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Abstract 

The multi-functional purpofie of parerful elec- 
trtmnagneta to be used for high-energy phy~ico ap- 
plicationo requires apeciflc featurco ,uch as 
magnetic field strength, field hcnnofleneity In a 
requczted apace, ;fcld con:fi@,ation and L..stribL- 
tiOn, resolution, solid angle, dispersion ana 
focusing properties. These demands are easily met 
if boundary conditiono GUCh as dimensional and 
material limitationn , geometrical and environmental 
effects, power consumption, and adequate cooling 
are not restricted. 

The paper dealo with magnets which fulfill as 
closely aa possible the above requirements, con- 
sidering actual 1imitationG given by conditions in 
laboratories as well as dimensional, geometrical, 
and material properties. 

An approach to designing iron-bound magneLs 
using Fabry factorG is given. Coil configuration, 
pole form and shaping, iron boundaries; impurities 
in ferrcxnagnetic materials, cooling methodG and 
media, and magnet p,erfonnancc are explored. Magnet 
design features such aG reliability, choice of 
conductor, magnetic materials, and coil insulation 
are included. Coil damage due to fatigue, electrl- 
cal breakdown, moiGture and other influcncea on 
insulation, and environmental conditions are 
discussed. 

I. Introduction 

In recent years, the electrcsanagnet has grown 
to become one of the mOGt important (as well as 
one of the most expenolve) parts of high-energy 
accelerators - so much so, in fact, that in modern 
physics we can not envision any high-energy accel- 
erator without the use of electrmagnctc. They 
are used for many purpoGcG in different areas, 
such as steering, bending, focusing, separating 
particleo, and mcmentum analysis, as beam transport 
devices, and in experimental arcas such aG in 
spectrameters, opark chambero, and bubble chambers. 

In circular acceleratorn, the ma&met function 
frequently is to bend particleo to keep them in 
orbit and to provide framing force, to rectrict 
their horizont$l and vertical motion, GO tha-t the 
particles remain well inside the vacuum tubings 
and chambers. 

In linear acceleratorn the two functiona can be 
separated. The provioion of focusing forces iG 
done by the une of magnetic focusing lenseo, and 
the steering and bending are prcn'iqed by conGtant- 
gradient magnets. 

The ma net in a high-energy oyotem is not an 
indefiendeti entity. P Ito, deoign io influcnccd by 
othei; conipb'tleiltn ouch 80 the vacuum Gyotcm, the 
injector &o&o1 Gyutcm, and the bulldingo. 

The iequfremento for magnetic fieldo, their 
shape; hmogcneityj and optical propertieD have 
increased confliderably with the growth of accelcr- 
atora s In early Gtageo of magnet design, nimple 

calculations based on known engineering practices 
and, in a few caGes, scaled models were sufficient 
t0 Satisfy most requirements. For modern acceler- 
ators fl vaot team effort ccznbining scaled models, 
c~onfluCt?ng deve;opm~ntal work, study of materials 
and irsulat. l-on, computer calculations, and the use 
C pr.?iGe and soi,histicated field and mechanical 
tolerance measuring techniques and devices are 
nececnary before the optimally designed magnet is 
realized. 

The function of the magnet design group is also 
manifold. It must maintain close contact with com- 
ponent design groups as well as the theoretical or 
experimental physicist in order to know the future 
role, purpoce, and extenGions of the magnet to be 
designed. It mutt bear in mind the capabilities 
of +hr manufacturer, who will provide the ccmponents 
a:d parts of the magnet. Unfortunately, it is not 
alway= pOSGible to use standard parts and straight 
manufacturing techniques due to the predominant 
requirements of the accelerator; i.e., the use of 
special thermoGets may be necessary to protect the 
inoulation from radiation damage, and complicated 
pole shaping may have to be done to provide high 
homogeneity fields in gaps or a certain field 
gradient in AGS magnets. However, radical de- 
partures frcm standard manufacturing techniques 
often lead to undesirable delays and frustration 
due to lengthening of delivery schedule. 

The magnet design group has to plan the magnet -_ 
delivery program to fit the overall accelerator 
program, and therefore provide ample time for re- 
Gearch, design and magnet procurement. 

It IG not the purpose of this report to cover 
all possible and basic problems for various types 
of magnetc. Rowever, baGic requirementc are c.on$non 
among the majority of magnet types; these will be, 
dealt with below. 

II. Gptical Definitions 

Electromagnets may be divided basically into 
a few main groupc: alternating-field ac and de 
magneto and constant-field ac and dc magnets. In 
both caGeG, the magnetic field within a useful 
volume over a certain time period must follow a 
pre-chosen pattern. Any dc magnet may be consider- 
ed no -. bpecial ca:;e of alternating field magnets; 
therefore, the theoretical studiec on field shaping 
remain the Game in both cases. 

A number of ccmmon requirements on all high- 
energy magnetc are diGcuGGe d by several authorslja 
but are scattered in various reports, GO that a 
brie:!' summary at this point seems appropriate. 

