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I. IN!l?RODUCTION 

In a previous article, hereafter denoted by I, we have reviewed the 

symmetries of the Schroedinger equation for a Coulomb potential and dis- 

cussed the use of a non-compact group isomorphic to the pseudo-orthogonal 

group 0(1,4) to relate the bound state 1evels.l It is of some interest to 

pursue the analysis further to the scattering states. This is the goal of 

this work. The "hidden symmetry" is now an invariance under the homogeneous 

Lorentz group 0(1,3) and the space of scattering states can be written as 

a direct integral of infinite dimensional Hilbert spaces, which are carrier 

spaces of unitary representations of the Lorentz group. This is a frequent 

occurrence when dealing with a non-compact group, the simplest example 

being Fourier analysis for the group of translations in one dimension. We 

shall follow the.usual device of introducing non-normalizable scattering 

states in order to achieve the decomposition. Physically, of course, the 

direct integral is related to the continuous spectrum of the Hamiltonian. 

As in the bound state case, there exists a larger group, isomorphic to 0<1,4) 

which connects the scattering states, but we have to introduce wave functions 

for both attractive and repulsive potentials. We shall show that the repre- 

sentation of this group, obtained in this way, is equivalent with the one 

previously discussed in I. This representation is in fact not unique and 

the ambiguity which arises is the same as the one already encountered. 

We shall slightly generalize the discussion by taking an arbitrary di- 

mension f for the configuration space. In order to construct the wave 

functions it will be necessary to use harmonic analysis on a two-sheeted 

hyperboloid. This has been developed in four dimensions in a series of 
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papers by Dolginov and collaborators2 but we shall briefly recall the main 

features including orthogonality and completeness of the "spherical func- 

tions." This part can perhaps be used for other purposes in a different 

context. 

In an appendix we have performed the necessary transformations in order 

to show that the wave functions coincide with their ordinary expressions in 

configuration space, both for scattering and bound states. 

We will have to use repeatedly the followi@ notations: 

s : unit sphere in a p-dimensional real Euclidian space, the measure 
P 

on the sphere being dp'%Q with 

s $-&J = w = 
P 

S 
P 

6 (n1,n2) sph 
will stand for the "6-function" on Sp, i.e., 

jT dP-~~(n~)g(n=)6sph(n1,n,) = g(n,) 
S 

P 

T : unit hyperboloid in a p-dimensional real Euclidian space, 
P 

p-l -8 
2 u: u - 
0 z 

2 u =l i 
i=l 

Tk 
P 

will denote respectively the upper (u. 2 1) or lower (u. _< -1) 

sheet of this hyperboloid. Our constant parameterization of Ti 

will be: u = ch@, u. = shen i, with 8 > 0 and n on S 
0 1 i p-l' 
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The measure on Ti will be written as dp-' p with 

d p-lp = shQP-2d@dp-2!J. The measure on Tp will be related to the 

-I- 
one on T 

P 
by the transformation LET- +ueTi. Finally, 6hyp(u1J P ",) 

will stand for the "&-function" on Tie 

II. 

1. Infinitesimal Method 

We study the scattering 

THE SYMMETRYGROUP 

states in a Coulomb potential. As in I, we 

introduce the following two-vector operators: 

the angular momentum, - 

and the Runge-Lenz vector, 

j,$’ $($xLEx$) 4-G (1) 

with ^r standing for is the linear momentum, p the reduced 

mass; k denotes the strength of the potential. 

The Hamiltonian 

H=g-& 

commutes with both these vectors. They satisfy also the following corrunu- 

tation relations: 

[Li,Ljl = i$Eijk \ , 
(2) 
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Consider the subspace corresponding to the positive spectrum of H. In 

this subspace let Gi = 
d-- 2 Mi where the square root of H is defined 

by the condition of positiveness. Then Li and Gi build up the Lie 

algebra of the homogeneous Lorentz group 0(1,3) ( our notation implies that 

O(p,q) is the pseudo-orthogonal real group leaving the metric with p plus 

signs and q minus signs invariant). In terms of L and the Hamiltonian 

reads: 

H=- 2 fi [L2 - G2 + )(y . 

The requirement that H be Hermitian restricts L and $ to be likewise 

Hermitian, and hence we are interested in unitary representations of the 

Lorentz group.3 These representations are labeled by two numbers (ao,c) 

with to a non-negative integer and c pure imaginary, c = ip (the prin- 

cipal series) or go = 0 o<c<l _ _ (the supplementary series). 

L2 - 3 is a Casimir operator equal for each representation to g2 + c2 - 1. 
ti2 

0 1 

From Eq. (1) it follows that we have one further relation among L and E, 

namely 

L* ii-tit* L = 0 = 2i'eoc (3) 

Equation (3) thus restricts us to the representations with to = 0. Thus 

k2ii 1 
E=-- .- 

2$2 c2 
(4) 

where E is the energy; and as we have assumed H to be positive c = ip 

and we are only concerned with representations of the principal series. 
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2. Global Method - The Fock Transformation 

As mentioned above, we shall now generalize the Problem to an arbitrary 

dimension f 2 2. The Schroedinger equation in momentum space takes the 

form 

(P2 - 2IJ-F) 0 (‘is) = ZJ Jdfq & 
P -q 

(5) 

1 
with E>O. Changing variables from $ to (2@)-'$ and letting 

Eq. (5) becomes 

(P;' - 1) y (3 
k(244 Gi) 

= - dfq ,$.I- ;if-l ' (6) 
RUf-l w 

We now imbed the f-dimensional space into one of f + 1 dimensions and 

perform a projection of the original momentum space onto a two-sheeted 

hyperboloid, Tf+l (the Fock transformation, see Fig. 1). Let u be an 

arbitrary point in the f+l-dimensional space with component u 
0 

along 

the f + 1 direction and t its ordinary projection in the original space. 

