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Summary

A genersl first- and second-order theory of
beam transport optics has been developed. From
this the first- and second-order matrix elements
of bending magnets, quadrupoles and sextupoles
have been derived. .

Utilizing this theory, very general first-
and second-order theorems of beam transport optics
have been formulated which have been extremely
uscful for designing single and multiple element
magnetic optical systems. The theorems are ex-
pressed as functions of five characteristic first-
order trajectories of a systems In fact, all of
the first- and second-order optical properties of
a system may be expressed in terms of these five
trajectories.

A generel discussion of the formulation and
the results obtained will be presented along with
typical examples to illustrate their usefulness.

I. Introduction

For the past several years, we have been
attempting to evolve at Stanford a more systematic
procedure for solving beam transport problems.

Two basic techniques have been utilized for this
purpose. The first, which will be discussed in
deteil lster, is a logical extension of the first-
order matrix formalism to a matrix formalism which
allows one to calculate systematically not only
the first-order but also the second-order optical
properties of beam transport systems. The second
approach is the conventional one of computer ray
tracing through a known field to the degree of
precision demanded for the particular problem.

The advantage of the matrix formelism, as we
have evolved 1t, as compared to ray tracing, is
that it provides us with a somewhat better physi-
cal insight into the physics of the problems and,
as such, permits a more systematic procedure for
solving problems. 'Having utilized the matrix
method for finding a solution, we then use con-
ventional ray-tracing techniques for verification
and as a means for further refinement of the
design if needed.

The basic approach to formulating the matrix
method has been as follows: Y
(1) The general differential equation de-

scribing the trajectory of a charged particle in

a static magnctic field which possesses "midplane E

symmetry" is derived.

(2) A Taylor's series solution sbout & cen-’

tral trajectory is then assumed; this is substi-
tuted into the general differential equation and
terms are retained to second-order.

(3) The first-order coefficients for mono-
energetic rays satisfy the usual homogeneous
differential equations charecteristic of harmonic

oscillator theory, end the first-order dispersion
and the second-order coefficients of the Taylor's
expansion satisfy second-order differential equa-
tions having "driving terms".

(4) fThe first-order dispersion and the second-
order coefficients are then evaluated by a Green's
function Integral containing the characteristic
driving function of the coefficient being evaluated.

In other words, the problem is nothing more
or less than the old problem of the harmonic
oscillator with driving terms; and as with the
harmonic oscillator, we may readily draw general
conclusions about a given second-order aberration
by studying its characteristic driving function.

The task now is to transform this solution
into a self-consistent second-order formalism.

I will demonstrate later how this has been accom-
plished.

By using the sbove procedure, we have de~
rived the complete second-order matrix elements
for a drift distance, quadrupoles, bending mag-
nets, and sextupoles, including an impulse appro-
ximation for the input and output fringing field
bounderies of bending magnets. This includes
rotated input and output faces and curvatures on
the input and output faces of the bending magnets.
This entire formalism has then been programmed
for a 7090 computer, which ensbles us to calcu-
late within the ebove limitations the complete
second-order properties of any combination of
quadrupoles, sextupoles, bending magnets and
drift distances which one might choose to
utilize,

Returning briefly now to the formulation of
the general theory, all of the theory and the
subgequent matrix elements have been derived and
expressed in terms of five characteristic first-
order trajectories of the system. Before iden-
tifying these trajectories, it should be mentioned
that it is implicitly assumed from the beginning
that a central trajectory is known and that the
positions of the other characteristic trajectories
are always specified relative to this central
trajectory. In other words, we have made the
usual paraxial ray aspproximation,

The five characteristic trajectories are the
following (identified by their initial conditions):

(1) The unit sine-like function sy in the
plane of bend where sx(0) = 0, 84(0) « 1

(2) The unit cosine-like function ¢, in
the plane of bend where c,(0) =1, cx(0)'=0

fB) The dispersion function dx in the plane
of bend where 4,(0) =0, al(0) =0

(4) The unit sine-like function s
non-bend plane where s8y{0) = 0, 8J(0) =1

(5) The unit cosine-like function cy, in the
non-bend plane where cy(0) = 1, cy(0) = 8.

With this introduction, we are now in a posi-
tion to discusa the theory which we have evolved

in the
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and how it has been utilized to solve general
first- and second-order transport problems.

II. The Formulation of the General Theory

We begin with the usual relativistic equation
of motion for a charged particle in a static mag-
netic field,

P = e(v>8) (1)

and immediately transform this expression to one
in which time has been eliminated as a variable
and we are left only with spatial coordinates.

