(x0) iq’ < ~1 ~Z(O,, A;(x)] / P. >] 

We have integrated by parts to cast Eq. (11.3) in the given form. 

Eq. (II.3) is the basic equation for deriving our results. The sum rule 
. 
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is obtained from Eq. (11.3) as a low energy theorem12 in the limit q'+O, 

2' --to. We proceed to evaluate the terms in Eq. (II.3) up to first order 

ill v 0 Yor fixed space-like or light-like q*, the'invariant functions in 

thz decomposition of Roq can be ir -ahown from the axians of local field theod3 

to satisfy dispersion relations in Y. For Y N 0 the only singular term _ 

as q'-+O is the one-neutron pole at q2 -I- 2MV = 0. That is, the contri- 

bution to bP(V = 0, q2 = 0) from the cuts is finite in this limit. 

Therefore, a@ if we consider q q RaB and take the lim qa-+O, the cut contri- 

butions are at least o-f second order, and the finite and first order terms 

on the left side of Eq. (11.3) come entirely from the one-neutron Born 

term D 

This Born term will give a factor gi. On the right side of Eq. 

(II.?), the term involving the time-ordered product of the axial current 

divergences will be related to the forward 71-p scattering amplitude on the 

mass shell via analyticity in 

rules determine 

various factors 

Eq. (II&), 

the last term 

leads finally 

cl** The assumed equal-time commutation 

on the right. The combination of these 

from Eq. (11.3) to a sum rule for gi, 

In deriving Eq. (11.3) we have integrated by parts with respect to 
I s 

space and time variables and discarded surface terms. The spatial surface 

terms give no contribution if we use wave packets, The temporal surface 

terms at t = + co vanish in the same manner if aILl the intermediate states 

inserted in our expressions lead to oscillating time behavior, that is, 

if all intermediate states have different energy fram the one-proton 

stat2.i“ For q" = 0, the only dangercus term comes frcxn the one-neutron 

intermediate state; in our calculation we shall explicitly assume the 

i ’ 

-5- 

. . 



I 
11cLl-~ror1 Ill2 ss ? %lJ to be different fro2 the proton mass, Mpe In final 

Xsult we let y1 = 15, and assume charge independence; the answer is 

insensitive to the order in which WC let the various small quantities 

in the problem tend to zero. This procedure of keeping Mn # Mp until 

the end of the calculation will have the additional advantage of allow- 

ing the derivation to be generalized immediately to renormalization of 

the strangeness changing decays, (Sec. III), where t& Born terms involvk 

nucleon-hyperon transitions and the masses,a.re manifestly unequal. 

For reference we note that the matrix element of the axial-vector 

current between proton and neutron is given by 

< P(pl) l&x)~ N(p2) > = (24'3 [f$,Mp/(EnEpjl ' 

(11.4) 

e iq-xizA~p(~l) 
[ 
q-&+*) - q-Q2h2)] T+un(P2)* 

(1; = Py - 
a 

P2 ; FL(O) = 1. 

Tf =- 
:- CT1 + iT2) is a nucleon isotopic spin matrix. 

If the effective Hamiltonian has V - A coupling, then gA equals G /G A V' 
the ratio 0-f' axial-vector to vector coupling constants measured in 

ordinary B-decay. From Eq. (11.4) 

N > = (2x)-3 pnMp/(EnEpg' eiqox g,D(q2)Up(P1)~5T+Un(P2). (11.5) 

that D(0) is dominated by the one-pion pole at q2 = p2 leads to a 
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I 
cl~:riv;11'Liou of the GoldberC;er-'l'ri:~11~(111, (G-Y!), relation, 

I. Ji is the decay constant of the charged pion defined by 

< Oj?h;(O)l n- > = -(2fi)-'/'(2Ez 

(11.6) 

(II.7)- 

With these definitions the Born contribution to RQ, can be evaluated 

cl 
Q! 8 Earn 

9 qJp = Npg; 
[ 
(s + Mp + v)P;(q2) - 2Fl(q2) 

-i- D'(q")(Mp-%+V)/(q;' + M; - Y? + 2Mpy, 
I 

(11.8) 
. 

m = 
P 

(2n)-3x /E 
P P’ 

The last term on the right-hand side of Eqo (11.3) is determined 

from the assumed equal-time comutation rules: 

5(xo)[A;(0), A;(x)] = ~V;(X)~(~)(X) (11.9) 

f (more singular terns). 