We introduce a Minkowski metric into this space, i.e., u2 = u2 '2 o - u . The 

hyperboloid is given by the equation u2 = 1 and the point $ corresponds 

to a point on this hyperboloid with coordinates: 

-b c 1 + p2 6 
p 'U = c 

1 - p2 
., 

1 - p2 ) 
(7) 

The region p2 < 1 is mapped on the upper sheet while p2 > 1 is mapped 



on the lower one. We shall need the following relations. If $ and z 

correspond to u and v respectively, then 

ZL “St” = -&J&-J=*, 

c 2s(u2 - I) aft-l, dfp b-d 
dip = = 

1 + Uo/ 
f \1+ uojf ' 

where we remind ourselves that all scalar products involving u and v 

must be taken with the Minkowski metric. For u given by Eq. (7) and 

I I 
f-i-l -w A 

o(u) = 1 + u. 2 y(S) (8) 

we obtain the following equation for z : 

G(u) = 
k(2p)' E(U ) 
d dfP (4 

2 (4 

2fluf-1 w2 /( I 
f-l 

Tf+l u - v)" 2 
(9) 

with e(uo) = i-1 if u. > 1, e(uO) = -1 if u. 5 -1. The above equa- 

tion exhibits explicitly the invariance of the problem under the group of 

homogeneous, metric preserving, transformations in a f+l-dimensional 

Minkowski space, i.e., under the group O(l,f). 

Equation (9) is of the same type as the one obtained in I for bound 

states which was solved using the properties of spherical harmonics on 

the sphere. It will turn out that the solution, in the present case, can 

also be obtained by iritroducing a set of 'spherical functionsH on the 
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hyperboloid. (The terminology is somehow misleading and hyperboiic func- 

t-ions would seem more appropriate; however, we stick to this name which is 

apparently of general use.) However, while the spherical harmonics are well 

known, the corresponding functions for the "Lorentz group" O(.l, f) enjoy 

less popularity. As mentioned in the introduction, they were studied in 

particular for f = 3 by Dolginov and collaborators.2 The case of f = 2 

was also used in the context of Regge poles but dates back in the mathemat- 

ical literature to Mehler. We shall for the moment interrupt our discussion 

of the Coulomb problem to give a description of these functions in order to 

apply them to the solution of Eq. (9). However, they certainly deserve some 

study for their own sake and, while exhibiting some results with lots of 

"6-functions," we shall be careful to present the proofs in such a way 

that they can, hopefully, be made rigorous. 

3. Definition of Spherical Functions on Hyperboloids 

-i- Let Tf+l be the upper sheet, u. > 1, of the hyperboloid Tf+l, 

2 -!- u: u -izf u; = 1. 0 - Given two points on Tf+l, u and u 
1 2, there always 

exists a transformation AeO (+'+)(l,f) such that u = Au . 
1 2 

o(+J+)(l,f) 

is the component of the identity of O(l,f). The set of transformations 

which leave a point invariant is isomorphic to a proper rotation group 

o(+)(f) + so that Tf+l = o(+'+)(l,f)/o(+)(f). The measure dfp 1s invari- 

ant under 0 (+'+)(l,f). Hence the Hilbert space 2; 
f+l Of square integrable 

functions defined on Tf+l , 
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is the carrier space of a unitary representation of the non-compact group 

o(+t+)(l,f) 

g -+u Q A with oJ*dh) = gw-4 

This representation is not irreducible and decomposes into a direct inte- 

gral of irreducible ones: 

co 

un = 
s 
0 

Each is itself a unitary irreducible representation of the group but 

again the non-compactness results in the fact that it is infinite dimen- 

sional. Different N correspond to inequivalent representations. Corres- 
; " 

pondingly, the space .."Yf+l will be split as a direct integral of infinite 

dimensional Hilbert spaces and any function in, 'ft-1 will have a repre- 

sentation 

(10) 

where V is a discrete index which distinguishes the components in the 

space of the representation 6 The function gN,v 6-d will not belong 

to ./i:f+l but will satisfy a certain partial differential equation in terms 

of the Casimir operator of the group. Having properly chosen the indices, 

gN,V will be proportional to a spherical function. We shall now derive 

the equation satisfied by these functions. Let u E (the, she;), we shall 

investigate functions of the type 

(11) 
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where Y g; 
-+ 

( ‘> n The discrete 
# 

is a spherical harmonic on the sphere Sf. 

index a takes the values a = 0,1,2, . . . . If Z = 4 is a point in 

an f-dimensional Euclidian space, r Y a g; (3 is a homogeneous polynomial 

of degree a in the components of $ and 

with the Laplace operator given in polar coordinates by 

a2 
A,z-+ 

ar 
2 

and CP is the generalization of 

on the angular variables. Hence 

f-la 2" ---- 
ar 2 r 1: 

the angular momentum and operates only 

,, Y(!$ ("n) = a(a + f - 2) YE; (Z) . 