The curvilinear system utilized is shown in Fig. 1.~
With a little algebra, the equation of motion is
readily expressed in the following vector forms:

2 +>
s % ds % B (2)
ds® ds
or
-+ 1 ' a + >
- Srerclel S =58 (B18) (3)
5

where prime means the derivative with respect to
t (the distance along the central trajectory).

By utilizing the expression for the differ-
entlal line element in the chosen coordinate sys-
tem, namely,

ds® = &2 + dy? + (L+hx)? at? ()

and expanding Eq. (3) into its component parts,
retaining only terms through second-order, the
x and y components of the equation of motion
becone:

x" - h(1+hx) - x'(hx' + h'x)
(5)

= EP s' [y'B, - (1+hx)By]

y" - y*(hx' + h'x)
)
e
=38 [(14nx)B, - x'B, ]
The equation of motion for the central trajectory
is found by taking the limit x =x' =y =y' = O,
from which

h = -:-,; By(0,0,t)

The field components B, By and By in
the curvilinear coordinate eystem may be derived
from a scalar potential 9 , yielding the

*Midplane symmetry requires that ¢ be an
odd function in y , i.e.,

o(x,y,t) = - o(x,-y,t)
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. By(x:Y;t’) = % = AJ.

following result to second-order:

Bx(x,y,t) = g% = A11 y+A, XY+ e

+A x+—1—x2+-579-y2+...

2! 21!
' 1% 1 , ,
Bt.(x,y,t) = m 3t = m [A.my+Auxy + e ]
(6)
where the coefficients of the expansions
_are derivable from the miéplane field B (x,O,t)
3"
Aln = 3P = functions of t only
X | x=0
y=0
and
m[A" 4 +
Ag=(Al 4 44 ) (7)
8twdying the expansion for B for the mid-
plane only,
1 2
By(x,D,t) A _tA x+3m LN
dipole quadrupole pextupole etc.
9B ®B
=Bl + x+%i-—1 'S
y x=0 % |x=0 92 {x=0 (8)
y=0 y=0 y=0

wve can readily identify the various terms appear-
ing in the equations of motion as to whether they
are of dipole, quadrupole, or sextupole origin
and retain this identification throughout the re-
mainder of the discussion. It is then conven~

ient ¢ define two dimensionless quantities n(t)
and B t) in terms of their quadrupole and sex-
tupole origins, i.e.,
1 /9B .
n{t) » - -—(-—1) and
hB_ \dx
y x=0
y=0
t 3%p
Blt) = (——-‘ﬁ)
1 21m3p_ \3x®
y x=0
y=0 {9)

Making use of the equation of motion for the
central trajectory, we may eliminate By in the
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expressions and rewrite them as follows:

P B
- nh® 2 = i
e Bx X‘-'-'o
y=0
and
P ]
Bh (—0 =3
Vel = ox° x=0
y=0 (9a).

For a pure quadrupole field

B.x
B =2

y a

hence, we obtain the identity where By is the
field at the pole and & 1is the radius of the
aperture;

B0 e
-nf el =) | =} =¥ (9v)
a P0 a
and for a pure sextupole field
B
0,2
B = — -
y =2 02 - )
from which
Bo e
ph3 ={ — —} =2 (9¢)
a® P . B

Using these definitions, the equations of motion
x and y may, after a little algebra, be evolved
into the following convenient forms:

x"+(1-n)h%x = h5 + (2n-1-B)h>x® + h'xx!

+ % hx'2 + (2-n)h3xb

+ % (h"-nn>+28h3)y2 + h'yy!

hy'2 - h52

]
402 o]

(20)

+ higher-order terms

y"+nh:’y = 2(8__!.\)hﬂW + h!wl - hlxly
+ hx'y' + oh%ys

+ higher-order terms (1)

P - P0

where & = 3 and the constant e has been
o]

eliminated by incorporating the equation of motion
for the central trajectory.

If we now assume a Taylor's expansion about
the central orbit for x and y at the exit of
a system, describing the position of an arbitrary
trajectory with respect to the central trajectory
as & function of the initial coordinates of the
arbitrary trajectory, we have

c ) d

x X x
X = (xlxo)xo + (x'xb)xé + (x|5)8
'+(x|xg)x§ + (x| xg%8)x %8 + (x]x,8)x0

+(x'x62)x62 + (x'xés)xbﬁ + (x]52)8%

Hxlyglvg o+ Oelygrplvgry  + (xlygPlvg?
R , . (12)
and
Cy Sy
y= (poly  + (riyddy

Hy Pxoo)xovo + (rlxgyd)xgyg + (v Ixgyo )xdvg

+Hy lxgygdxgrg + (rlygdlygd  + (v]ygplvie
: (13)