A4 Symmetry Planes 

We confine our diGcuGEiOt1 t0 magnets having a 
Gpllt2tly plant . In Carteoinn coordinatec, the 
potential function can be written aG scalar 

_ 
v (X, y, G) = - v (X, -Y, 0) (1) 

Y 
1 
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B. Field Hcmogcneitx 

Field homogeneity is normally defined over the 
symmetry plane. However, in a more generalized 
form It should be noted as 

where 5 (O,O,O) denotes the ;ield vector In tht 
- g&y, or bore cents-. Equation '2) mu also be 

adapted as the definition of Zeld-gradie,k GLU any 
point in space. 

C. Phase Space 

The beam of monoenergetic particles with no 
appreciable coupling between horizontal and ver- 
tical motions can be described by means of density 
distribution in the horizontal and vertical phase 
planes. All particles of interest are contained 
within an area bounded by a closed curve in each 
phase plane. 

With 's" being the coordinate along the beam 
axis and x(a), x'(s) = dx/ds = 8; the transverse 
deviations and the angular divergence of the Par- 
ticles may be written for all closed curves in a 
normalized form (see Fig. la): 

Cx* + 2Dxx' +Fx'* = E 

and 

A = CF - D* 

as the determinate of Eq. (3). 
We define 

(3) 

(4) 

F1/* = Displacement profile 
C'I" = Divergence profile 
E = (Al/*/n) * A = emittance, with A as the 

area of the ellipse. 
D determines the orientation of the phase 
ellipse in phase space. 

The range of variables 
f$/p for the coordinates at t'bo!nt 
importance of one or several of them must be con- 
sidered for specific cases. A unit set does not 
necessarily define a.11 magnet types or combinations. 
For a monochrcxnatic beam and a point source, 

X 
0 

‘y ,%2 
0 P 

I 
=o 

0 

where the phase apace is defined as: 

< eo, 9, > = n (5) 

For particles with momentum px at' x, the 
phase ellipse is defined as (see Fig. lb) 

cx* +2Dxp + Fpa= E 

with 
F x* = ___ 

m CF - B* 

and the sdmittsnce 

A = dpx * dx 

For a periodic system of focusing elements, the 
transfer matrix for first-order optics Is written' 

where 
a -a 

All(n) = cos(n 0) + l1 2 2z . sin(n fiin 0 

Al*(n) = a . sin(n 01 
12 sin 0 

Agl(n) = a21 $$k$ 

a -a 
A,*(n) = cos(n O) - 11 2 22 . Z$L$ 

and 

COSe=$(a 
11 

-a ) 
12 

-. 

The acceptance region of particles is an elliptical 
cone with the semi-major angle Q: and semi-minor 
angle S. The solid angle is given by 

n = xc@ . 

D. Resolution 

If the displacement at the image point Is x1 , 
the beam resolution with the x , yo source co- 
ordinate is defined in first or8er as 

R Dl 
1st order = - E < 

and C is defined as solid angle. 

2 
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where M is the magnification x1: x0 and D the or 
momentum dispersion. For second-order resolution, 

R D 
2nd order = x (7) 

1 

where 

“Y = B y x=0 
..$ 

1 I 
x=0 

y=o y=o 

2 a2B 
+LY 

I 
2! 2 f., . 

ax x=0 
y=o 

This corresponds to 
E. General Field Equations for Magnets with 

Median Planes* 

The existance of median planes requires that 
the potential V be an odd function; i.e., 

a 
v 

C "x - 
lv axv x=0 

V(X,Y,S) = v(x,-Y,S) 

lY=Q 

or in well-known form 

In terms of a series expansion (Fig. 2), 

“” 
V(X,Y,S) = 22 c(s) 

(w+1),v 
$ * g& 

p=o v=o 

and the fields are: 

B/-El_. 
P+x 

with P as the bending radius of particles. 
At the median plane for y = o 9 

m 
” 

"Y = IL 
c(s) $ . 

u=. p. W+l;‘v - 

functions of 6 only. 

(13) 

"Y = p 
ns 

09 o>s i* 
l-RS 

- x + m(s) - x2 - + . . . 
R2(s) 1 (14) 

(8) with 

n=-y. 3 x=o 

( )I Y=O 

(10) These equations generally may be modified for any 
special type of magnet. 

The magnetic field in the y-s direction follows 
Eq. (15) (we assume magnets with magnetic mirrors) 
for symmetric cases; only even numbers of V are 
encountered. 

