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* 
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ABSTRACT 

A general first- and second-order theory of beam transport 

optics has been developed. From this the first- and second-order 

matrix elements of bending magnets, qAa&-Tqoles, and sextupoles 

have been derived. 

Utilizing this theory, very general first- and second-order 

theorems of beam transport optics have been formulated which have 

been extremely useful for designing single and multiple element 

magnetic optical systems. The theorems are expressed as functions 

of five characteristic first-order trajectories of a system. In fact, 

all of the first-and second-order optical properties of a system 

may be expressed in terms of these five trajectories. 

A general discussion of the theory will be presented along with 

specific applications of the theory to the design of high-energy 

particle spectrometers. 
(To be presented at the Fifth International Conference on High Energy Accelerators, 

Frascati, Italy, September 9-16, 1965. 

* 
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I. INTRODUCTION 

For the past several years, we have been attempting to evolve at Stanford a 

more systematic procedure for solving beam transport problems. Two basic 

techniques have been utilized for this purpose. The first, which will be discussed 

in detail later, is a logical extension of the fi? at. or,!% matrix formalism to a 

matrix formalism which allows one to calculate systematically not only the first- 

order but also the second-order optical properties of beam transport systems. 

The second approach is the conventional one of computer ray tracing through a 

known field to the degree of precision demanded for the particular problem. 

The advantage of the matrix forma!ism a a we kave evolved it, as compared 

to ray tracing, is that it provides us with a somewhat better physical insight into 

the physics of the problems and, as such, permits a more systematic procedure 

for solving problems. Having utilized the matrix method for finding a solution, 

we then use conventional ray-tracing techniques for verification and as a means 

for further refinement of the design if required. 

The basic approach to formulating the matrix method has been as follows: 

(I) The general differential equation describing the trajectory of a charged 

particle in a static magnetic field which possesses “midplane symmetry” is 

derived. 

(2) A Taylor’s series solution about a central trajectory is then assumed; 

this is substituted into the general differential equation and terms are retained 

to second- order. 

(3) The first-order coefficients for monoenergetic rays satisfy the usual 

homogeneous differential equations characteristic of harmonic oscillator theory, 

and the first-order dispersion and the second-order coefficients of the Taylor’s 

expansion satisfy second-order differential equations having “driving terms. I1 
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(4) The first-order dispersion and the second-order coefficients are then 

evaluated by a Green’s function integral containing the characteristic driving func- 

tion of the coefficient being evaluated. 

In other words, the problem is nothing more or less than the old problem of 

the harmonic oscillator with driving terms; and as with the harmonic oscillator, we 

may readily draw general conclusions about a given second-order aberration by 

studying its ch?racterist!? dri;ring fmcti?u. 

The task now is to transform this solution into a self-consistent second-order 

matrix formalism. I will demonstrate later how this has been accomplished. 

By using the above procedure, we have derived the complete second-order 

matrix elements for a drift distance, quadrupoles, bending magnets, and sex- 

tupoles, including an impulse approximalion for tnt: input and output fringing 

field boundaries of bending magnets. This includes rotated input and output faces 

and curvatures on the input and output faces of the bending magnets. This entire 

formalism has then been programmed for a 7090 computer, which enables us to 

calculate tiithin the above limitations the complete second-order properties of 

any combination of quadrupoles, sextupoles, bending magnets, and drift distances 

which one might choose to utilize. 

Returning briefly now to the formulation of the general theory, all of the 

theory and the subsequent matrix elements have been derived and expressed in 

terms of five characteristic first-order trajectories of the system. Before 

identifying these trajectories, it should be mentioned that it is implicitly assumed 

from the beginning that a central trajectory is known and that the positions of 

other trajectories are always specified relative to this central trajectory. In 

other words, we have made the usual paraxial ray approximation. 