Substituting these expansions into Eqs. (10) and
(11), we derive a differential equation for each
of the first- and second-order coefficients con-
tained in the Taylor's expansions. When this 1s
done, a systematic pattern evolves in the follow-
ing way:

"+ k% =0
8" + k% =0

Q" + kK% = £ (14)
where k2 = (1-n)h® and k2 = nh® for the «x

and y ﬁotions, respectiveiy. The first two of
these equations represent the equations of motion
for the monoenergetic solution to the first-order
part of the problem. The fact that there are two
solutions, one for c¢ &and one for 8 , is a
manifestation of the fact that the differential
equation is second-order; hence, the two solu-
tiong differ only by the initial conditions of the
characteristic s and ¢ functions. The third
differential equation is a type form which
represents the solution for the first-order dis-
persion dx and for the coefficients of the
second-ordé€r asberrations in the system where the
driving term f has a characteristic form for
each of these coefficients. The third differential
equation may be solved by the Green's function
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integral t

q-= L/\ £{1)6{t-1)ar
[¢]

It can be readily verified by substitution into the
third equation that the correct Green's function
is given by

(15)

6(t-7) = s(t)elr) - s(r)e(t) (16)
Thus, Eq. (15) becomes
t t
a=s) [ seler - e() [ s()a(ear
° ° (17)

The problem is then, in principle, solved if we
know the driving term f and if we are able to
evaluate the integrals contained in Eq. (17). The
driving function f 18 readily obtained from sub-
stitution of the Taylor's expaneions into the gen-
eral differential Eqs. (10) and (11). The results
of this substitution are expressed in Table I for
the first-order dispersion and for all of the sec-
ond-order coefficients which will occur for a
system having midplane symmetry. All of the dri-
ving terms have been expressed in terms of the
five characteristic first-order functions s, ,

€y s 4y » 8, , and ¢, mentioned in the intro-
duction. AXso conta!ned in the expressions are
the parameters which characterive the expansion
of the magnetic field tov second-order, i.e.,
h,n, and B.

Going back to the definitions for n and B,
it is possible to identify immediately the origin
of the various terms contained in these express-
ions. For example, any term conteining the quan-
tity nh® as a coefficient is of quadrupole ori-
gin, and any term containing the quantity ph>
is of sextupole origin. 'The other terms are either
of dipole origin or they result from cross product
terms between the dipole and guadrupole elements
of the system. The driving term expressions
are completely rigorous to second-order for any
magnetic field configuration possessing mid-plane
symnetry; no assumptions have been made regarding
the details of the fringing field or boundary
shapes «

Derivation of Some Useful First-Order Relations
Based on the General Theory of Section II.

The spatial and eangular dispersions of any
system are readily derived using the Green's func-
tion integrals and the driving term h(t) for the
dispersion. The results are!

t t
d = s(t) fcxda - c(t) faxdu (18)
0 0
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and

t t
al = s'(t) fcxda - c'(t) fsxda (19)
0 0

vhere dO = hdt 1s the differentisl angle of
bend through the system. It is also useful to
calculate the first-order path length difference

t

L= (5-t) = fxda

0

betweeh an arbitrary ray and the central orbit.
Usin% the Taylor's expansion for x given by
1

Eq. (12), we have:
t ot t t
£=fxda-x fcda+x' fsda+5 d_da
0 X 0 x X
0 0 (o] (o]

(=0)

Inspectioh of the above relations yields the
following useful theorems:
For point-to-point imaging,

Yero Disfgrsion.
a system w have zero first-order dispersion

(1.e., d = 0) at the image if:
t
fsxda = 0
0 .
Achromaticity. A system will be achromatic
(i,E., dx - ai = 0) between O and t if:
t t

fsda- fcda:o
X X

o] 0

We also note from Eq. (20) that, if & system is
achrofititic, all particles of the same momentum
will have equal (first-order) path lengths
through the system. ,
Ispchronicity, We further note from Eq. (20)

that ;§§ partIci%s, independent of their momen-
tum, will have the same first-order path length
through & system 1f:

t t t
f cxda - f Bxda = f dxda D
0 0 0

An Exaimple of the Use of the General Theory for

Setond-Order Applications

Ooneider the three megnet achromatic system
shown in Fig. la. The first-order x-plane
transformation matrix from A to B of this
system is simply:
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AR Y 2

»
U

-

»

0

x']= -1 x(')
o} . 1 8
B [ dA

From the symmetry of the system and the above

first-order matrix, the symmetry of the three char-
acteristic x-plane trajectories about the midpoint

0 is easily established as to whether they are
odd or even functions., The results are:

e, = odd sx = even dx = even h = even
c! =even &' = 0dd d! = odd h' = odd
x x X
From the first-order matrix; c¢_, 8_, c!
and s}'( at B are: x x x
,wFXSi) = -l' Sx(i) = 0
c}'((i) = 0 s"((i) = -l

Using the above symmetry relations and the driving
terms for the second-order matrix coefficients,
the following second-order coefficients are uni-
quely zero for the transformation between A eand
B .