(=) By=Bo,o,sl+~ (>)xZox2+..] (15) 

y=o 

For a given beam size and particle mcmentum 
the particle bending radius is a function of the 

(12) 
magnet strength, defined as 

s 
Bdeff = E . b (16) 

*The Sieia equations in this chapter were first 
with E = p the particle mcmentum and b the 

developed by Dr. K. Brown. 
bending angle in radians. The appropriate split 
between the choice of the maximum fieid B over , . 

i 
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the median plane and the effective magnetic length 
4. eff is dictated by a number of requirements. 
A design with high flux density but short magnets 
gives high saturation in pole corners and the 
magnetic field homogeneity is jeopardized. To 
improve homogeneity inside a given gap volume, 
several methods are undertaken. One can increase 
the pole dimension, which leads to large magnets, 
or use pole shaping, and avoid excessive high 
flux density in corners. Auxiliary poles, pole- 
face windings, or the introd\:ction of add~tiocsl 
correcting Inagnets such as quadrupoles, SCX~U~O~~S, 

and octupoles, a:> ccnimon prc tice. On tip2 othe 
hand, the increase in B requires high pC%Jei 
consumption. Any magnet with low flux density in 
the gap will require more space and will be heavy 
and, for tight tolerances, more difficult to man- 
ufacture. However, such magnets may use less 
power. The right choice between maximum flux 
density, power consumption, the magnet size, and 
initial capital cost for each Individual magnet 
type with respect to space and other components 
and parts, is important. 

III. Field Homogeneity and Poleshaping 

The pole shape and cross-sectional area of the 
magnets are determined through studies of the 
dynamic motion of particles and frcm the first- 
and higher-order optical requirements. Basically 
the aperture inside the vacuum chamber must be 
large enough to accmodate the oscillation 
arising from the spread in space, angle, and 
energy of the beam. Due to the physical size of 
the beam, space in the x,y directionsisnoedcd for 
the particle excursion and phase oscillation, or 
mis-steering. 

The cross-sectional size and pole shape of the 
magnet is mainly determined through studies of the 
dynamic motion of charged particles. The gap width 
is given by the size of vacuum chamber or experi- 
mental equipment located between the pole tipa. 
The aperture inside the vacuum chamber must be 
sufficiently large to accommodate oscillations 
arriving from the beam spread in space. Radial 
space is needed for the excursion of the phase 
oscillation. The proper match of the pole size 
and contour to a required field shape over an 
aperture dictated by the trajectory equations is 
the main task in magnet design. The matching of 
the pole and, subsequently, gap dimensions to the 
vacuum tubes, etc., sets the magnet parameters and 
the requirements In buildings, power, cost of 
materials, etc. Most of the high-energy magnets 
are iron-core or iron-bound magnets, and the magnet 
outer dimensions as well as the power requirements 
are related to the desired field shape in the bore 
and the iron saturation. 

For a chosen pole width, the magnet designer 
wants to achieve the maximum possible range of 
field hcanogeneity and Constance of magnet strength 
1Bd-e. This is possible by shaping the pole ends 
and the pole sides. 

In this section we treat constant field magnets 
for rectangular-shaped poles, where circular 
synunetric poles may be considered as a special case 
of this three-dimensional problem and alternating 
gradient magnets (AGS) to be used in circular 
accelerators. 

A. Field Profile in the x-y Plane Pcrpcndicular 
to the Beam Direction 

We assume that the pole contour at the beam 
entrance and exit does not affect the field in the 
y-x plane, which lo true if 8,ff > 2w. Rectan- 
gular poles with faces pcrpcndicular to the pole 
surface are treated, as shown in Fig. 3. 

For manufactured and tested magnets, the 
field profile Over the midplane measured for the 
fiperific case of h;g = 6 and w/g = 4 gave the 
relative values of B(x,o,o)/B(o,o,o) = f(x/g), 
w'+cP are PLotted In Fig. 3. The curve follows 
tne equation* 

Fi&$+= * 

with 

x=c 
0 

t clx t c*x* t c3x3 

and the constants computed as 

(17) 

c = 
0 

- 1.373; Cl = k.25; c* = - 2.1; c, = 0.52 

For the case of iron permeability ur >> 1 , 'the 
field calculations csn be based on conformal 
mapping.5'6 

The field profile along the symmetry plane 
follows the equation 

$$-$# = real (w) l’* (1-8) --- 

where the relation (z,t) can be taken frcnn 

z = xtjy = 5f ' % 

- 7 

1+$ 

lhp? 
7 

1t; 

lhpC 

_ % tan-l ( ) t" t 1 l/2 
02 

-1 

For t >> 1 , Eq. (18) is simplified to 

f$$$ = 

(19) 

2 -v'Y + 2) 

1 

42 

l- z (-1)' * 2”+l . e 
V=l 

(20) 
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A comparison between curves 1 and 2 in Fig. 3 
reveals a divergence in the field profile although 
B(o,jg) is infinity in the mathematical treatment. 
Due to iron saturation, this does not represent 
actual fact. As a first approximation, however, 
a field calculation according to Eq. (18) is 
appropriate. 