. . 
% is the third component of the total isotopic spin current. We 

generalize the SU(3) X SU(3) algebra to include cammutators of time- 

carnponents of currents with space-components. 

The more singular terms of the equal-time commutator involve deri- 

vatives of delta I%nctions."5 in the integral of Eq. (11.3a) these terms 

give ?,olynoaials in q. Since the results of interest will be obtained 

in -SIC limqa-10, the derivatives of delta functions do not contribute 

in this calculation. From the delta function term in EqO (11.9) one has 

s d4x eiq*x6(xo)iqB < gikz(O), A-,(xj] iP > = mp" l (11.10) 
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Returning to Eq. (11.3) we \tave still to evaluate the first two terms 
I 

on the ri.Sh-t side o The equal-ti\z ccmanutator, aaA;(0), A-&o) B 1 , is pre- 

suxably proportional to qy - II:; le;ldS to a finite q-independent 

-km in Eq. (IiI.33), 

c =~J~&e-iq."B(x / < P'~%+(o), A-(x) P > . 
Ci, a II 0 

(muj 

Let the first te-rm on the left side of (11.3) be denoted by NS2,V) = s d4xe-WJ: apA; 
)I 

P > . (IIJlb) 

It is straightfor.srd to show that R(O,O) = C. Thus, after eval- 

uatinz R(q,V), we need keep only term:; proportional to V. Since R 

involves matrix elements of the divergence of the axial current, we assume 

th:lt for fixed Y, R satisfies tin unsubtracted dispersion relation in q2. 

$'or y "' 0, 02 z 0, we assume that R is dominated by nearby singularities. 

These are the one-neutron Born pole at q2 + Mg - $ + 2MpV = 0 and the 

one-pion poles at q2 = l.L20 

T'nere is, however, a possible ambiguity in defining the residues of 

the poles .16 In this problem, the independent variables may be taken as 

Y2 and 0 = v -i- aq", and we can disperse in q2 with cr = 0. As we vary 

the constant, "a~', different parts of the total dispersion relation for 

R(O,Oj are tlssociated with the residues of the poles and the integral over 

the continuum, The problem is to choose "a' to give the best pole approx- 

imation, to put as much as possible of the contribution to R(O,O) into 

the nucleon and pion poles and make the corrections due to the integral 

over the branch cut, which will be neglected, as small as possible. 

In the context of dominance by nearby singularities there is a natural, 

if somewhat arbitrary, criterion for a best pole approximation, namely, 
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choor; e 'ta't to keep the threshold of the cut as far from the poles as 

ncssible. The locations of the singularities in the Real q2 - Real V 

ICane which follow from perturbation theory are plotted in Fig. 1. For 

any fixed V, R satisfies a dispersion relation in q2. For q" fixed 

and not too timelike, R should obey a dispersion relation in V with - 

singularities on the Real V-axis. The anomalous thresholds come from 

the dispersion-perturbative diagram shown in Fig0 2. From Fig. 1, it 

is seen that the criterion given above leads to the value a = 0, or 

0 = v = 0, as the best choice of the fixed second variable for writing 

a, pole-dominated dispersion relation for R(O,O). For V = 0, the cut 

has an anomalous threshold at q2 N 8p2. 