The index S distinguishes the finitely many, linearly independent, solu- 

tions of this equation. Once normalized, the spherical harmonics satisfy: 

J 
7 

s, 

03) 

J. 

In f + 1 dimensions we write the wave equation in the neighborhood of T;+l: 

f a2 a2 
1 

WE-- 
dW 2 

i=l i ap2 

f a .--.. 
+---- 

Pap p2 
04) 

Q - - / 



where '. is the Casimir operator on the hyperboloid and w 
0 

= pche, 

W. p close to +l. Then is required to be an eigen- 
1 = psh8ni, % ,a,@ w 

function of 5 J or PA qq@,p (4 defined in the neighborhood of Tz+l 
f-l to be an homogeneous function of w = pu, of degree A, with h = - 2 + iN 

(N will turn to be real) such that 

Uf+, ip" %,cQ3 (u)j = O . 

The condition on N will be obtained by requiring that s (fili (u) be a 
9 

continuous function of + Tf+l with the smallest possible growth at infinity. 

The above conditions provide for the following equation: 

d2 d a(cx + f - 2) 
sh28 - + fche - - 

dche2 dchf3 sh2G 
.zhfL (e) = 0 (15) 

J 

The boundary conditions just mentioned require N to be real and the rele- 

vant solutions of Eq. (15) are for our purpose - including a normalization 

to be discussed later: 

for f odd; 

for f even; 
O-2 

l ti(r;s' + 12).... i? + (f - 1 + a)' )I cos NO, (16) 

p 
iN-L 

(the), (17) 
2 

where it is understood in Eq. (17) that the factor on the right-hand side 

reduces to (Nth,N)* for f=2;P I( ch@) is the Legendre function, and 
i-N-2' 
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we shall throughout follow and use Chap. III of reference 4 for these func- 

tions which in this context are called conical functions. In both cases 

we have an even function of N; in the following it is assumed that N is 

positive. With <L(B) given by Eq. (16) or (17), we have the following 
> 

basic three relations for spherical functions: 

Orthogonality relations, N1 and N, are positive: 

(u) iff:;’ B (u) = 6, a SB B “‘“, - N2) , 08) 
2’ 2 1’ 2 1’ 2 

completeness relations in- ,jif+, : 

integral equation 

f-l-l f-l 

" df&") %?, ) (f;1;(v) 2aT t-'%os(N log t) 

J 
@a 

N shxN 
(1 + t"+ 2-tu.v) 

In Eq. (23) t is a complex variable in a cut plane from - M) to 0; log t 

is real for t real positive and the argument of the expression 

(1 + t2 + 2tu.v) which appears in the integrand is 0 for t real positive. 

As is apparent from their definition [Eqs. (16) and (17)1, the spherical func- 

tions are somehow different according to whether f is even or odd. This again 

reflects the fact that the kernel in Eq. (20) hasa square root singularity 

for even f. Hence, we shall distinguish between the two cases to prove our 

basic three relations. 
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4. Proof of the Three Relations in the Case f Odd 

We start with the orthogonality relations. According to Eqs. (11) and 

(13) one has 

Using the definition of w ZN ,a [Eq. (16)3, th is reduces to the study of the 

integral: 

co 

1 
cos N28 , 

0 

Let us introduce the notation s,(N$) = sh@ cos N8. We want to 

evaluate 

It is understood that N1 and N, are positive. The auxiliary functions 

$(N,e) enjoy the following properties which are easily established: 

% 
+lw) = (& - Pcthe]qp(N,e) 

($ + (P - 1)2) ‘l&N,@ = - ($ + (p - 1) cth 9) s(N,G) 

d2 
-+N2 - 

P(P - 1) 

d8 sh2e 
qJN,O) = 0 . 
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D,,(N,O) = 0 if p >, 1 and $(N,e) h as an oscillatory behavior at infinity. 

Using the recurrence relations given above we find by using integration by 

parts that for p >_ 1: 

03 co 

s de~(Nl,eh#J2,e) = s deq cNlte) 
P 

& - (P - 1) 
0 0 

= 
s 

d9 - & - (P - 1) cthe)$(NI,e) 
0 

_ [$ + (P - I)"] = 

J‘ 
d%p-1(N1,@)qPl(N2,@) . 

Since for p = 0, qp(N,@ reduces to cos N8 and 

m 

s 
de cos N 8 COS N28 = g 6(N - N2) 

1 1 
0 

we find for p > 1 

co 

J 
' deqT(NLJe)Qp(N2Je) = JJf(< + 12,...(~ + (P - 1-)2 1 ; z(N1 - N2) l 

0 

Let now p =a1 +-1 f 
2 and introduce the proper normalization for (f) ZN 

‘a l 

One sees that we have just proved Eq. (18). 