For many applications a field hcmogeneity * 
1-e = lo-4 in the midplane over x/g > f (2 ..; 3) 
is desirable. In the above calculation we achieve 
E = 0.99 at x/g = 1.9 and E = 0,8 at r/g 7 0. TG 
correct this deficiency f-r a given pole wtdtL, 
or to reduce the pole width for a requ.:red fisI.5 
kmogeneity, die poles must be sninm~er~. POSSib!? 
solutions5js to limit flux density in the pole 
sides in the x-y planes require that iron should 
be added to some parts of the pole and removed in 
other parts of a rectangular pole edge. The 
solution proposed by Bedin requires a graphical 
integration: 

s t(x)e Jl x/l3 dx = 0.086 g2 (21) 

with t the shim thickness. 
The mathematical model used by Brechnas uszs 

curved boundaries. In Fig. 4 the corner model and 
the modification to arcs of circles are illustra- 
ted. The modified Schwarz-Christoffel equation 
for curved corners is 

BA z=x+jy=n 2 s (t + a)'12 dt 

1 
) + A (f"l)q2 1 t+a 1 t( t-c)l12 

+ 2( (t + b)Y'dt 

1 
+c + (t-l)1/2 

(22) 

The potential difference between the pole and 
the midplane requires the form: 

dW - = Bx + jBy da 
(23) 

The shape of the rounded corners is fixed by 
the choice of the constants h, and h . 
calculate the parameters a . . . c for'a given 

To 

magnet, the following boundary values must be 
specified: 

K2 = g& 

Equations (21) and (22) may be extended if desired 
over many more parameters. The simple case of 
one rounded corner is calculated below. 

The Schwarz-Christoffel transformation for the 
pole contour as in Fig. 5 may be written: 

,=!3 h(t+l)i12 + (1-h)(t+a)l12 
n(, t (t-b)'p 

dt + C (24) 

The pocentiel difference is 

dw L 
iz=g 

(t _ b)d2 (25) 
h(t+1)1/2 + (1-h)(t+a)ll' 

with 

b<a<l. 

For the pole contour -1 < t < -a, the equations 
of the pole contour can be expressed as 

Y=g 

h 1+ bo 112 +-. 
n(b)ll' 

tn c 3 b-t 

-I 

x = z (1-A 1 

/ 

&l+(ALy --- 
l- g ( ) 112 

-&l 

+ 2(z)1'2- tan-' [i . e]"2 (26) 

For a given magnet pole profile, 
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The constants a, b and h are calculated for 
different cases and the field distribution 
is plotted in Fig. 3. 

The model calculation has the advantage that 
for a given distribution of B required for 
particle optical reasons [Eq. f14)] 

By = B ... 
01OPS I 

In the median plane, using '?q. (231, 

vO 

"Y = T * rea1 

[A ($$ + (l-h ,I (t-c)+ 

[A2 + (l-AZ)(~)'] (t+a)+ 

or Eq. (25) 

V 

BY = 
-2 - real 

(t-b)+ 
g h(t+l)'/'+ (1-h)(t+a)l/' 

we can compute a, b, c, and h. Inserting these 
values in Eqs. (24) and (26) for z or x and y in 
the simplified model, we can determine the pole 
contour for two-dimensional cases. The pole con- 
tour then obtained may be approxtiated by a set of 
straight lines in order to simplify manufacturing 
problems. 

Numerical methods for flux plotting have been 
developed for establishing field patterns and the 
pole contour. In these methods the potential func- 
tion is obtained by numerical solution of the 
second-order equation, which describes it. Com- 
pounding magnetic fields with nonrectangular pole 
boundaries, we face a deficiency in using the 
vector potential in relaxation calculations because 
of the necessity that at the air-iron boundary the 
normal derivative of the vector-potential must be 
zero. The virtual points in this boundary condi- 
tion are nottie set points. 

For two-dimensional boundaries, a modified 
potential function @ is proposed by Livingston 
and Blewett.7 

By = _ 2 = _ 2 

Y 

Bx + J 
0 

@ behaves like a scalar potential in non-current- 
bearing regions and is related to the total current 
enclosed at a given point in current-bearing 
regions. 

The Laplacian of $ is given by 

0 

03 is zero at current-free regions and through- 
out the coil. 

B. Pole Profile for Alternating Gradient Fields 

Generally the pole shaping for AGS magnets arc 
performed by means of relaxation methods for two- 
dimensional cases.89g A treatment based on con- 
formal transformation is reported by A. f1ordt.i' 
The hyperbolic pole contours in the Z-plane arc 
transformed in the t-plane, where they convert to 
straight lines (Fig. 6). The transformation from 
the t-plane to the potential plane W is 

iiw ys {l+t/y)(1+t/cr) 

hz=c' t( l+t )2-u)~n 
(27) 

with y < 1 < a, ys in the pole contour ordinate 
corresponding to xs , the center of the particle 
orbit in the midplane 

P 
x 1s 

S n 

Using the relation 
1 

1 

(3 = (,+,)'i; = (l+peLiPs)z 

Hardt calculated the pole contour for f = z : 

7,2 = 
2x Y 
- [A(e) - A(+l)] 

(PS 

with A(e) = & +& 2 

The field equation at the pole contour is given 

7 (28) 
(1 + 2P * coscps + P2)6 

l+P. 
Y 

coscps + 

and at the midplane, 

‘. 
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Thr nl~crturc confini.ng the beam of strong- 
f~~~::in(: AG,S magnets IE smsller than that of 
cmctont-field magnets. ThiG may have a more slg- 
nlfjcont influence on particle oscillations about 
thclr cquillbrium orbit. Also, the desire to 
carry out sever01 experiments requires that suffi- 
cient npocc must be provldvd tomovc and sbarc the 
beam to various targets. 