The choice of v = 0, (a = 0); can be justified a.lso by general 

symmetry arguments, The thresholds are determined by the masses of inter- 
:  

mediate states in the s and u channels, where s, t, u are the usual 

Iv&delstam variables. Here t = 0, so s and u are related to q2 

and ‘V by ;=M2+q2+2MV. 0 For the purpose of specifying intermediate 

states in R, both s and u channels look like fir-nucleon scattering 

and have tine same intermediate states available. For a particular choice 

Of !'a', denote the residue of the pion pole by %(V = -ap2/M, p2)0 It 

follows from the statements above that fi is an even function of a. 

To retain the symmetry between the s and u channels one should dis- 

perse in q2 with a=O. 

Y'or fixed q2 = 0, R(q2,V), which resembles a forward scattering 

amplitude, should satisfy a dispersion relation in V, and we can separate 

R into contributions from the Born and continuum terms of the 
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V-dispersion relation. Thus, for small q2,V 

R(q",V) = iI\T 
P 

(11.12) 

This Born term cancels the singular term of q q R* a B Bom, Eq. (II.~), - 

and clearly satisfies an unsubtracted dispersion relation in q2. There- 

fore, g has no one-neutron pole and must itself obey an unsubtracted 

dispersion relation in q2. E has double and single one-pion poles at 

q2 = p2 and a cut starting at q2 = 8~~. In the spirit of our approach, 

the pole contributions dominate for q 2 = 0 and the integ ral over the 

branch cut is neglected. In the same manner it will be shown that the 

single pole contributions are small, The result fram keeping only the 

double pion pole term is 

E(o,v) = -fz; tif fl-p(i-12,v) (IIol3) 

where is the invariant forward ~--proton scattering ampli- 

tude 'on the mass shell and with the Born terms subtracted. From the 

usual dispersion relations17 for the forward Jr-nucleon scattering amplitude, 
M 

i?(O,V) = -f;/x dv' 
s c 

Arr+2,~')/V' - V) + A (~1~ -V')/v'+ V) e SC-p ' 1 
CL 

(11,13a) 

Prom unitarity and crossing symmetry, 

A,l-pb) = ~Tx.ep(v) = kufiYp(V) 

As-p(-v) = Jy&‘), v ’ CL > 

where the G'S are total cross sections and k is the magnitude of the 

pion three-monentum in the laboratory system. 
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!iocalling that we are intcri:stcd in equating the terms O(V) as 

v -0 in ~q. (II.3) we collect the results from Eqs. (II.8), (II.10) and 

(11.13a). Substituting we obtain the sum rule 
M 

gt 
=I- f;b (11.14) 

CL 

If we eliminate ffl by the C-T relation, we can determine gA from 

strong interaction cross-sections only 

(11.14a) 

We discuss the neglected single -@on-pole terms. These can be 

written as 

fi(0,0) = fflr(112,0) + h.c. (11.15) 
s.p.p. 

As an analytic function of q2,r has no yion-pole 

(11.16) 

If >:e considered the matrix element for forward creation of a pion from 
CT: 

.x a nucleon by scattering of the axial-current divergence, -pole daminance 

.&t cJ2 = 0 (off-mass-shell pions) would imply 

C-ince 2 
OO - h2, r( P2jO) N r(O,O) and r(p2,0) is similarly unimportant 

compared to ffiTxN(p2,0). 
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III. SUM BULIX 11'011 45 = 1 DECAYS 

The results of the proceeding section can be applied to the 4S = 1 

decays in the context of the Cabibbo theory of weak interactions if one 

accepts the generalization of the G-T relation to K-meson pole dominance- 

for the divergence of the strangeness-changing axial currents. We 

briefly review the Cabibbo theory of leptonic decays. 