We turn to the completeness relation. For that purpose we use the fol- 

lowing addition theorem (see ref,erence 4): 

f-l f-l 

c , 

a,B 

(21) 

f off 2 3 J u1 . u2 = the . 
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Integrating this result over N requires a little attention, since in 

interpreting the result as Ghv&lJ$ we shall naturally want to adapt the 

coordinate system on the hyperboloid in order that, say, u 
1 

be the point 

(~,0,0,...,~). Integration of Eq. (21) over N will introduce "6-functions" 

of 8. However, with this special system of coordinates, @ = 0 will be an 

end point of the integration interval in 8. Hence we use the following 

procedure. We multiply Eq. (21) by cos (NE), with E 1 0, E will be allowed' 

to go to zero at the end of the calculation (the same device will later be 

used without comment in the case of f even). With this in mind we find: 

The right-hand side does not appear at first sight to 

but is indeed equal to it. To see that, recall that 

Adapting the coordinate system as explained above, we 

function $ : 

be equal to 6 hm(u1Ju2)J 

dfp = sh ef-' d@d'%. 

compute with a test 

lim 
E" +o 

f-l 

s(e - E) 

= lim 
E3 +o 

sh 8 f-2 q(e,Z) . 
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We now use the fact that sh 8 ' sh Gf-2 goes to zero for :3 -+ +o 

f-l 
as long as q < 2 (recall that f is odd and greater or equal to 3), 

while 

f-2 
l?(f - 1) 

sh 8 = f-l 
22-ir(f-l) 

Our integral is thus q(O) ( which stands for $(O,z), z arbitrary, the value 
f-l f 1 

being the same for all g) times r(f - 1)/(4fl)T r($-) tif which is in 

fact equal to 1, using th.e area of the sphere given in the introduction 

In short, Eq. (19) is proved. 

It remains to prove Eq. (20). Let t be for the moment a real positive 

variable with log t real and compute the following absolutely convergent 

integral: 

co 

1 sin NG 
7 

i 
& cos (N log t> 

N(G + log t)+ sin N(G- log t) 
t, sin 8 sh JCC sh fiN 

0 0 

It is easy to show that 

Zence our integral is equal to 

1 

81 i 

6 + 1% t 8 - 1% t) i 

th + th - 
4t sh 2 2 i- 1+t2+2tch9 
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The i.ntegral is absolutely convergent for complex t as long as t varies 

in 3 pla.rE cut frOn1 -a to 0, such that log t is real for real positive 

t. For these values of t we get by analytic continuation: 

1 

1+t2+2tch8 

The addition theorem (21) 

-1 * d_pj 

s 

d 
=- cos (N log t) - (cos NS) (22) 

t 0 N sh xN dCh6 

together with Eq. (22) yields with the same re- 

strictions on t 

1 

f-l 

(l+t%u1.u2)T 

cos(N log t) 

a,B 

Hence, using the orthogonality relations Eq. (la), we get the desired result 

Eq. (2% 

5. Proof of the Three Relations in the Case of f Even 

We first must give some properties of the Legendre functions which will 

be used in the following, principally the Mehler's transformation formulas. 

'iN-l/2(") is the solution of the Legendre equation: 

t g (z2 - 1) g + $ + * 
) 

PiN-l,2 (2) = 0 (23) 

with the property that it is regular at the point +l where it takes the 

value +l. For z real greater than one, N real, which is the domain in 

which we are interested, P iN-l/2 is real and is even in N. For 8 real 
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positive, the following two integral representations hold:* 

J2 m sin I!?$ d+ J-5. ? cos N$ 
P 

iN-l/2 (the) = 
s J e (ch J' - ch Q)z = ?[ o (ch 8 - ch $)* 

d* (24) 
TI th ITN 

These two integrals are reminiscent of the theory of Abel's integral equa- 

tion. We propose to show that it leads us to the theory of Mehler's trans- 

forms. Let g(+) be a function defined for $ > 0 vanishing for $ = 0, 

square integrable. between 0 and ~0 and sufficiently regular for the 

following integrals to be well defined. One has the couple of equations: 
00 

s 
sin N$ G(N) 851 

0 

G(N) = f 
(25) 

oj 
sin N+ g(q) d+ l 

Consider the linear transformation: 

co 
s 

d4f> i3w -+f(Q) = d-9 
o (ch 4~ - ch 0)s 

where 8 2 0. The inverse formula of this Abel equation is defined, if 

say g(Q) < A$ for small $, and gives us 

Id c0 
&If> = - - - s 

f(e) sh ede 

fl d+ q 
1 

(ch $ - ch @)2 

(26) 

(27) 
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Combining Eqs. (26) and (25) we find 

f(e) = 2 

03 co 

s 

sin N$ 
a~ G(N) s I d@ 

fl0 e (ch $ - ch @)F 

(28) 

= 

s 
m PiN-l/2 (ch e) fi (th flN) G(N) 

0 

where we have used the first integral representation in Eq. (24) for the 

Legendre function. Similarly combining Eqs. (27) and (25) we find: 

G(N) = j d$ (sin N$) g(q) -= -IT' d$ sin N\lr 1 d f 
f(e) sh 8 

de 
0 0 II dq ,,, (ch 8 - ch $)+ 

m 
co m 

f(e) sh 8 
= -- . d$N cos N$ - de 

(ch 8 - ch $)T 

Assuming that g(q) is the derivative of a function which vanishes at 

infinity, we can drop the integrated term and we find, using the second 

integral representation in Eq. (24): 

G(N) = 2 J 
0 

If we call F(N) = G(N)& th 

couple of Mehler transforms: 
co 

f(e) = 
s F(N) 
0 

F(N) = N th XN 

sh edef(e) P iN-l/2 (ch e) de (29) 

IIN we deduce from Eqs. (28) and (29) the 

'iN-l/2 (ch 0) dN 

co (30) 

J 
df3 sh ef(e) P iN-l/2 (ch e) 1 

0 
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We can express Eq. (30) in a different language with x1 YX 2 
real and greater 

than one, N and 
1 

N 2 positive; 

r" 