The pole chape which produces a constant field 
gradient ?G hyperbolic, assuming the flux leaicage. 
the oidc gaps providing space for the ~0'1s and %he 
roil6 themoclves do not effect the field shape, 
wh;r:h is only a ?irst and cru3e appioxim.;ion. 

Ilowever, most computations are still for two- 
dimensional or axial s.ymmetric poles. Two-, 
dimensional model studies with resistance paper,11 
with stainleas steel plates and sheets,12 and three- 
dimennionnl studies with electrolytic tanks, as w 
well as actual reduced or full size magnets, are 
aimed to determine the final pole and core shape, 
the forces on coils, and in the case of ac magnets, 
the core locses and the heating of the pole edges 
and ends. 

C. F!eld Profile for Iron Profiles wit‘! Finite 
Fceneabilit~ 

The calculated values in Sections A and B do 
not represent values of finite permeability. 
Saturation in pole corners represents a shortening 
of the iron path. As a first approximation we may 
consider that the line of maximum field in the pole 
corner penetrates uninterrupted in the iron. Con- 
necting points of equal flux, we derive the flux 
density and the permeability in iron, using the 
magnetization curve. The direction of the field 
line can be corrected from permeability ratio, and 
from Simpson's relation we obtain the average flux 
densities as a function of penetration depths. 
UsinS iterative methods, we finally derive the 
final equipotential line corresponding to the 
effective pole contour, shown in Fig. 7. 

The contour line may be approximated by the 
polygon 

a. 
z =x+jy=: s 

n (t + t$ 
t * (t-b)& 

dt + C2 (30) 

The field distribution is calculated from 

v. '0 By + jBx = T . $ . g = T . 

I 

The evaluation of finite permeability is also 
possible, using the model calculations discussed 
in Secticsn B. The naximum field in the pole con- 
tour is obtained for any medium plane field dis- 
tribution; acccrdingly, the pole may be shaped 
sllch t:lst psle corner saturation is avoided. 

The pole end effects ar‘c knci;ll to bc disturbinS. 
Due to iron saturaticn in ccrncr5, the cl‘fcctivc 
length of the magnet is reduced, alid tbc field 
index is 
and as 

changed due to variation cf sill\, = f(E) 
a function of the flus density in t.1~ 

medium plane. In cace of DC moSncts,, tiic oltrr- 
nating field gradient in the end }\srts ca11scs 
field disturbance and heating cf t.hc pole iron. 
Pole end s&ping has been pcrfcnlicd by Ar~;onnc, 
DLFi, 3~~1 ZIp.C and a. GuJumo1~y cl" t11csc effortc ic 
or Aver bric-'.ly. 

7. ..z consider magnets with morgctic gun~d p!.atcc 
or mirrors. If the two pole end fnccs arc per- 
pendicular to the pole top surfocc, the samr fic3.d 
equations are valid, as dealt with in Section A, 
for the xy plane. If we use the nototion for the 
median plane 

b(s) = ‘j 

=nG essume that b(s) ot the guard nlatc is omol.1, 
we may work with an equivolcnt frin&ing field 
length (Fig. 8~) 

-2 

le = 
s 

b(s) ds - a (32) 
1 

-a 
1 

The effective length of the magnet is dei‘incd us 

1 t 

1 eff =( b(s) ds (33) ’ 
-1t 

The pole ends may be shaped in the same manner, aa 
discussed in Section A; however, XL the ,polc car- 
ners at the intersection of the xy and yz p3ollclJ, 

'the problem is three-dimensional and on af:curaLc 
; analytic expression cannot be given prcncn-L3.y. At 

the y/s plane with x=0, we discuss casea rcporLed 
in lit. tit: -- 

b : The gap is opened according to -Lhc rclai,J.onlJ 1 

; = cos h (s/g) 

The field profile at the midplane is calculated 
to be 

and at the pole surface 
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The flux density over the pole in the y,s plane is 
constant. Figure 8b shows the field plot and the 
pole contour at the median plane. 

ba: Th.e magnet gap is formed according to the 
relation6 

3 
sy" = 2 tan (Y (37) * 

The angle 0 is computed such tnat firld perturb. 
ante at the intersectjon between straight an5 
izpered pole airfaces in kc& to c minLum. .Le 
field equation at the midplane is calculated to 
be L 

(38) 

for -s <s<+s 
1 2 

In both cases, the end profile in the x-y plane 
will be extended over the shaped pole end, as 
shown in Fig. 8c. Comparisons of the field dis- 
tribution for different cases are given in Fig. 3. 

The length of the tapered pole part including 
the region for the coil must be: 

>A 
S2-2tan a: (39) 

The advantage of this solution is that the 
effective magnet length changes.proportionally 
to the magnetization current. 

E. Effect of Coils 

In previous sections it was assumed that coils 
were located far frcan the gap, so that they do 
not influence the pole fringing field. Actually, 
the coils axe located close to the gap and their 
effect on the field pattern is not negligible. 