The su(3) x su(3) commutation rules fix the relative scale of the 

vector and axial vector currents. The combinations 

Qi = s -?j- (V:(X) 2 A:(x)) d3x, i = 1,...,8, 

fornl two mutually commuting octets of chiral changes. The ha&-on 

current which couples to the leptons and is measured in decay processes, 

is a ccmponent of one of these chiral octets 

Jhad = COs6 P 
AFi2) + g:ine (v”-i-bi _ 

P. (111.1) 

The Cabibbo angle, 8 , which dotermines the suppression of the 

& = 1 decays relative to the & = 0 deca.ys is an input parameter to 

the structure of the effective weak Eamiltonian. The problem of whether 

the right-handed or left-handed current appears is determined from ex- 

periizent. In the limit of exact SU(3) symmetry the vector currents 

are unreno:malized, and their matrix elements between one baryon states 

have only f-type coupling, For the corresponding matrix elements of the 

axial current, we have in the SU(3) limit 

< h+~(0)/BJ(p)> = gfiBj ~(p)~~~su(p) = gA 
c 
(l-@fijk + cyd 

ijk '(P)7'p7su(P)* 1 
i,j,lc = 1, . . . . 8. (111,2) 
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l.,ri,crc t 
A and d are tho usual GLLL-Mann coupling coefficients, and we 

ilzve ilL!~I!.SCi;Cd trivial normalization factors. 

]~l;q~ij----callyll> I.9 - this description gives a satisfactory fit to the 

iri::;cntly cvailablc data on leptonic decays even though SU( 3) is a badly 

bl*okell cymmetry. The origin of the lack of renormalization for the vector _ 

(.urrciyi;z; 1s su~gcstcd by the theorem of Adcmolloand Gatto,lg which shows 

that thc:rc: is no renormalization of the vector currents to first order in 

the symmetry breaking because the space integrals of the time cbmponents 

of the vector currents are the generators of SU(3). There is no such 

thoorim for the axial-vector current, 

However I if we believe that the commutation rules of the vector and 

axial-vector currents are unchanged by the SU(3) breaking interactions, 

then the axial currents transform exactly as an irreducible octet tensor 

even in the presence of symmetry breaking. The experimental success of 

Eq. (III.2) in describing the axial matrix elements suggests-then that the 

one-particle states may be nearly pure octet despite the large mass split- 

ting due to SU(3) breaking.20 

The divergence of the axial current, however, does not transform 

like a pure octet tensor if SU(3) is broken. Indeed, the Cabibbo theory 

::ives explicit SU(3) violation of the matrix elements of ao!Ak due to the 

mass splitt irigs. The generalization of the G-T relations to the strange- 

ness changing decays implies that the meson-baryon couplings have the 

same d!/f ratio as the axial current-baryon vertex but the meson coupIings 

show exi>licit dependence on the physicalberyon masses. The results are 

‘&c gs-;ie 2s those of Freund and Nambu21 who assumed that the currents are 

c:onser~ed but the states are not pure. 
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To chc(:k the consistency of this picture we obtain sum rules for the 

2;; = 1 dcc:.!ys . The procedure: is exxtly the same as in Section II. Start 

wit!; ixstrix elements of T(A4$.!qx) n$-i5 (0)). Consider matrix elements 

of this ttie ordered product between both one-neutron states and one- 

proton states respectively. in the first case the Born terms are due to 

a x- pole. In the second both Co and A0 contribute, 

sum rules 22 

These give the 

(III&) 

2 = (g;zo)2 -I- (gA 
f; 

@")2 -i- --p- 9 $ [+-.&v) - App(",l (111.3b) 
Y 0 

The A's are absorptive parts of forward scattering amplitudes. For 

Y > I”7 -K they are proportional to total cross-sections, but the K-nucleon 

dispersion relations have cuts in unphysical region due to the hyperon- 

pion chznnels. fK is a K-meson decay constant defined in analogy to 

Eq, (11.7)" In Cabibbo theory, fK = fCl, and the gA*s are given by Eq. 