The five characteristic trajectories are the following (identified by their 

initial conditions) : 

(1) The unit sine-like function sx in the plane of bend where ~~(0) = 0 

Sk (0) = 1 
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(2) The unit cosine-like function cx in the plane of bend where 

cx(0) = 1 c;(o) = 0 

(3) The dispersion function d, in the plane of bend where 

dx(0) = 0 d;(O) = 0 

(4) The unit sine -like mncticn sY LI the non-bsnd -plane where 

sy(0) = 0 S; (IJ) = 1 , arxi f inaliT .J) 

(5) The unit cosine-like function cy in the non-bend plane where 

cY(o) = l 5(O) = O 

II. THE FORMULATION OF TIIr: GENERAL THEORY 

We begin with the usual relativistic equation of motion for a charged particle 

in a static magnetic field: 

P’ = e (v’ x 3) (1) 
and immediately transform this expression to one in which time has been elimina- 

ted as a variable and we are left only with spatial coordinates. The curvilinear 

coordinate system utilized is shown in Fig, 1. With a little algebra, the equation 

of motion is readily expressed in the following vector forms: 

or 

(2) 
(3) 

where prime means the derivative with respect to t (the distance along the 

central trajectory). 
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By utilizing the expression for the differential line element in the chosen 

coordinate system, namely, 

ds2 = dx2 + dy2 + (1 + hx)2 dt2 (4) 

and expanding Eq. (3) into its component parts, retaining only terms through 

second-order, the x and y coxnflnents G *i SIC;- e+ation of motion become: 

x” - h(l+hx) - x’ (hx’ + h’x) = ; s’ y’B - t (1 + w By] 

Y” - y’ (hx’ + h’x) = ; s’ (1 + hx) Bx - x’Bt 
I 

The equation of motion for the central trajectory is found by taking the limit 

x ZY xf -Z y z ye = 0, from which h = ; B 
0 y 

(o,o,t). 

The field components B,, By, and Bt in the curvilinear coordinate system 

may be derived from a scalar potential* C$ , yielding the following result to 

second-order: 

Bx(x,y,t) = $$= AI1y +A12xy +. . a 

ti = A 
A 

l2 By(x,y,t) = -ay 1o + Alp +r x2 + A30 y2 + 
- 2! . . . (6) 

Btk YI t) = t1 : hx) (1 +ix) AioY+A ‘pcy+. . . 1 

* 
Midplane symmetry requires that $ be an odd function in y , i. e. , 

GtX,Y,t) = - cP(x,-Y,t). 
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where the coefficients Aln of the expansions are derivable from the midplane 

field Bv(x, o, t). 

PB 
Y Am = - I n 

I 

= functions of t only . 
ax x=0 

\r - c) d 

and 

Study ng the expansion for B 
Y 

for the miLtplane only, 

A30 = - + % + A12 
3 

1 By(x, o, t) - AI0 + AlI x + 3 AI2 x2 + . . . 

dipole quadrupole sextupole 

rz B 

x=0 x=0 
y=o y=o 

etc. 

x2+. . . 

(8) 

we can readily identify the various terms appearing in the equations as to whether 

they are of dipole, quadrupole, or sextupole origin and retain this identification 

throughout the remainder of the discussion. It is then convenient to define two 

dimensionless quantities n(t) and p(t) in terms of their quadrupole and sextu- 

n(t) ;- - 

I 

(9) 

x=0 
y=o 
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Making use of the equation of motion for the central trajectory, we may eliminate 

13y, in the expressions and rewrite them as follows: 

x-o 
y=o 

and ph3 f 
0 

Pa) 
e 

y=o 

- - - 
For a pure quadrupole field 

BOX 

BY=a 

where I3, is the field at the pole and a is the radius of the aperture; hence, we 

obtain the identity 

= k; 

and for a pure sextupole field 

B 
By = 2 (x2 

a2 
- Y5 

from which 

Using these definitions, the equations of motion for x and y may, after a 

little algebra, be evolved into the following convenient forms: 

xv’ + (1 - n) h2x = hb -t (2n - 1 - p) h3x2 + h’xx’ + i hxt2 

+ (2-n) h2xd + $ (&I -nh3+2ph3) y2 

+ h’yy’ +yf2 - hd2 + higher-order terms 

W) 
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y” + nh2y = 2 (fi - n) h3xy + h’xy’ - h’x’y + hx’y’ + nh2yd 
(11) 

+ higher-order terms 

P-P0 
where d G p and the constant e has been eliminated by incorporating 

0 
the equation of motion for the central trajectory. 