0 J dlV 'iI?-l/2 (x~) 'iN-l/2 (x2) N th ~cN = 6(x - x2) 
1 

(31) m 
s dxP iNL-l/2 (4 p (4 = 

“‘NL - N,’ 
1 

iNz-l/2 Nl th SN 1 

We are now in a position to derive formulas (18), (19) and (20) in the case 

of f even>2. From Eqs. (11) and (13) we get as before 

s d’dd-$ 
T;+l 

Using the definition of (f) 5 
P 

Eq. (17), leads us to study the integral: 

03 ? 
'f-2 (N2,e) sh ede 

0 21 

where the auxiliary function rp(N,B) (equal up to a factor to the associated 

Legendre function) is defined through: 

'iN-1_/2 (Ch e> ' 

This function satisfies the following relations deduced from the analogous 
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ones valid for the Legendre function: 

rp+l(V) = & - P cth e) rp(N,B) ( 

i 
N" + (p - $)2 rpwl(N,e) = - (-& + p cth 8 

1 ) 
rp(N,B) 

Hence, by integration by parts using the fact that rp(N,B) is bounded 
7 

at infinity by A(ch e)-' : 

co 03 
n 

J’ 
de sh e rp(N1~e) ~,(N,Y~) = Jd-9 sh 8 rp(N1,@) & - (p - 1) cth 8 rpWl(N2,e) 

i 
0 0 

co 
r- 

= - 
J 

de sh 9 r p$J2'e) ( & 
0 

= [J!f + [P - $)si fd@ sh 8 rp-l(N1,e)rp-l(N2~e) o 
0 

Since for p = 0, rp(N,.O) reduces to the Legendre function for which Eq. (31) 

holds, we get 

02 

s 
de sh 8 rp(N1,O) rp(N2,8) = 

0 

The coefficient in front of the c-function is to be understood as (N1 th "N,)-' 

if p=O. Comparing this result with the normalization of we see 

that we have proved Eq. (18). 
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For the completeness relations we use the addition therorem:4 

piN-d2 (ch e>. (32) 

To prove Eq. (19) it remains to integrate Eq. (32) over N. With the same trick 

as in the previous section, we find with the help of Eq. (31): 

8(ch 8 - 1 - E) 
0 w 

Again, this is indeed 6 
hyp( "&' since with the test function $ 

co 

lim 
s dfdu) '4+-d 

E--++O 0 

f-2 f-2 

6(ch 0 - 1 - E) 

03 

= lim 
s 

sh 0 d&(ch 8 - 1 - E) 
E+-4-O o 

f-2 
-2 

s 
*(e,i!i)f-l m(n) 

sf 

Again 

lim ( 
8-t f0 

sh efB2 = 

f-2 if q=- 2 

so that the integral reduces by Leibniz rule to $(O) times 

~f((f-2)/2)! 2(f-2)/2 (27~)~~~ = 1. The completeness relations, Eq. (1-g), 

are thus proved. 
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It remains to obtain the integral equation, (2.0). For this we use the 

alternative integral representation of P iN-1/2(Ch e> ' 

ch J:N 
co 
1 t-$-iN 

'iN-IL/2 (ch e) = - 
J 

dt . 
N 0 (1 + 2t ch e + t")+ 

(33) 

By Fourier transformation Eq. (33) gives: 

00 
t-s- 

J 
1 

cos (N log t) P iN-l/2 (ch G) 5 = (34) 
0 ch ITN (1 + 2t ch 8 + t2)+* 

This result can again be continued analytically in the complex t plane 

cut from -03 to 0, with the principal determination of the logarithm 

in the left-hand side and the square root on the right-hand side such that 

it will be positive for real positive t. 

Combining Eqs. (32) and (34) we get: 

J 

-90 aI 
cos (N log t) 

o NshfiN 
%B 

with 1 . j....(f - 3> replaced by 1 if f = 2 and the same restrictions 

on t as before. With the help of the orthogonality relation, Eq. (18), 

' we deduce from Eq. (35) the desired integral equation, (20). 

6. Solution of the Integral Equation for the Coulomb-Potential 

Having now the required tools, we compare Eqs. (9) and (20). If we 

let t go to 1 in Eq. (20) the expression is well defined. If we approach 

(35) 

-1, either by the upper or lower imaginary plane, we again find a unique 
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limit. Using these facts, let' g(u) be a function defined on the whole 

hyperboloid Tf+l = Ts+l + Tf+l, by 

-I- 
U"Tf+l ' g(u) = I$J#JzJb) 

UETf+l ' g(u) = aJ$a,,h) l 

One deduces from Eq. (20) that: 

f-l-1 usT + 
2 a-t-chNJr if f-F1 

.r dfii(d 
dv> 2fl 

g(u) 
T'd if -c-b1 I N sh JON 

i 
$ + ch NX ueT- f+l 

In order that g(u) be a solution of Eq. (p), it is thus necessary that 

(a + ch RN) = - ($ + ch JcN), in which case -tJcN a = -e . Correspondingly 

we have two solutions (up to a normalization): 

i 

%,a&) + if ~eTf+~ 

_eM 
?N ,a,B(-u) if u~Tf+~ 

which satisfy 

(36) 

At 

( )S dfdv) 
Q, 

U 
N,cx,dV) 

f-l ' (37) 
T 

f-l-l I (Ll - v)2 2 I 

Because of the completeness relations, Eq. (lg), one can convince oneself 

that the functions, Eq. (36), exhaust the solutions of Eq. (9). The fact 

that for given N,a,B there exist two solutions is a natural consequence 

from the fact that choosing N positive was a matter of indifference; 
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I 

indeed (u). On the other hand, this double solution re- 

flects the fact that we can as well treat attractive or repulsive potentials. 