(111.2). Making these substitutions in Eq. (111.3) and using G-T one 

obtains 

(III&) 
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Evaluating the dispersion integrals in Eq. (III.&), one determines 

,I LL2 > ad G or the d/f ratio. By considering also the commutator of the 

GS = 1, a4 = 0 ECiiSl currents and taking all possible diagonal matrix 

elc1:1e11tr, of t'nc three canonical commutators between baxyon states, one 

can derive six more sum rules. They involve unmeasurable scattering - 

l)i'OCCsses, but in the limit of exact W(3), they can each be shown to 

bc equivalent to IZqs, (11,13j, (111.3s) or (111.3b). 

Iv. &7P4BET\ICAL RESULTS ATTD CONCLUSIONS 

A. & = 0 Axial Current 

The sum rule for the & = 0 axial-vector [Eq. (II.lba)] is evaluated23 

usin:: tabulated values** of the expcrtiental pion-nucleon cross sections 

to k = 3 BeV/c. The very high-ener,gy data is fitted with the exponential 

fora 25 

~+-$d - Cfflep(V) = bv-Oo7 ml> 

The convergence of the integral in Eq. (11.1&a) depends on the validity 

of the Pomeranchuk theorem but the numerical result is insensitive.to the 

details of the high-energy behavior. The result is 

l- l/gf = 0,246 (IV.2a) 

or 

The best value calculated from experimental B-decay measurements is25 

(GA/GV) = - 1.18 2 0.02 . 
exp 

m3> 

The theoretical uncertainties in Eq. (11,lk) are due mainly to the 

if 011&b i;qum AL c -yjjc u that have been discarded. This approximation is used for 
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Ej UCj,. (1101_3), and in derivinil; the CoLdberger-Treiman relation. From 

the coi;ll,ari.son of C-T with expcrimcnts, th? errors inherent in this type 

13~~' aplxt~osti!iation may be about 20;; for the right-ha.nd side of Eq. (111.2a) 

bu-l only about 57: for GA' For cxam~~lc, if we evaluate Eq. (11.14) 

using i‘ as determined from experimental measurements of the lifetime - 51 

of the charged pion, 27 the sum rule yields 

= lo21 (IV.2b') 

Errors in the calculated value of gA from uncertainties in the 

exact high-energy bzhavior of z-proton cross sections and the best exper- 

bAli;al value of EjcN are about 1%" It is the effect of the (3,3) 

rcsonznci3 in EC] _a (11.13) that mskes g, > 1. In fact, the (3,3) resonance 
I i 

contribution alone gives 
I ' GA % I 

-l.yj, and the higher energy I = l/2 

rcsonanccs reduce this value, Thus, the (3,3) resonance does not Saturate 

the SLJJX rule, 

Prom Fig. 1 some general conclusions can be drawn about the expected 

domain of validity of pion pole dominance in this problem. From the 

postulated cqua.l-time commutation rules for the weak charges, one can 

obtain directly'~'" a sum rule for ga 

with 

2 
'a =l+ 

s $ b+(o,v) - D-(o,v)l 

lJ+p*/m 

004) 

D+(O,v) = ImR (0,~ V), V > /J. + p2/2M . 

$ can be measured in high-energy neutrino reactions when the lepton is 

lroduced in the forward direction.2" 
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This result is obtained by writing a disperion relation in V for 

I;(O,O) in Eq. (X-3). The result, Eq. (11,14), is obtained by first 

td;iii~ the pole appm&a-t-im in. q2 for R(O,O) and then dispersing the 

rzciduz of the pion pole in Y, l?or the integrand in Eq. (IV.4), however, 

Grlc can-not justify directly rc@czcin~ the matrix element of D' by their - 

pion pole contributions, 

This follows fro3 Fig0 1 wkre it is seen that in the integration 

region for v of Ecus. (ILL.-;,) and (IV.'-!->, tk:e threshold of the cut in q2 

moves past the one-p-ion pole. That is, for physical Y there is no 

isolated -pion pole, and multi-particle thr-esholds in q2 are as close 

f-0 q2 ;; 0 as the one-pion state 0 
23 

Nevertheless, as V -+* OS, a return to pion-pole dominance can be 

justified for D'(O,Vj. The position of the singularity from a state of 

invariant mass, M"? 
J' 