If now we assume a Taylnr’s expansion aboui IIW central orbit for x and _ 

y at the exit of a system, describing the position of an arbitrary trajectory with 

respect to the central trajectory as a function of the initial coordinates of the 

arbitrary trajectory, we have 
c X -.- 

x’= (+oPo + 

+(xX3x: + 

and 

3 

,, _ --- 
(Y jy,)Y” 

+ (Y “oYoj”oYo 

+ (Y “;Yp;Y; 

+ (Y i x, ,YpoY; + (Y / “;YoP;Yo 

+ (Y 1 Yo6)Yod + (Y lYpY;d 

(12) 

(13) 
Substituting these expansions into Eqs. (10) and (ll), we derive a differential 

equation for each of the first- and second-order coefficients contained in the 

Taylor’s expansions. When this is done, a systematic pattern evolves in the 

following way: 

(14) 
q” + k2q - i 
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where kz =- (l-n)h2 and kt = nh2 for the x and y motions, respectively. 
. 

The first two of these equations represent the equations of motion for the mono- 

energetic solution to the first-order part of the problem. The fact that there 

are two solutions, one for c and one for s , is a manifestation of the fact that 

the differential equation is second-order; hence, the two solutions differ only 

by the initial conditions of the chartlcteristic ;5 and c functions. The third 

differential equation is a type form which represents the solution for the first- 

order dispersion d, and for the coefficients of the second-order aberrations 

in the system where the driving term f has a characteristic form for each of 

these coefficients. The third differential equation is solved by the Green’s function 

integral 
t 

q= 
s 

f(T) G(t --r) dr (15) 
0 

It can be readily verified by substitution into the third equation that the correct 

Green’s function is 

G(t-7) = s(t) C(T) - S(T) c(t) (16) 

Thus, Eq. (15) becomes 

t t 

q = s(t) 
/ 

f(T) c(7) dT - c(t) 
J 

f(T) S(T) dT (17) 
0 0 

The problem is then, in principle, solved if we know the driving term f and if 

we are able to evaluate the integrals contained in Eq. (17). The driving function 

f is readily obtained from substitution of the Taylor’s expansions into the general 

differential Eqs. (10) and (11). The results of this substitution are expressed in 

Table I for the first-order dispersion and for all of the second-order coefficients 

which will occur for a system having midplane symmetry. All of the driving terms 
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have been expressed in terms of the five characteristic first-order functions 

s c x’ x’ dx,s 
Y’ 

and c mentioned in the introduction. Also contained in the 
Y 

expressions are the parameters which characterize the expansion of the magnetic 

field to second-order, i.e., h, n, and p . 

Going back to the definitions for n and p , it is possible to identify immedi- 

ately the origin of the various terms contained in these ririving terms. For - 

example, any term containing the quantity nhL as a coefficient is of quadrupole 

origin, andany term containing the quantity ph3 is of sextupole origin. The 

other terms are either of dipole origin or they result from cross product terms 

between the dipole and quadrupole elements of the system. The driving term 

expressions are completely rigorous to second-order for any magnetic field con- 

figuration possessing midplane symmetry; no assumptions have been made re- 

garding the details of the fringing field or boundary shapes. 

III. EVALUATION OF THE MATRIX ELEMENTS FOR HIGH-ENERGY PARTICLES -. 

A considerable simplification results for the high-energy limit where the 

dipole, quadrupole and sextupole functions are physically separated, such that 

the cross product terms do not appear and such that the fringing field effects are 

small compared to the other dominant effects generated by the dipole, quadrupole, 

and sextupole elements of the system. 

