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Summary 

A general first- and second-order theory of 
besm transport optics has been developed, From 
this the first- and second-order matrix elements 
of bending magnets, quadrupoles and sextupoles 
have been derived. 

Utilizing this theory, very general first- 
and second-order theorems of beam transport optics 
have been formulated which have been extremely 
useful for designing single and multiple element 
magnetic optical systems, Ihe theorems are ex- 
pressed as functions of five characteristic first- 
order trajectories of a system. In fact, all of 
the first- and second-order optical properties of 
a system may be expressed in terms of these five 
trajectories. 

A general discussion of the formulation and 
the results obtained will be presented along with 
typical examples to illustrate their usefulness. 

I. Introduction 

For the past several years, we have been 
attempting to evolve at Stanford a more systematic 
procedure for solving beam transport problems. 
Two basic techniques have been utilized for this 
purpose. The first, which will be discussed in 
detail later, is a logical extension of the first- 
order matrix formalism to a matrix formalism which 
allows one to calculate systematically not only 
the first-order but also the second-order optical 
properties of besm transport systems. The second 
approach is the conventional one of computer ray 
tracing through a known field to the degree of 
precision demanded for the particular problem. 

The advantage of the matrix fonnallsm, as we 
have evolved it, as compared to ray tracing, is 
that it provides us with a somewhat better physl- 
cal inslght'lnto the physics of the problems and, 
as such, permits a more systematic procedure for 
solving problems. 'Having utilized the matrix 
method for finding a solution, we then use con- 
ventional ray-tracing techniques for verification 
and as a means for further refinement of the 
design if needed; 

The basic approach to formulating the matrix 
x&hod has been as follows: <I 

(1) The general differential equation de- ' 
scribing the traJcct0r-y of a charged particle in 
a static magnetic field which possesses "mldplane 
sysrnctry" Is derived. *I 

(2) A Taylor's series solution about a ten-*" 
tral trajectory is then assumed; this is substi- 
tuted into the general differential equation and 
terms are retained to second-order. 

(3) me first-order cocfflcients for mono- 
energetic rays satinfy the usual homogeneous 
differential equations characteristic of harmonic 

OSCilkkor theory, and the first-order dispersion 
and the second-order coefficients of the Taylor's 
expansion satisfy second-order differential equa- 
tions having "driving terms". 

(4) The first-order dispersion and the second- 
order coefficients are then evaluated by a Green's 
function integral containing the characteristic 
driving function of the coefficient being evaluated. 

In other words, the problem is nothing more 
or less than the old problem of the harmonic 
oscillator with driving terms; and as with the 
harmonic oscillator, we may readily draw general 
conclusions about a given second-order aberration 
by studying its characteristic driving function. 

Ihe task now Is to transform this solution 
Into a self-consistent second-order formalism. 
I will demonstrate later how this has been accom- 
plished. 

By using the above procedure, we have de- 
rived the complete second-order matrix elements 
for a drift distance , quadrupoles, bending mag- 
nets, and sextupoles, including an impulse appro- 
ximation for the input and output fringing field 
boundaries of bending magnets. This Includes 
rotated input and output faces and curvatures on 
the Input and output faces of the bending magnets. 
This entire formalism has then been progrsmmed 
for a 7090 computer, which enables us to calcu- 
late within the above limitations the complete 
second-order properties of any combination of 
quadrupoles, sextupoles, bending magnets and 
drift distances which one might choose to 
utilize. 

Returning briefly now to the formulation of 
the general theory, all of the theory and the 
subsequent matrix elements have been derived and 
expressed in terms of five characteristic first- 
order tradectories of the system. Before iden- 
tifying these trajectories, it should be mentioned 
that it is implicitly assrrmed from the beginning 
that a central traJectory is known and that the 
positions of the other characteristic trajectories 
are alwsys specified relative to this central 
trajectory. In other words, we have made the 
usual paraxial ray approximation. 