in the s or u channel is given by 

q2 I 2_My =: Mf - M2 . 
J 

ThlX , as I I 
y 7~0, the threshold for any state of finite mass moves off to 

,p = L:"- 'yllc only sin@aritics rkining near q 2 = 0 are the one-a 

pi~n pok 2nd very heavy inekutic states, The normal threshold at 

a2 zz yj ,LZ ramains fke d - e In the spirit of PCAC, with aPAP assumed to be 

a hic!:ly convergent operator satisfying unsubtracted dispersion relations 

: one expe cte that very heavy states are unimportant in the spectral 

fLmetioi1s for 4% I 
P0 

Therefore, as V 
1 i 

3~0, the only important contri- 

bj;l;tio;l ne3.r q2 = 0 comes from the pion pole at q" = ~1~~ This leads 

to a ilerivation of Adler's proposed tests of PCAC in high-energy neutrino 

reactions? The preceding ar,gument explicitly uses the PCAC hypothesis 
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ill iij.L;~xrsiOii theory ELS El, pi-1y::ic:J.l ;L,, <-c-urqkion about sma.11 numerators as 

-$,+-c 1r :i L; 3 il;eom2trical stat~~a~nt ;ii-?out laq:c denominators or far-away 

c i.il;l;;Ul;!c:~3ii;ie;; . l?xith in cucli arguments in needed also to justify K-meson 

nolc d;liliil~ce of thl-- diverzencc of LX3 = 1 axial current. 

I;. :;.j;i’.;Ili’cll-i!t:S- Ck3nrrir-v Current:; ,, /v 

The numerical evaluation of the sum rules for the 45 = 1 currents, 

IQ. (III.k), is ccmplicated by the presence of an unphysical region in 

the z-nucleon channel extending below the elastic threshold. Above the 

threshold the integral can bc: expreuu p"ed in terms of total cross sections 

a:: in the fi-nucleon case0 The cum rules can be written as 

1/g; = (1-2C + 2I(EGX) (Iv.6a) 

1/g; = (1 - 2a c (k/3)$) f I(Kp) (IV.6b) 

The contributions of the different energy regions to the dispersion 

integrals for i(Ih> and I(Kp) are summarized in Table I and discussed 

below. 

(a) Unphysical region. Y < MK 

We assume that the only important contributions come from the I = 1 

p-wave resonance Y: ( 1365 > , and the continuation of the I = 0,l S-waves 

bclov threshold. The YT is a member of the decuplet of spin j/2 

resonances. To estimate the Yr contribution to the K-nucleon integrals 

i.13 assume a phenomenological B?t?M (resonance-baryon-meson), coupling 

d=,,,(x) = - A V,(x) $(#+p(~). (m-7) 

- 18 - 
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wh2re the q,(x), q(x), (p(x) are the field operators for the spin 3/2 

i-3-s 0;;_3ilCe, spin l/2 bar\Jon end pseudoscalar mesons respectively. The 

resonance is described by the Rsrita-Schwinger formalism.'o 

The decay width for a resonance is related to the effective coupling 

collsta1t, A , by 

0.8) 

srher? k is the momenta of the baryon and meson in the center-of-mass 
2% 

cystem. Mad, MB and h,:, are the masses of the resonance baryon and meson 

respectively. We assume that the coupling constants, h, for all the 
.j:- 

C I.31 couplings are related by SU(3). The Yrs coupling is computed 

from the observed widthZ7 for A(l235) -+N + JC. Then the Y* is inserted 
1 

as a pole in the !?N scattering m-plitudes. Various estimate?of the 

effects of SU(3) breaking on the B-'BIC couplings indicate that the Yt 

contribution is uncertain within a factor of 2. 