$+) corresponds to the attractive case (k > 0), g(-) to the repulsive case 

(k < 0). Comparing Eqs. (9) and (37) we get the following relation between 

the energy E and N: 

G2 i 
(38) 

independently of the dimension f. One notes that Eq. (38) is the analytic 

continuation in the index A of the equation corresponding to bound states 

(Eq. (19) in I) from real integer values to complex values of the form 

A=-2 . f-ll IN So, in fact, are the eigenfunctions. We observe also in 

the case f = 3, from the Lie-algebra analysis, that the eigenvalue c 

which characterizes our representations of 0(1,3) is equal to iN. 

Each set of functions df+1) ,-&4 for f ixed N provides a basis for 

an irreducible unitary representation of 0 (+'+)(l,f) through 

(f+l) 
X%B 

(A-lu) 

This is clear since the equation satisfied by this function for fixed N 

is invariant under the group. We shall not exhibit explicitly the matrix 

elements of these representations; it would require too lengthy calcula- 

tions. We return to this question in the following section. 

III. !lBABSFORMATI~ GROUP 

(39) 

We shall discuss briefly the introduction of a larger group of trans- 

formations. The motivation is the same as in I: We want to find a group 

which relates the various scattering states corresponding to different 
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energies but we have to mix solutions for attractive and repulsive potentials. 
I I ti 

Consider the space & f+l 6 of square integrable functions on T f+l with the 

f measure d P* It is spanned by our scattering states ~~~;,&u) * We are look- 

ing for a group which contains o(w) as subgroup and has a unitary represen- 

tation in cl 
( c 
Lf+l which reduces to the ones described above when restricted 

to @(l,f). Again, the answer is in terms of projective transformations. 

We recall the construction of this grou;3. Let us denote for the moment 

by u an arbitrary point in Euclidian f + 1 dimensional space. Introduce 

the quantity z = u2 (where u2 denotes the Minkowski square). In ihe 

(2,~) space we are restrict& to the previous "paraboloid." Consider the 

projective transformations which leave this paraboloid invariant. Intro- 

ducing the homogeneity variable t we find the homogeneous group, leaving 

f 

invariant. That is the 'conformal Lorentz group" O(2,f + 1). Going back 

to our f + 1, Euclidian space we ask for the subgroup of O(2,f + 1) which 

leaves the initial hyperboloid Tf+l invariant. The condition is z - t = 0. 

Hence the required group is G s O(l,f + 1). The result turns out to be the 

sanle as for the bound state case. This will appear clear at the end of this 

section. Going through the previous transformations, the action of G on 

the hyperboloid is found to be 

u-+A*u=u’ ; u,u*eT f-t-l 

Ca 
I&- p ag y3 + acxt , 

; atp uf3 + att 
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The Greek indices run from 0 to f, the Latin ones from 

real matrix A belongs to G; that is 

\ ata 

nTyn = y . 

&at 
1 i Y= 

"tt 

l-l-1 
. . 

. 
'-1 

The hyperboloid is clearly invariant since one finds 

2 U -1 
U 12 -l= 

i 

=o 

; atcY % + 
1 

2 
att 

1 to f. The 

-1 
/ 

(41) 

It is to be remarked that in Eqs. (40) and (42) the denominator may vanish 

for certain transformations. This means in fact that in order to consider 

the action of G on Tf+l we have to add to the hyperboloid extra points 

"at infinity." In other words, Tf+l has been compactified by the adjunc- 

tion of a surface at infinity. 

We build the following unitary representations of G in ',-) f-t-1 which 

depend on the index P: 

qPu) 

(42) 

Q(u) -4) (u) = . 

I C a 
$+ip 

cl ta 
(A-') uol + att(A-l) 
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Using Sq. (42) one checks the unitarity of these representations: 

s 
df$$ = ' dfd$Ql D+ 3 

Tf+l Tf+l 

We have studied in I similar representations of O(l,f+l) realized in 

t'ne Hilbert space of square integrable functions on the sphere Sf+l; denote 

it by ,:*I --'f+l' It may be interesting to know whether we have constructed 

equivalent or inequivalent representations of the scune group. The remainder 

of this section will be devoted to the proof of the unitary equivalence of 

the two sets of representations. All the properties investigated before, 
, 

such as irreducibility, will thus hold true in the present case. 

For that purpose we first define a transformation which maps the sphere 
f 

v'o + 
I: 

u; = 1 

i=l 

on the hyperboloid 
f I 

1 
2 u =l 
1 

i=l 

It is the following mapping (see Fig. 2a) 

-f+l -*u=TvET~+~; u= 

(45) 

1 -U. 

U'Tf+l 
I. 

-+v = 7 -“U& 
f+l; v= ix-- i ) 0 0 
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I 

Let v -+Av = v' be a conform1 transformation of Sf+l; &O(l,f+l) and 

a oovo + 
1 

a ojvj + sot a io"0 -I- 
L 

a v ij j +a it 

v 1 3 V. I= 3 - - 
0 

7 
1 T- I-- 

atoVo + L atjVj + att atoVo + 
L atjVj + att 

with 

A= ) 

, 

y being as in Eq. (&Ii.). Performing the projection T 

corresponding point on Tf+l undergoes the followkg 

‘J. --+J. = u’ 

&ttUo - L "-hi% + ato 
j 

u = 
0 ,-.-- 

a otUo - i 
a.u +a OJ j 00 

i t. 