The five characteristic trajectories are the 
following (identiMed by their initial conditions): 

(1) The unit sine-like function ax in the 
plane of bend where ~~(0) = 0, s&(O) = 1 

(2) The unit cosine-like function cx in 
the 

P 
ls& of bend where c,(O) = 1, c&(O) = 0 
3) The dispersion function dx in the plane 

of bend where d,(O) = 0, d:(O) = 0 
(4) Ihe unit sine-like function sy in the 

non-bend plane where sy(0) = 0, s$(O) = 1 
(5) The unit cosine-like function c 

non-bend plane where c (0) = 1, c$(O) = 
f 

6. 
in the 

With this introduct on, we are now in a posi- 
tion to discuss the theory which we have evolved 
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and how it has been utilized to solve general 
first- and second-order transport problems, 

d 
. . II. 'Ihe Formulation of the general Theory 

i 
We begin with the usual relativistic equation 

of motion for a charged particle In a static mag- 
netic field. . 

“P = e(vM3) (1) 
and immediately transform this expression to one 
in which time has been eliminated as a variable 
and we are left only with spatial coordinates. 
The curvilinear system utilized is shown in Fig. 1. 
With a little algebra, the equation of motion is 
readily expressed in the following vector forms: 

* 

(2) 

Or 

gll 1 81 
me - d (s')2 e: ; 

2 (s')~ dt 
6' (Bag) (3) 

where prime means the derivative with respect to 
t (the distance along the central trajectory). 

By utilizing the expression for the differ- 
ential line element in the chosen coordinate eys- 
t=m, n-ly, 

ds2 = dx2 + @ + (l+hx)2 dt2 (4) 
and expanding Eq. (3) Into lte component parts, 
retaining only terms through second-order, the 
x and y components of the equation of motion 
become: 

X” - h(l+hx) - x'(hx' + h'x) 
(5) 

e L - 6’ P ty'Bt - (l+hd$l 

y" - y'(hx' + h'x) 

e 5 - 6’ P [(l+hx)Bx - x'Bt) 

!Fhe equation of motion for the central trajectory 
Is foundbytakingthelimit x=x( =y =y' -0, 
from which 

h=-- e B (O,O,t) 
PO y 

1 
The field components B, , By and Bt in 

the curvilinear coordinate system may be derived 
from a scalar potential* Q , yielding the 

. 

*Midplane symmetry requires that cp be an 
odd function in y , i.e., 

dx,Y,t) - - dx,-y,t) 

following result to second-order: 

where the coefficients A 
(6) 

are derivable from the ml plane field By(x,O,t): P 
of the expansions 

__._ -- - - 

= functions of t only 

and 

Studying the expansion for B for the mid- 
plane drily, Y 

By(xAt) - AL0 + ALAx + & Ai2x2 . 

guadrupole dipole oextupole 

+ . . . 

etc. 

we can readily identify the various terms appear- 
ing #I tlm squations of motion as to whether they 
are 0) dipole, quadrupole, or sextupole origin 
and rebain this identification throughout the re- 
mainder of the discussion. It is then conven- 
lent '- defirta two dimenelonleee quantities n(t) 
and B t) "p In terms of their quadrupole and sex- 
tupole origins, i.e., 

and 

X=0 

Y=O 

MaRlrig use of the equation of motion for the 
central traJectory, we may eliminate B y in the 

142 BRAN - Page 2(of - PWFS) 



expressions and rewrite them as follows: 

pO - nh2 - 
0 

,2z 

P-P 
where 6 0 = - and the constant e has been 

pO 
ellmlnated by incorporating the equation of motion 

and 

e ax 
for the central trajectory. 

X=0 If we now assume a Taylor's expansion about 
Y=o the central orbit for x and y at the exit of . a system, describing the position of an arbitrary 

pO w - 2: 0 
,1 a2By 

e ax2 
X=0 

Y=O (gal. 

trajectory with respect to the central trajectory 
as a function of the initial coordinates of the 
arbitrary trajectory, we have 

For a pure quadrupole field 

BOX By = - 
a 

hence, we obtain the identity where BO is the 
field at the pole and a is the radius of the 
aperture; 

nnd for a pure sextupole field 

B BO c- 
Y a2 

(x2 - y'l 

from which 

B. e 
Bh3 = 2 - ( >( 1 

= p 
PO * 

Using these definitions, the equations of motion 
X and y may, after a little algebra, be evolved 
into the following convenient forms: - 

x"+(l-n)h2x = h6 + (2n-l-B)h3x2 + h'xx* 

+- ' hxf2 + (2-n)h2x6 2 

+ ,$ (h"-nh3+2Bh3)ys + h'yy' 

-- ; hy12 - hS2 

+ higher-order terms 

y"+nh"y = 2(p-n)h'xy + h'w' - h'x'y 
+ hx'y' + rlhFy6 
+ higher-order terms 

(10) 

b) 