The coil influence for quadrupole lenses is 
treated by Blewett14 and Hardt.10 A simple 
method of handling field superposition will be 
given below for a quadrupole magnet. 

Assuming the poles of the magnetic lens are 
formed such that they produce a pure quadrupole 
field in region A, the potential and flux equations 
can be written as 

V = 2klxy (40) 

U = kl(x2 - y2) (41) 

The coil produces a homogeneous field with the 
potential and flux functions in the region B: 

V = k2y (42) 

If the homogeneous field extends 'to a point 
x0 on the ordinate (Fig. g), the superposition of 
the flux equation leads to 

kl(x2-y=) - k2(x-x0) - klxg = o (44) 

and the superposition of the potential functions 
to 

2kixy - k2y = J(x) (45) 

From Eq. (44) 

k 4 
y 7 f(x) = - x; - f (x - ( 46) 

1 

or 

y2+(xo2%f =(x-&J= (47) 

At a. point P(x,yl) on the pole surface com- 
mon to the quadt-upoles and the homogeneous field 
region, by using the relation 

k 
a:=l-2 

2klX0 

we get 

X zx EL 
0 

+ [x= ($I&)= _ 5-J 
:-- 

11-2a - 1 

The space distribution of current density in 
the coils may be calculated from 

j(x,y) = &$ = $ b - 2 (1 
111 11 

The choice of x is a matter of weighing 
quadrupole field aga?nst the hcmogeneous field. 

the 

This method can be extended to superposition 
of quadrupole fields with different strength, 
quadrupole and sextupole fields, etc. 

Iv. Magnet Design 

In large-volume experimental magnets, the iron 
functions not only as coil support, protection, 
and to shunt the stray field around the magnet in 
order that equipment may be placed close around 
the magnet, but it also contributes markedly to 
the field in the gap or bore produced by the coils. 

A. Coils 

In order to give a general idea on iron-bound 
large experimental magnets, we treat a case of a 
pair of Helmholz coils confined by iron, as shown 
in Fig.lO. 
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For nairs of axial symmetric Helmholz coils 
such as for bubble- and spark-chamber magnets, the 
axial field component frcm the coils alone with 
uniform current distribution may be calculated:ls?ls 

HzA 
= $ PO?! r 52 l y=dxay 

’ [y’ + (a-x)2]f 

(49) . 

for the case illustrated in F!g. 9 WL intecrate 
Eq- (49): 

_ 

+ (B1+rl) Jh : 1 
al+[l+(q)=j’ [ 1 3 

1 + 1 + (B1+y1)2 

+ (P2-r2) ' ,tJl 

+(B+7 ,,a~+L+w21~ \ 
2 2 

r 
1+ l+ 

1 

+ 
(B2+r2)2 1 I 

(50) 

HzA = Shal * F 

The relation between coil 
current density S, and space 
by 

IIf 
s= 1 

2a: (a-1) hlBl 

B2; rl; 7a 
1 

5 2 

ampere-turns, 
factor h is given 

IN 
= 2 

2at (a-1) h2B2 

(51) 
IN 

= 2s: (CY-1) h(B1+B2) 

for h, = h, = A , and with the same radial dimen- 
sions for both coil sections, we get the power in 

15 

the coils 

P = 216' pa: (s-1) A (52) 

Fram Eqs. (50) and (52) we get the Fabry formula 

=G PA 
( ) 

3 
HzA alp (53) 

wit'- t;?-: gezneiry CL Fabry factor 

G= F pO 3 -1 (54) 
(&In 

The correct ratio 8 
id 

B, > 1 must be found to 
achieve a certain field omogeneity to compensate 
for the field due to the iron shell. However, for 
ee?h IndividlKi coil the well-known Fabry factors 
fcr constsnt current distribution can be used to 
check tie optimum design of the magnet. Figurell 
gives a plot of G-factors for individual symmet- 
ric coils and uniform current density distribution 
as function of 01 and B. The field calculations in 
_yy point in space may be obtained fram &t. &.17 

The case of rectangular Helmholz pairs is 
treated by Grant;la however, this work must be 
extended for unequal coil sections. 

B. Core 

The field contribution from iron core canes 
from aligned dipoles in the iron crystals. If the 
magnetic dipole m is oriented at an angle 5 
to the z axis, the field ccmponents in cylindrical 
coordinates areI (Fig. 12): 

BZ= (3cos2q-1)*cose r (55) 

Br = 
C 
(3 sln2~ - 1) * sine 

(56) 
-3. sincp coscp * ~0~8 

I 
. -!!i- . dv 

(x3) 

Assuming uniform magnetization in iron, the field 
values are: 

Jr- 
B = ' case z L 

(57) 

- 32g - sine 3 Y*A*B*M .--d'# 
4nx 5 
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JI ,2 
Br = J c (d-z2)* sin0 

Jr1 (58) 

- 3zc. CO66 1 * Y.AB*M(Y*cos 9-r) . d,,, 

4nx5& 

The assumption of uniform fiela distribution 
in iron leads to errors of the order of -Z?$ Cyo :.$. 
For general. iron shape, by using the field dierri- 
bution in space from the coil geometry, applyJng 
the relation 

tan 'i 'ri =- 
tan yi- pri- 

and using Ampere's law for the I Haa, the magnet- 
ization curve for the iron used, the actual mag- 
netization in iron can be calculated for three- 
dimensional iron geometry by successive 
approximation. 