For the purpose of this discussion, the x plane is defined as the bend plane 

in which the particles are dispersed in momentum. 

The focusing conditions imposed upon the system at the image planes are: 

At the x (bend-plane) image s,(i) = 0 , i. e. , we assume point-to-point imaging; 

at the y (non-bend) image plane, we consider two cases: 
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(a) Point-to-point imaging, i.e. , s,(i) = 0 , and 

(b) Parallel-(line)-to-point imaging, i.e., cy(i) = 0 . 

In the high - energy limit, the bending radius p. = L>> 1 ; the first -order h 

focusing is accomplished predominately by quadrupole elements; and only n = 0 

uniform-field bending magnets are considered, 

- In this limit, t.ht: following Iefin2iona F *e AS& far convenience: 

and 

- nh2 2 B 
= kq = aq(ZPo) Or 

or 

k$-q = + = the quadrupole strength 
4 in the x(bend) plane 

kzes = S = the sextupole strength 
in the x@end) plane 

(18) 
(19) 

where B q and Bs are the field strengths at the poles of the quadrupole and 

sextupole, respectively, aq and a, are the radii of the apertures of the quad- 

rupole and sextupole, and Iq and 1, are the equivalent magnetic lengths of the 

quadrupole and sextupole elements. 

Using the Green’s function solution, the equations for the first-order dis- 

persion dx and momentum resolution Rx reduce to the simple forms: 

i i 

dx = - c,(i) 
J 

sxhdr = - c,(i) 
/ 

sxda! 
0 0 

and 
dX 

i 

RxXo = - - = c,(i) J 
sxda, 

0 
(21) 

where da, is the differential angle of bend of the central trajectory of the system 

and x 0 is the source size. 
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It follows from the general theory of Section II and the above focusing con- 

ditions that we obtain for the second-order x (bend) plane aberrations 

for point-to-point imrging; fcr tie second-order y (non-bend) plane aberrations 

i qy = - c,(i) s fsydr (23) 
0 

for point-to-point imaging (case a), and equal 

i 

% = sYtiJ f 
fc ydr (24) 

for parallel-(line) -to-point imaging (case b) . 

IV. APPLICATIONS OF THE GENERAL THEORY TO HIGH-ENERGY 

SPECTROMETER DESIGN 

0 

In high-energy spectrometers or beam transport systems where quadrupoles 

essentially control the first-order optics of the system, the second-order chro- 

matic aberrations introduced by the quadrupoles are usually the dominant aberrations 

limiting the performance of the system. As an example of the use of the theory 

developed here, we shall calculate for some representative examples the angle 

@ that the momentum focal plane makes with respect to the central trajectory. 

For point-to-point imaging, it may be readily verified that 
i 

sxda 

tan*= - 0 

txi / “bd ) 

(25) 
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Let us now consider some representative quadrupole configurations and 

assume that the bending magnets are placed in a region having a large amplitude 

of the unit sine-like function sx (to optimize the first-order momentum 

resolution). 

Case I 

Consider the simple quarirupole con%guraton s&own in Fig. 2 with the bend- 

ing magnets located in the region between the quadrupoles and s; 2 0 in this 

region. For these conditions, fl = Q1 , sx = Q1 at the quadrupoles, and f2 = Q3 . 

From Table II, we have: 

= Q,(l + Mx, (26) 

where we make use of the fact that (Q,/Q,) = Mx = - cx(i) . Mx is the first- 

order magnification of the system. 

Hence , 
i 

/ axdo! 

tan 9 = O 
Cxi 1 xb&) 

z (1:Mx) 

Case II 

For a single quadrupole, Fig, 3, the result is similar 

except for the factor K< 1 resulting from the fact that sx cannot have the same 

amplitude in the bending magnets as it does in the quadrupole. Therefore 

s 

i 
sxda, = KQ1~ . 