(x|xox(')) = (x'xoﬁ) = (x"xg)
= (x']x(')a) = (x’ |x65) = (x'|52) =0

This must be true independent of the details of
the fringing fields of the magnets, provided that
the three magnets are identical.

III. Evaluation of the Matrix Elements
For High-Energy Particdles

A considerable simplification results for the
high-energy limit where the ‘dipole, quadrupole
and sextupole functions are physically separated,
such that the cross product terms do not appear
and such that the fringing field effects are small
compared to the other dominant effects generated
by the dipole, quadrupole and sextupole elements
of the system.

For the purpose of this discussion, the x
plane is defined as the bend plane in which the
perticles are dispersed in momentum. It is also
assumed that midplane symmetry is preserved about
the x plane of the system, as described in Bec-
tions I and II.

The focusing conditions imposed upon the sys-
tem at the image planes are:
image 8,(1) = 0, i.e., ve assume point-to-point
imaging; and, at the y (non-bend) image plane, we
consider two cases:

(a) Point-to-point imaging, i.e.,
By(i) =0, and
(v) Parallel-(line)-to-point imeging, i.e.,
Cy(i) =0.
In thi high-energy limit, the bending radius
Po =% >> 1 ; the first-order focusing is accom-

At the x (bend-plane)

plished predominately by quadrupole elements; and
only n =0 uniform-field bending magnets are
considered.
Within this limit, the following definitions
are used for convenience:
: A / , e
B
- nh2 = kz = —_d

q
or

1
KLY &
qq

r 3 the quadrupole strength in

q the x (bend) plene

B
Bh> = k2 = 8

e2(Hp,)

or

k‘s&s = S = the sextupole strength in the
x (bend) plane

vhere B, and Bg are the field strengths at
the poles of the quadrupole and sextupole, res-
pectively. 8g and ag are the radii of the
apertures of the quadrupole and sextupole, and

and ‘LB are the equivalent magnetic lengths
of the quadrupole and sextupole elements.

Using the Green function solution, the equa-
tions for the first-order dispersion 4, and mom-
entum resolution Ry reduce to the simple forms:

1 i
d = - cx(i)afsxhdf = - cx(i) fsxda (21)
: 0
a A '
X
R X, cx(i) of s da (22)

where 4 4s the differential angle of bend of
the central trajectory of the system and X is
the source sige.

It follows from the general theory of Sec. II
and the above focusing conditions that we obtain
for the second-order x (bend) plane aberrations

i
am-c (1) [rogr (23)
0

for point-to-point imaging; for the second-order
y (non-bend) plane eberrations,

1
q=-c(1) fi‘syd'r (24)
0
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for point-to-point imaging (case a), and equal

1
=Si fd
q y()éfcyf

for parallel-line-to-point imaging (caese b).
(See Tebles II, III, and IV).

(25)

IV. Applications of the General Theory to

High-Energy Spectrometer Design

In high-energy spectrometers or beam trans-
port systems where quadrupoles essentially con-
trol the first-order optics of the system, the
second-order chromatic aberrations introduced
by the quadrupoles are usually the dominant
aberrations limiting the performance of the
system. As an example of the use of the theory
as developed here, we shall calculate for some
representative examples the angle V¥ that the mo-
mentum focal plane makes with respect to the cen-
tral trajectory. For point-to-point imeging, it
may be readily verified that

i

x/ﬂs aa
X

dx(i) [+]

e (1)) e |xip)  (x, |xgp)

1

tan ¥ = - (26)

Let us now consider some representative gquad-
rupole configuratlions and assume that the bending
magnets are placed in & region having & large amp-
litude of the unit sine-like function s, (1o
optimize the first-order momentum resolution).

Case I.

Consider the simple quadrupole configuration
shown in Fig. 2 with the bending magnets located
in the region between the quadrupoles and s* ¥o
in this region. For these conditions, fl
By = at the quadrupoles, and f; =4, .
From Table II, we have:

=
T’

82
(g |550) = - e, (1) ) =
Q fq

1
= - cx(iyt1 <1 + ;El>= £1(1+Mx) (27)

where we meke use of the fact that (£ A )eMy=-c (1).
Atﬁe system.