C 
X 

x= fqqxo 

+(xI$lg 

+(xlx~‘)x;’ 

+(xlYg)Yg 

.~.. 

and 
=Y 

Y = (GgjYo 

+(y Ixoyo )xoyo 

+(Y lx$&Yt) 

8 
X dX 

+ q$xA t=s 

+ ("~xo+ox;, + ("po"lxo~ 

+ (xlx;s)x~G + (xl62)62 

+ (XI Y&lY&lJ + (xlY;2)Yh2 

(12) 

sY 

t GgYYh 

+ (YlqJY&jY~ + (Ylx&vo)x&) 

+ (Y(Yo6)Yo6 + (YlY;6)Y&6 
(13) 

Substituting these expansions into Eqs. (10) and 
w, we derive a differential equation for each 
of the first- and second-order coefficients con- 
tained in the Taylor's expansions. When this is 
done, a systematic pattern evolves In the follow- 
ing way: 

c" t k% = 0 

6" + k2s = 0 

q"+k2qrf (14) 

where k2 = (1-n)h2 and k2 = nh2 for the x 
and y Lions, respectiveYy. The first two of 
these equations represent the equations of motion 
for the monoenergetic solution to the first-order 
part of the problem. The fact that there are two 
solutions, one for c and one for s Is a 
manifestation of the fact that the difflrential 
equation is second-order; hence, the two solu- 
tion& differ only by the initial conditions of the 
characteristic s and c functions. !lhe third 
differential equation Is a type form which 
represents the solution for the first-order dls- 
persion d and for the coefficients of the 
second-or& aberrations In the system where the 
driving term f has a characteristic form for 
each of these coefficients. The third dlffertntial 
equation may be solved by the Croen's function 
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. 

integral t 

9' s 
f(z)G(t-r)dr (15) 

0 
It can be readily verified by substitution into the 
third equation 
Is given by 

cgt-T) 

mu, Eq. (15) 

t r 

that the correct Green's function 

= s(t)c(r) - s(7)c(t) 
becomes 

,t 
9 = s(t) j f(T)c(l)dT - c(t) j f(r)s(T)dT 

0 0 
(17) 

The problem is then, in principle, solved if we 
know the driving term f and if we are able to 
evaluate the integrals contained in Eq. (17). The 
driving function f is readily obtained from sub- 
stitution of the Taylor's expaneions into the gen- 
eral differential Eqs. (10) and (11). The results 
of this substitution are explaeeed in Table I for 
the first-order dispersion and for all of the sec- 
ond-order coefficients which will occur for a 
system having midplane lsymnmtry, All of the dri- 
ving terms have been ex@-eseed in terms of the 
five characteristic first-order functions sx , 
Cx f 

dx ' duction. 3 ' and 'I 
mentioned in the intro- 

so conta ned In the expressions are 
the parameters which characterice the expansion 
of the magnetic field to second-order, I.e., 
h ,n, and S . 

Going back to the definitions for n and S , 
it is possible to Identify immediately the origin 
of the various terms contained In these express- 
ions. For example, any term containing the qusn- 
tity nh2 as a coefficient is of quadrupole ori- 
gin, and any term containing the quantity @h3 
is of sextupole origin. Zhe other terms are either 
of dipole origin or they result from cross product 
terms between the dipole ahd quadrupole elements 
of the system. The driving term expressions 
are completely rigorous to second-order for any 
magnetic field configuration poseeasing mid-plane 
symmetry; no assumptions have been made regarding 
the details of the fringing field Ot boundary 
shapes, 

Derivation of Some Useful First-Order Relations 
Based on the General Theory of Section II. 