0 
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Case HI 

Now let us consider a symmetric four-quadrupole array, Fig. 4, such that 

we have an intermediate image. Then 

(xlxbb) = - 2cx(i) Q1 [l + tQl/Q3J] = twice that for Case I . 

Because of symmetry, cx(i) = Mx = 1 . Thus, we conclude 

In other words, the intermediate image has introduced a factor of two in the 

denominator and has changed the sign of $ . 

Conclusions 

It is clear from these three examples that for high-energy systems where 

the total angle of bend Q! is a small quantity, @ will be even smaller. It is for 

this reason that we have added sextupoles to the SLAC 20-GeV Spectrometer. 

V. SECOND-ORDER MATRIX FORMALISM 

The method for formulating the individual second-order matrix for a given 

element in a system is illustrated in Table V for the x plane case. The technique 

is similar for the y plane. The first three rows are derived directly from the 

general theory using the driving functions in Table I. However, in order to 

facilitate matching boundary conditions, the matrix is expressed in terms of a 

rectangular coordinate system x, y and z (see Fig. 1). The distinction is the 

introduction of 0 and $ defined as follows: 
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Having formulated the second-order matrices for each element of a system, 

the total system optics is solved in the usual way by multiplying the individual 

matrices in the same manner as for a first-order problem. For further details, 

see Ref. 4. 

Second-order matrix elements for drift distances, quadrupoles, sextupoles, 

bending magnets, anti for fringilg fields sf b+tdkg magnets (using an impulse 

approximation) including rotated and curved entrance and exit boundaries of the 

bending magnets, have been derived. * These matrix elements have been in- 

corporated into an IBM 7090 program called “TRANSPORT1T8 by S. K. Howry, 

C. 1-I. Moore and H. S. Butler at the Stanford Linear Accelerator Center. We 

have used this program to finalize the design of all of the beam transport systems 

and high-energy spectrometers to be utilized at SLAC . 

* 
See the list of references. 
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TABLE I I 

The Driving Terms for the Coefficients 

Listed in the first column are the coefficients in the expansions for the coordinates x and i ; they are indicated 

by means of the notation introduced in Eqs. (12) and (13). For general considerations, q has been used to repre- 

sent any one of these coefficients. Listed in the second column are the corresponding driving functions f , which 

are related to the coefficients as shown by Eq. (17). This list includes all those functions f for the linear and 

quadratic coefficients which do not vanish identically. 

q d = (~16, 

(3’ I d J’;, 

f 

+h 

+ (2n - 1 - p)h3c; 

+ 2(2n- 1 - p)h3cxsx 

- (n - 2)h2cx + 2(2n - 1 - p)h3cxd 

+ (2n - 1 - p)h3s; 

’ - (n - 2)h2sx + 2(2n - 1 - P)h3sxd 

- h - (n-2)h2d + (2n - 1 - p)h3d2 

+ #l” - nh3 + 2ph3)c2 
Y 

+ 01” - nh3 + 2ph3)c s 
YY + &” - nh3 + 2gh3)s; 

- 2(n - p)h3c c 
XY 

- 2(n - p)h3c s 
XY 

- 2(n - p)h3s c 
XY 

- 2(n - p)h3s s 
XY 

+ nh2c 
Y’ - 2(n - p)h3cyd 

+ nh2s 
;I b 

3’ - 2(n - PP sJ$ 

i- h’c c’ xx + + hc’ 2 
X 

+ h’ (cxs; + c;s d 
t- h’ (cxd’ + +l) 

+ h’s s’ xx 

+ hc& 

+ hcXd’ 

+ 4 hs’ 2 
X 

-I. lz’ (sxd’ + s&d) + hs’xd’ 

+ 8 hd’ 2 

+ h’c c’ 
YY 

+ h’ (cysf + c’ysy) 