Mx 18 the first-order magnification o?
Hence,

i
f Bxda a
tan ¥ = 0 4
(x1|x66) (1+Mx)

148

Case II.
For a single quadrupole, Fig. 3, the result
is similar:

Ko
tan ¥ =

(1+Mx)

except for the factor K < 1 resulting from the
fact that sy cannot have the same amplitude in
the bending megnets as it does in the quadrupole.
Therefore,

i L%

fsdar:mta .
X 1
0

Case IIL

Now, let us consider a symmetric four-quadru-
pole array, Fig. 4, such that we have an inter-
mediate image. Then

(x|x66) = - 2cx(1){1[1+(£1/£5)]
= twice that for Case I.

Because of symmetry, c_(i) =M =1 . Thus,
x X
we conclude

tan ¥ = - a/2[1+(£1ﬂ3)]

In other words, the intermediate image has intro-
duced a factor of two in the denominator and has
changed the sign of V¥ .
Conelusions.

It is clear from these three examples that
for high-energy systems where the total angle of
bend «a 4is & smull quantity, ¥ will be even
smaller. It is for this reason that we have
added sextupoles to the SLAC 20—Gev/b spectrometer.

V. Second-Order Matrix Formalism

The method for formulating the individual
second-order matrix for a given element in a
system is illustrated in Table V for the x plane
case. The technique is similar for the Yy plane.
The first three rows of the matrix are derived
directly from the general theory using the driving
functions in Table I. However, in order to faci-
litate matching boundary conditions, the matrix
is expressed in terms of a rectengular coordinate
system x , y &nd z (see Fig. 1). The dis-
tinction is the introduction of 6 and ¢ defined
as follows:

p e X X
dz ~Z7 T Iix

a4 ' '

Having formulated the second-order matrices for
each element of a system, the total system optics
is solved in the usual way be multiplying the
individual matrices in the same manner as for a
first-order problem. For further detalls see Ref.h.
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Second~order matrix elements for drift dis- ’
tances, quadrupoles, sextupoles, bending magnets
and for fringing fields of bending magnets (using
an impulse approximation) including rotated and
curved entrance and exit boundaries of the bending
magnets have been derived (see the list of refer-
ences). These matrix elements have been incorpor-
ated into an IBM 7090 Program called "TRANSPORT"®
by S.K. Howry, C.H. Moore, and H.S. Butler at the
Stanford Linear Accelerator Center. We have uged
this program to finalize the design of all of the
beam transport systems and high-energy spectrometers
to be utilized at SLAC.
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TABLE 11

Applying the Greens' {unction solution, Eq. (22), in the high-energy limit as de~
fined above for point-to-point imaging in the x(bend) plane, the second-order
matrix elements reduce to:
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TABLE 111

For point-to-point imaging in the y (non-bend) plane, Eq, (23), the high-energy

limit yields:
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TABLE IV

For parallel-(line)-to-point imaging in the y (non-bend) plane, Eq. (24), the

high energy limit yields:

i

(ylxoyo) T 8 (1)f c'c'c da + 28 (1)2 Schcy ‘
(leoy(')) = 8 (1) / c's'c da + 28 (1)}3830}{5ycy
i
vlxy) T (1)/ sjele da + 28 (I)ZSJBxcy
tyty = t ‘ d

* ¥ - i ]

0 JXO}O) SN / sysyc,da + 28 (1)Esjsxsyc y

o o

o : y
'\ ] yod) =+ Sy(l) cg}d'cyda + 25y(i)ZSjcydx - By(l) Z fq
j q

s c
Ayt £y = 4+ . ' . - . y.
( yoﬁ) Sy(l) syd cyda + 25y(1)2:SJs ycyd - sy(1)z7;1
) q



vA-ELE

“9TO14JI8 S1Y3 U] PISSNOSTP S307J118W JISpI0-PUODSS 943 33B[NTMIOJ 03 MOy JO UOTFBIISNITI UY

l..il I. IJ
%07 o4
0
2 £
29 8
% 6
0 -
% O |zl
Lx Qx
X X
0g0x -39 xmu.no+ u.noxu ox
. )
0 X XX X X_X X x x
Ox 0 0 0 2P P sz =S P og osg | 2o X
< 0 0 0 0 8} o} 0] 0 o] Tj{0110 Q
04 ‘098 (%%x|6)| (Zx|6) Fiefis[io 6
0,0 0 0, 14> Ont.. X_|x Ix
Ox (Ba]x) | (%zix)| (A1) | (slx) | (% %) | (1261%) | (%[x) | (%6x[x)| (3x]x) _ e[ |=x
Q/& 4L ENE8VL