The spatial and angular dispersions of any 
system are readily derived using the Oreen's func- 
tion integrals and the driving tens h(t) for the 
dispersion. The results are: 

dx = s(t) /cxdCY - c(t) ssxda (18) 

and 

d' - s'(t) st',d" - c'(t) .Tt",dU X 

d 0 
where da = hdt Is the differential angle of 
bend thpough the system. It is also useful to 
calcuJAte the first-order path length difference 

t. = (s-t) = fxd, 
0 

between an arbitrary ray and the central orbit. 
Usin the Taylor's expansion for x given by 
Eq. f 12), we have: 

-t = oJtxdu = x0 &,du + x;, s"sxda + 6 St,, 
0 0 0 

(20) 

fnspectioh of the above relations yields the 
following ubeW theorems: 

a ,y~~~e~:i~~~~~~~~~~~~~~ 
(i .e., dx f 0) at the image If: 

t 

s 
exdU = 0 

0 
A system will be achromatic 
between 0 and t if: 

st',d" = St'pCY t 0 
0 0 

We &.llleo note from Eq. (20) that, if a eyetem ie 
achr&kCtlc, all particles of the same momentum 
will hhve equal (first-order) path le!@tha 
through the rystem. 

thai%$%%i 
We further note &oln &q. (20) 
independent of their momen- 

tum, Mill have the'eame first-order path length 
throtlgh a system if: 

fcxdU - jaxda = st4pu a 0 
0 0 0 

An &ample of the Use of the General Theory for 
Segotid-Order Applications 

Ooneider the three magnet achromatic system 
shown in Fig. la. The first-order x-#lane 
transformation matrix from A to B of this 
system is simply: 
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1 (~)fll) (5) 
B L JA 

‘i From the symmetry of the system and the above l 

first-order matrix, the symmetry of the three char- 
acteristic x-plane traJectorles about the midpoint 
0 is easily established as to whether they are 
odd or even functions. The results are: 

C =odd 8 = even 
X X dX 

= even h =even 

": = even ":, = odd d' = odd h' -odd 
X 

From the first-order matrix; cx , ox , ci 
and 6' at B are: 

X 

c,(i) = -1 
. ..I s,w = 0 ., 

c;(l) = 0 l+(i) = -1 

i 

. 

Using the above synnnetry relations and the driving 
terms for the second-order matrix coefficients, 
the follwing second-order coefficients are unl- 
quely zero for the transfonnatlon between A and 
B. 

ix Ixox$ = (x)x06> = wp;, 

= (x'lx;") . (~'1x66) = (~'16~) = 0 

This must be true Independent of the details of 
the fringing fields of the magnets, provided that 
the three magnets are Identical4 

III. Evaluation of the Matrix Elements 
. . . . ,* 

A considerable simplification results for the 
high-energy limit where the'dlpole, quadrupole 
and sextupole functions are physically separated, 
such that the cross product terms do not appear 
and such that the fringing field effects are small 
compared to the other dominant effects generated 
by the dipole, quadrupole and eexttipole elements 
of the system. 

For the purpose of this discussion, the x 
plane is defined as the bend plans in which the 
particles are dispersed In wntum, It ie tiB0 
assumed that midplane symmetry is pn?eerved about 
the x plane of the system, as deecribed in Sec- 
tions I and II. 

pllshed predominately by qusdrupole elkente; and 
only n = 0 uniform-field bending msgnets are 
considered. 

Within this limit, the following definitions 
are used for convenlenc:: 

', ! f . ti 

A.- 
aq(Hpo) 

or 

=the quedrupole strength In 
the x (bend) plane 

and 

or 

Bh’ = c . Be 

aEbo) 

C&B = 6 = the eextupole strength In the 
x (bend) plane 

where Bq and B, are the field strengths at 
the poles of the quadrupole and sextupole, res- 
pectively. aq and as are the radii of the 
apertures of the quadrupole and sextupole, and 
h and & are the equivalent magnetic lengths 
of the quedrupole and eextupole elements. 

Using the Green function solution, the equa- 
tions for the first-order dispersion dx and mom- 
entum resolution Rx reduce to the simple forms: 

a 2 

dX 
9-c x(i) fsxhdT = - c,(i) j-ixdCZ (21) 

0 0 
UI, *. 

and 

dX 
i 

RxxO=-- = s c,w 0 
sxda 

where doI is the differential angle of bend of 
central tradectory of tk 6ystem and x0 is 
source the. 
It follows from the general theory ofi Sec. II 
the above focusing conditions that we obtain 
the eecond-ozder x (bend) plane aberrations 

I 

Q” c,w s 
fexdr (23) 

0 
The focusing condition8 Imposed Upon the sys- 

tem at the Image planes are: At the x (bend-plane) 
image sx(i) = 0 , Le., we assume point-to-point 
Imaging; and, at the y (non-bend) w plane, we for point-to-point inmglng; for the second-order 
consider two cases: y (non-bend) plane aberrations, 

q=-c ,(I) tfaydT 
0 

In thf high-energy limit, the bending radius 
PO =.>>1; the first-order focusing i6 accom- 

(24) 
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r 

for point-to-point Imaging (case a), and equal 

(25) 

for , parallel-line-to-point @aging (case b). 
(See Tables II, III, and IV). 