To evalua-tc the I = 0 and I = 1 the S-wave contribution below 

threshold we use the complex-s7 acsttering length, zero-effective range 

K-mstrix formalism of Dalitz and Tua.nsZ2 Recent experiments on low energy 

K- pro-ton L:cattering by Kim and Sakitt et a1.33 -- give very similar solutions 

for the two complex scattering lengths. Each of their solutions shows 

rcsonxice behavior below threshold in the I = 0 channel at the mass of 
.I,. 

the Y,(i3G3)0 

3oth sets of scattering lengths were used to evaluate the S-wav;e 

contributions to the dispersion integrals below threshold. The integrals 

T.,-ere truncated at the C-n threshold, 

- 1g - 

. 
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i 
(i) Fhycical region 

,i 
v i z. q.; . / 

In the physical region :ior KlV and ti scattering, the integrands in 

the dispz-rsion intLL;- >)ra.ls can be cxpres;;ed in terms of total cross sections. 

For low energies, PP < 0.3 &V/c, we use the ti cross sections given 

by the Kim and Sakitt solutions. The KN cross sections at low energy - 

have been measured; they are small and smoothly Varying. We have collected 

the available experimental data'" for the integrals up to P? = 6 w/c. 
Jab For LK > 6 BeV/c, the experimental zross-section differencesT5 occurring 

in Eq. (111.4) can be reasonably well-fitted with an exponential form as 

in Eq. (IV.1). For KN cross section.3 we use36 

a - 0 =b v-0 l 5 

l K-c;; K+(;) (;) 

(m.9) 

The ccntributions frcm the asymptotic region, Pp > 20 EkV/c, are about 

10; of the total integral 

The possible numerical errcrs for these integrals are estimated to be 

cl -20,s. This is in addition to errors introduced by the pole dominance 

approximation. Equations (IV.6a) and (IV.6b) can be solved simultarkously 

Yor LY and gA. There are two solutions to the resulting quadratic 

equation for CL. One solution gives CX N- 0 and gA = 0.85 and is dis- 

carded. With the indicated errors the other solution is37 

’ ; a = 0.75 c 0.10 

I I 

(iv.10) 
gA = 1.28 2 0.10 

‘I’hl solutions for the two sets of results in Table I are closer 

than the statistical errors indicated above. Correcting the I's for the 

kT*rors 2. in G-T does not affect the solution for cx but gives 



I . 

'I!h cc:':si::'izncy with the valua I'or ;!, obtained from the &3 = 0 sum 

],T[?-lC i;; q:i.:ie p-Jod. The solution fcjr CI agrees within error limits with 

on semi-leptonic 

B 0.67 2 0.03 (Brene et al.) - 
U=’ 

a 0.63 (Willis et al.) -- 
(rv.ll) - 

The~c rtisults yield a consistent tneoretical'picture of low-energy 

ccini-lcptonic prOCCu~ t~'~~es with only two im~ut parameters for the weak inter- 

:1ctior1s, % and -IAle Cabibbo a,nZle, 8 . One should expect, however, 

~~~ i.-~Urcs 
I frotil complete SV(3) syiaaetry of the matrix elements of the 

cvzren-n-i;s . The evidence is quite strorq, however, that the suppression 

of the &S =l decclys relative to A, -- c' .- 0 decays by tan 8 lies in the 

Strui*turo of the weak interactions and cannot be ex-plained as a strong 

interec%ion renormalization effer:t.'a 

It is a pleasure for the author to acknowledge his indebtedness to 

'Proi c3~srx J. D. Bjorken. The method of Section II was developed in 

c:ollaboration with him, and his continued interest and constructive sug- 

Les.tio-ls have been essential stimuli in bringing this paper to its 

present form. 
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N~xcrical contributions to the dispersion integrals in the sum rules for 
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.-.
.- 

--
- 

-z
x2

%
 



\ \ q2 A/- 
\ \ / / )[M2+q2+2Mv]~ 

\ 
\ 

M 

418-2-A 

FIG. 2 