Another approach currently under investigation 
at SIX is the solution of nonlinear quasi-Poisson 
equations. We start with Maxwell's equation 

VX 
( > 

$VxA =S (59) 

or in expanded form 

+ik t$ 
( 1 

+ s(x,y,z) = 0 

where A = A(x,y,z) is the vector potential and 
n = p(x,y,z) the permeability. To calculate the 
field distribution in the core, magnetization 
curves and values of relative permeability obtained 
fram various measurements at CEBN and SLAC, shown 
in Fig. 13 and expressed in Eq. (a), are used to 
calculate Eq. (59). 

For 

o < H < 700 At m -1 

B = 16.91 H 
and 

700 5 H 5 28 x 10' 

B= 17088 + 43.1 (H+ (60) 
33-H 

%- e 'YS + 1.&j 

The differential Eq. (59) is approximated by 
a difference equation by constructing a rectangular 
mesh with values of A and p in the intersections. 
If the bar length between mesh points is h, we 
have at a point P: 

and 

In the two-dimensional case (x,y) we may write for 
Eq. (59) ,-- 

As an example, the field distribution in the x,y, 
plane of a bubble chamber with 2a=l.3 meters is cal- 

culated with the caputor B5500 and shown in Fig. 14. 
The SLAC computer program (INutcracker" is being used 
for solutions of two-dimensional and axial symmetric - 
cases. 

The convergence of a mesh containing variable 
A and p values is poor. If we consider one mesh 
as a system of finite difference equations, the 
convergence is achieved with the knowledge of the 
eigenvalues of the difference equation matrix. The 
eigenvglues depend on the geometry and boundary 
problem, and one may use Frankel's formula to 
approximate principal eigenvalues: 1 1 3 

0=2-2rre (61) 

where (o is a convergence-factor-and p, g the 
numbers of nodes in the x,y direction. 

The three-dimensional case can be solved by 
using the notation 

i = Ax(x,~,zf ‘i + Ay(x~y,z) ? + AZ(x,y,d i; 

18 

vxii = vx 
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In terms 
cconponents of 

of ifference equations, the three 
vx are written in the form 

The residual potential function can be written 
using the terminology in Fig. 15: 

- 4h2Sxo 

A 
y,res 

= 

. 

V. Magnet Coils 

The primary purpose of the coils is to provide 
enough ampere-turns to give the chosen magnetic 
f!eid in the gap or working area. The splitting 
of the At in number of turns and current influ- 
ences the size of the coil and, therefore, the 
magnet overall dimeneLons, the weight, and the 
power requirements. 

Compact coils, with ccanplicated two- and three- 
dimensional shape and high current density need 
better cooling prwision, superior coil insulation, 
extensive and efficient cooling, and a thorough 
study of stresses due to temperature gradient, 
current, and magnetic forces. Coils with a large 
cross-sectional area and low current density lead 
to large overall coil dimensions and thus to ex- 
pensive magnets. Due to limitations of manufac- 
turers in producing long, hollow copper bars with 
large cross sections, one must solve the problems 
of joints, parallel cooling passage, and choice 
of material. In many cases, the coil must be 
adjusted to the power supply ratings, and in the 
case of large multi-megawatt magnets it is de- 
sirable that power supplies could be shared between 
different magnets. From extensive studies, it 
seems feasible to keep the applied voltage to the 
magnet terminals low, and design the magnet for a - 
high current. The high power density in the coil 
requires direct cooling. To keep the temperature 
gradient in the coolant boundary layers down and 
to reduce frictional losses, the cooling media is 
in direct contact with the conductor. Present 
magnets with hollow conductors operate at a low 
water speij rate cf 3-10 m/see with Reynolds 
numbers > 2400. The flow is turbulent. Higher 
water speeds, which may lead to copper erosion in 
case the water is in contact with air and for 
which protective measurements prove to be im- 
practical, should be avoided. Studies carried out 
at CERN indicate that current densities of 600- 
1000 A cm-2 give the optimum magnet-power supply 
system. This number may very well vary between 
different high-energy laboratories in various 
countries. 

, - 

21 
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In the design of magnet coils, the magnet de- 
signer faces the choice between different conductor 
materials, such as copper and copper alloys, alumi- 
num and its alloys, the type of coolant, and cool- 
ing methods. In most'magnets, high resistivity 
water is preferred over gases, insulating liquids, 
and cryogenic liquids for obvious reasons. AlUUli- 
num conductors can be obtained in very long length 
and are economically attractive, but most designers 
prefer copper to aluminum due to power consumpti9n, 
even if the conductor length mwt be ;acrif,ced. 
Continuous leligths of hollow copper conductors 

. with cross sections up to 5 X 5 mrnw2 p-y be >btai!. 
ea in lengths up to 50 meters, and in smaller 
cross sections longer than 100 meters by a newly 
developed continuous casting process. 