That is with: 

one has 

AoM;' 

0 
0 

1 

= 

0 ‘/ 1, 
-If 

0 
i 

i 

att 

-a.. 1‘G 

a c-t 

-a 
itUo 

-!- 

we find that the 

transfo3nation: 

c 
a 

ij”j 
-a io 

(46) 

(47) 

.J 
7 u; = 0-a \- A. 

au - ot 0 

0 

0 

-If 

L a oj"j +a 00 

! 1. 
A-i = 0 

0 

i 
0 

-atj 

a ij 

-a 
OJ 

"to 

-a 
i0 

a 00 j 

j 

0 

:I 

1 
0 

(4-g) 
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If is a unit f X f matrix. The correspondence A *AT is an inner 

automorphism of O(l,f+l) and one even remarks that A0 always belongs 

to the component of the identity. 

If u = IT one also finds, using Eq. (4j), that 

dfCL(v) = 
dfdu) 

u f ; u=w l 

I I 0 

Hence, if Ji(v) is a function defined on Sf+l and belong to ;ikf+l ; 

(50) 

(50 

,:’ 

Using Eq. (jl) we define a unitary mapping Up from 'jo"f+l to ;ilL 
f+1 by 

*CT -3) 
l)(v) E ,$‘f,l + [up+1 (u) = 

I I 
$kip 

E ;.g, 

U 
0 

(52) 

e-4 
o(u) E i f+l * kpl(v) = R 

I I 
$+ip 

E 3ii,, 

V 
0 

The unitary representation of O(l,f+l) that we investigated in I for 

,lh L- ,f+1 was defined through 

l(v) 4 [R;$l (v) = f . 

c 
aea(A-') va + att(AB1) "' 

a 

(53) 
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with Av given by Eq. (46). Similarly, Eq. (43) defines a unitary repre- 

sentation Tn '+ 
,: 

P 
of the same group in CA? f+l' We will now prove that 

n7 
UP $ = To Up 

Since in virtue of Eq. (49) 

A-r n, T =T 
P P 

(54) 

(55) 

and all operators are unitary, Eq. (34) is indeed a statement of unitary 

equivalence. The proof of this equality is rather straightforward. Consider 

for instance 

$(A-l -r-"u) 

[VP R@(u) = f. ' 

at&n-l) u. - 1 atj(Awi) uj + ato(A-') ??lp 

j 

on the other hand, 

aoo(A-') u. - 1 aoj(A-') uj + aot(A-l) "' 

X 

aoo(A-l) u. - aoj(A-') uj -I- aot(lT1) 1 'iP 

j 

att(AB1) u. - atj(Aml) uj + atobmL) 
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and since by definition of the automorphism t, T -' A;l= A;' -r-l, Eq. (54) 

is easily obtained and the unitary equivalence established. The geometric 

transormation (45) which was at the basis of our proof is best understood 

by adding an homogeneous coordinate such that u. = Y/T, ui = Xi/T and the 

same for v. The sphere and the hyperboloid appear as cones centered re- 

spectively around the T and the Y axis; the abstract group O(l,f+l) 

is realized in two different ways as homogeneous linear group which leave 

one of these cones invariant. A rotation of 180 degrees around the line 

Xi = 0, Y = T which is tangent to both cones is the substitute for the 

$ransformation 7. This is pictured in Fig. 2-b. 

As a matter of fact, one can prove that the unitary representations of 

O(l,f) constructed in Section II with the help of spherical functions and 

those obtained in the section by means of conformal transformations on a 

sphere or an hyperboloid are equivalent. The proof is an extension of the 

one given in the case of f = 3 in the third article of reference.' 

Before concluding this section we shall briefly mention the case of 

zero energy. From the commutation relations, Eq. (2), we note that 

[Mi,Mjl = 0 and the operators z, %, build the algebra of the Euclidian 

group in three dimensions, E(3). In f dimensions this may likewise be 

realized globally. We project the f dimensional momentum space onto a 

paraboloid in f-t1 dimensions, Pf+l. If u is a point on the paraboloid 
+2 

u = u /2, with u. in the f-t1 direction and :: in the original f 
0 

dimensional subspace, we let p -+u = [l/(2p2), s/p”]. Performing this 

transformation on Eq. (>) we obtain, with i(u) = 0 (s/p') l/pf+l, 

g(u) = 
-1 

df+l f6 v. - 2 i 
IL f G(v) i 

ti 
+ f-l ? 

ZUf-l 1': - VI. 



which ex'hibits the invariance of the problem under the Euclidian group in 

f dimensions, Ef. It may also be noted that the group of conformal trans- 

formations in f+l dimensions which leaves Pf+l invariant is again 

C(l,f+l). The action of the group on functions defined on Pf+l -may be 

obtained from its action on sf+l Or Tf+l by noting that in Fig. 2-b, 

if we make a rotation of 45’ in the (T,Y) plane, we transform Sf+l and 

Tf+l 
into P 

f+l' It is amusing to note that the large group of transform- 

ations in all cases is O(l,f+l) and the subgroups which are symmetries of 

the problem in the cases E < 0, E = 0, E > 0 are O(f+l), E(f), O(l,f) 

respectively, which are the little groups of the Poincare/ group in an 

(l,f+l) dimensional Minhowski space. 