Iv. Applications of the General Theory to 
High-Energy Spectrometer &sign 

In high-energy spectrometers or besm trans- 
port systems where qusdrupoles essentially con- 
trol the first-order optics of the system, the 
second-order chromatic aberrations introduced 
by the quadrupoles are usually the dominant 
aberrations limiting the performance of the 
system. As an example of the use of the theory 
as developed here, we shall calculate for some 
representative examples the angle Jr that the mo- 
mentum focal plane makes with respect to the cen- 
tral trajectory. For point-to-point imaging, It 
may be readily verified that 

,i 

tan Jr = 
J sxdcT 

.O 
(3 19) 

Let us now consider some representative quad- 
rupole configurations and assume that the bending 
magnets are placed In a region having a lar e smp- 
litude of the unit sine-like function sx f to 
optimize the first-order momentum resolution). 

Case I. 
Consider the simple quadrupole configuration 

shown in Fig. 2 with the bending magnets located 
in the region between the quadrupoles and 6: * 0 
In this region. For these conditions, f, = tL , 
sx = tL at the quadrupoles, and fa = t3 . 
From Table II, we have: , 

(X&6, = - c,(i) c ” 9 q 
9 - (27) 

Case II. 
For a single quadrupole, Fig. 

Is similar: 

Ka 
tan * = - 

3, the result 

(l+Mx) 

except for the factor K C 1 resulting from the 
fact that sx cannot have the same amplitude in 
the bending magnets as It does in the quadruple. 
Therefore, 

i 
‘i 
‘a 

s 
sxdO = "e;a . 

0 

Case III. 
NOW, let us consider a symmetric four-quadru- 

pole array, Fig. 4, such that we have an lnter- 
mediate image.- Then 

b+;“, = - 2cx(i,4;~1+(~~/~3,1 

= twice that for Case I. 

Because of symmetry, c,(i) = M, = 1 . 
we conclude 

Thus, 

In other words, the intermediate image has intro- 
duced a factor of two in the denominator and has 
changed the sign of V . 
Conclusions. 

It Is clear from these tnree examules that 
for high-energy systems where the total. angle of 
bend a is a smvll quantity, Jr will be even 
smaller. It Is for this reason that we have 
added sextupoles to the SLAC 20-Gev/c spectrometer. 

V. Second-Order Matrix Formalism 

The method for formulating the individual 
second-order matrix for a given element in a 
system Is Illustrated in Table V for the x plane 
case. The technique is similar for the y plane. 
The first three rows of the matrix are derived 
directly from the general theory using the driving 
functions in Table I. However, In order to faci- 
litate matching boundary conditions, the matrix 
is expressed in terms of a rectangular coordinate 

where we make use of the fact that (4 /t )=Mx=-c (i) 
system x , y and z (see Fig. 1). The dis- 

Mx Is the first-order magnification o?.tke systei. 
l tinction is the Introduction of 9 and cp defined 
as follows: 

Hence, 
dx x' x' 

IJ 
e=z='iT -ix-c 

J 
sxdcx a 

tan JI = 0 9 
(Xi JJp) (l+Mx) Having formulated the second-order matrices for 

each element of a system, the total system optics 
is solved in the usual way be multiplying the 
individual matrices In the same manner as for a 
first-order problem. For further details see Ref.4. 
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Second-order matrix elements for drift dis- 
tances , quadrupoles, sextupoles, bending magnets 
and for fringing fields of bending magnets (using 
an impulse approximation) including rotated and 
curved entrance and exit boundaries of the bending 
magnets have been derived (see the list of refer- 
ences). These matrix elements have been lncorpor- 
ated into an IBM 7090 Program called ?lRANSPORT"s * 
by S.K. Howry, C.H. Moore, and H.S. Butler at the 
Stanford Linear Accelerator Center. We have used 
this program to finalize the design of all of the 
beam transport systems and high-energy spectrometers 
to be utilized at SLAC. 

1. 

2. 

3. 

4. 

5* 

6. 

7. 

a. 

9. 
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