+ h’s s’ 
YY 

i- h’(c c’ - c&c 
Y) XY 

f 11’ (c s’ - CJLS 
y’ XY 

+ h’ (sxc; - Pxc 
Y) 

+ h’(s s’ - 6;s 
Y) XY 

- h’ (cyd’ - c$d) 

- h’(svd’ - s;d) 
c 

- 4 hcf2 
Y 

hc’ s’ 
YY 

- 8 hsf2 
Y 

hc’ c’ 
XY 

hc’ s’ 
XY 

hs’ c’ 
XY 

hs’ s’ 
XY 

hc;d’ 

hs;d’ 

’ , 



TABLE II 

Applying the Greens’ function solution, Eq. (22)) in the high-energy limit as de- 

fined above for point-to-point imaging in the x@end) plane, the second-order 

matrix elements reduce to: 
i 

s 
ch2sxdo! + cx(i) s.c2s 

Jxx 
0 j 
: 

(X]XoX~)~ - c,(i) cks;sxda, f 2cx(i) -\sc -3 
L j x'x 

0 j 
i 

J 
c;d;sxdo! + 2cx(i) 

0 c 
S.c s d - cx(i) JXXX 

j 
c 

c s xx 
f 

4 q 
i 

c”j”b? z - f cx(i) 
s 

sk2 sxda! + cx(i)xSjsz 
0 j 
i 

(X/X;& z - cx(i) 
J 

S2 
s;d&sxda + 2cx(i) 

c 
S.s2d 

JXX - cxo 
0 j 

c 
‘I 

f 

(+f) = _ ?$!! l (d’J2 s da! 
J c 

S.s d2 
c 

sd 
X + c,(i) Jxx - c,(i) 

0 j q 
i 

c”lY3 z i cx(i) / ci2 sxda - cx(i)~Sjc~sx 
0 j 

(XJ YoY;) z cx(i) J c’s’s da 
YYX - ~xo c 

s.c s s 
JYYx 

0 j 
i 

(x1$,? 2 i c,(i) f s;’ sxda - cx(i) c 
s.s2s 
JYx 

0 j 



TABLE III 

--_ - ..-- 1 

For point-to-point imaging in the y (non-bend) plane, Eq. (23)) the high-energy 

limit yields: 

i 

cl s’s da! - 2cy(i) 
c 

s.c s2 
XYY JXY 

0 j 

i 

(Y ix;Y,) = - cyo 
J- 

s&cysyda - 2cyii) 7- s.s c s 
.xz JXYY 

0 j 

i 

(Y / X;Y;> z - c,(i) 
J 

s&spydcr - 2cy(i) 
c 

s.s s2 
JXY 

0 j 

i 

olfY,d) z - c,(i) 
J c c 

c;sY --- 
cydxsydcv - 2cy(i) Sjcydxsy + c,(i) 

0 j q q 

i S2 

(Y jyp = - cyo 
J 

sydxsyda’ - 2cy(i) 
c 

S.d s2 
JXY + c,(i) 

c 
B 

0 j q q 



TABLE IV 

For parallel-(line)-to-point imaging in the y (non-bend) plane, Eq. (24)) the 

high energy limit yields: 

i 

s,e) 
/ 

s;cc;rcydru + Bsy(i) 7 
2 

d ‘jcxcy 

0 j 

i 

sy (9 
s 

c:s$cyda, + 2sy(i) 
c 

s.c s c 
JXYY 

0 j 

i 

s,(i) 
/ 

s;c:c;lcydo! + 2sy(i) 
c 

s.s 1: 2 
JXY 

0 5 

i 

syO) 
/ 

skspyda + 2sy(i) 
c 

s.s s c 
JXYY 

0 j 

J 
C2 

s,(i) cfYd’cyda! + 2sy(i) 
c 

S.c2d 
JYX - syo c f 

j q q 

s,(i) 
s 

s;d’cyda, + 2sy(i) 
c 

Sscd 

j 
j yyx- ‘y@)FT 
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