IV. coNcLusIoN 

The hydrogen atom illustrates several aspects of the use of group theory, 

and especially non-compact groups, in quantum mechanics. The theory of in- 

finite dimensional representations can be of interest in various problems. 

We hope to have shown in this work that it can be used beyond the realm of 

Lie algebras. 

It is a pleasure to thank Professor Panofsky for his hospitality at SLAC. 

Thanks are due Dr. R. Stora for discussions on the necessity of including 

both attractive and repulsive solutions. 
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In Section II, Eq. (36), and in Reference 1, Eqs. (12) and (@), we 

obtained representations of the wave function in momentum spaces, in the 

scattering and bound-state cases, respectively. We shall explicitly trans- 

form back to configuration space and show that we obtain the usual expressions. 

We set, of course, f = 3. 

1. Bound States 

Using the results of I, we find for the radial wave function with prin- 

cipal quantum number n and angular momentum & : 

(-if' 8p3/2 
jln ,@) = 

d 
3j20 

-$- 
' E(n2 - 12)...(n2 - t2)] 

m s2ds 
I s 0 (1 + s",' 

(A.1) 

9 = th 6/2 , 

where p = J--zz. We want to evaluate the last integral; denote it by 

In,pFoi) ' It is clear that In& , (Y&+, = o(i5 l We consider the 

following sum for 1 I t <l 
co 
-1 

\,, nIn,t(y)tn = (l-t2)th12d(&l) :$ @j&(w) [ ' 

1 

r . 
q2(i+t)2 -t (l-t)2 

The integrand is even; we can extend the integration from -a to -+ and 

use j&(z) = - - hi ) The Hankel functions satisfy:5 

hp)(-z) = (-1)&l h(-l)(z) , h;')(z)z+o = O(z+ . 
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Hence we can write: 

( --. z n&&y)t" = 
bt2) $+l 224+& 

2i 

-w ATA-2 

)![ dqh(+)(qy) ' 
-cm q2(l+Q2 + (l-t)2 > 

= bt2) $+l 2z?t 
2i +(kf+l[hp)'w' (q(l+t)'+ i(l-SF ' ,-t 

cj=iz 

where the integral was performed by closing the contour in the upper half 
P, q-plane. Since the sum behaves like y for y 40 we can drop in the 

derivative all the terms which are of smaller power in y. We use explicit 

form of the Hankel function* and obtain: 

2-t 
00 
- nI,,t(y) tn = ntbl 2' ' y"- em' 
1 

.Yz 

1' (1+-t) ;LG2 

On the right-hand side we recognize the generating function of associated 

Laguerre polynomials: t .YiTc m (-1)PtP 

(l+t)l+l' = c p=. (P + k)! 
L;(Y) It/ <1 

and thus get 

: q2dq 
In t(Y) = 

> 
J 
0 (l+?i2) 

j&C w) 
sin i"(, cfs J[:: :j6z2arct 

(A. 2) 

( gA1 
= n(n+$J!. 

&2 y”- ,-Y LA1 
n-&l(2y) 
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Introducing the Bohr radius: 

i!!E 
a = kb b39 

we obtain by combining Eqs. (A.l) and (A.2) the radial wave function: 

iv,,,@) = 
(-l)n-l 2 

a3/2 l T ’ 

$ e-P/2 ,2-h 
n 

,&&); P = $ (A.4) 

2. Scattering Case 

With the necessary adjustments for normalization we find for the radial 

wave function with angular momentum 4 and energy 

N=k- = q for 0 < q < 1 , th(e+/2) = i for q > 1. 

The positive (negative) values of N correspond to attractive (repulsive) 

potentials. Of course we must give some prescription to deal with the singu- 

lar point q = 1. We introduce 

1 
F&&e) = - - 

sh JCN 
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-!+J 
F&e) = s dNeiNt Ft(N,e> = 

i sh t(-1)&(&l): 

(ch 0 + ch t) X+2 
-co 

9 
N,g = (2n)5/2 

sh 7tN 
N 

(l-e -2flN)N2($+12). . . (N%t2), I 
1 
2 (-l)g(,l)! 2&l x 

s 
dte-iNt sh t 

s 

q 
Wg(sp) 

-00 -03 q2[l-ch (t-ie)] + [l+ch (t-ie)] 

The prescription ch (t--ie) takes care of the singularity at q = 1. 

We replace again _ h;-) , close the contour in the upper 

half of the q-plane and use the explicit form of the Hankel function to 

calculate the derivative which occurs at the point q = cth . The 

result is 

8.Zig N ichgm p-i% 

lrN (l-e-2fl)16(N2+l~)...(?J%!-2) 

t 
We take x = xth 2 as a variable, the region of integration being the real 

axis except the segment (-l,+l). We can close the contour in the upper half 

plane (p is positive) and move it to (-1,+1). Taking into account changes 

of arguments in the integrand we get 

with Arg(x+1) = Arg(l-x) = 0. Apart from a proportionality factor and an 
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exponential, the integrand is a classical representation of the hypergeo- 

metric function. Taking this factor into account and 

fl?JI(N2+1) . ..(#+k2) = \/N sh nNlP(&iN+l)] 

our result reads 

IN g(r) = .fF F(&iN+l 1 &2!2ip) (A4 
? 

with p as in (A.5). 
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