Regarding cooling methods, direct cooling is 
by far the most efficient. Square or rectangular 
conductor with circular or square holes is used 
extensively. With this type of cooling, a maximum 
heat flux of 4 watts/cm2/'C has been achieved by 
water passing through short lengths.16 In dc 
magnets with a hydraulic circuit of more than 20 
meters length and water speeds of 3-4 meters a 

modest heat flux of about 0.1 . . . 0.5 W/UI?/~C -an 
be utilized. 

For more cmpact coil designs edge cooling is 
preferred, where the heat flux of 900 watts/cm2 
has been achieved.20 Conductor discs with axial 
or radial cooling holes are not used in high-ener@;y 
magnets. For coils with uniform current distribu- 
tion, using rectangular hollow conductors, the 
power density in the coil may be calculated from 

(62) "V 2rraz (S-1) f3h.A 1 c 

where Ai and h, are the insulation and the con- 
ductor space factors, respectively. Using 

the relation between wv and the power per unit 
cooling area ws is given by 

W h 
x- 4 -c.- 
W 

6 1% 4, 

with a as the hydraulic diameter. 

Ccnnkining Eqs. (62) and (63) we get for the 
heat flux 

4, 1-A 
w = .c 

S 
&la: (ti-1) B-hi AZ 

Figure 16 illustrates the ratio w$ versus 
( 4a2/na2 - 1) and the copper spacesfactor. Fran 
experience, the choice of wv/ws and h, are 
simple, which gives ah as a first approximation. 

22 

The number of cooling holes per unit cross 
section perpendicular to the flow direction is 
obtained frcm: 

4 “v 
m = n cAeb - - - A&(~)!* ($)[aC2] (64) 

For a given pressure drop, the maximum current 
Censity may be calctiated from 

52 = 4p “Aeb.. (hKy$).~ 

(65) 

Stresses on the conductors due to magnetic and 
current forces and. due to different thermal expan- 
sizns iBetween adjacent turns may be mentioned. 
Ho-.iever, aetailea calculations reported by differ- 
ent eutr&-s for iron core magnets with up to 30-kG 
fields in the bore show that in most cases the 
tensile strength in t%s conductor does not exceed 

100 kg.M2, which is still safe for half-hard 
copper. 21 However, winding half-hard copper con- 
ductors into a coil may show undesired aistortious 
of the copper cross section and insulation damage. 

A. Coil Insulation 

Coil insulati,on can be regarded as the most 
delicate and sensitive part of the whole magnet. T-- 
A sound conductor insulation guarantees the life- 
time of the magnet. The insulation is subject to 
electrical, thermal, and mechanical stresses and 
ironization effect due to irradiation. In many 
cases, due to water condensation on coil surfaces, 
close to the water inlet manifolds, or leaks 
through joints, the insulation absorbs water and 
the insulation resistance and the dieldric 
strength are reduced considerably.22 

The aim of suitable coil insulation is to pro- 
vide s reliable product that will perform its in- -. 
tended functions within the environmental condi- 
tions in which the magnet must operate. With the 
advancement of technology in high-energy accelera- 
tors., the demands on insulation have been increas- 
ing constantly. Frcnn simple cotton shellac insula- 
tion in the early magnets, modern accelerator 
magnets use high tensile strength, glass fiber 
reinforced thermosettings with additional mica and 
inorganic fillers. 

If only high mechanical strength and moderate 
electrical stress in dry areas is required, glass 
fiber and high flexural strength epoxies may be 
sufficient. When magnets are subject to moisture 
and water vapor, protective coatings, or epoxy- 
impregnated polyester-web and. mica may be used 
additionally in the ground insulation. 

In a high irradiation environment (> 10L1 rads), 
high purity inorganic fillers are added to a SUit- 

able thermoset.23 Highly filled epoxies show more 

affinity toward moisture absorbtion end their 
protection is more important. The water absorbtion 
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is enhanced when the ionization due to irradiation 
is continuous. Filled epoxies lose mechanical 
strength, but the right balance between radiation 
resistance and loss in mechanical and electrical 
strength and the addition of suitable wetting 
agents has to be studied carefully for each in- 
dividual case. Needless to say, the manufacturing 
problems with these new filled thermos&s are 
increased many-fold, ccmpared to pUre epoxy im- 
pregnants, sna require new and better mcnrxfactur- 
ing techniques aa stuaies of pot life, V~SCOS~+~, 

we+-ting characteristics of the ther'oset. 

B. Magnet Core and Choice of Steel 

In the design of high-energy magnets there is 
a distinct difference in the choice of steel for 
the ac accelerator magnets and the magnets for dc 
operation, such as beam transport and experimental 
magnets. Since several magnets may be powered by 
one power supply, it is required that the fields 
in the gap of each individual magnet should be 
within 10q2 to loo3 of each other. Variations of 
the iron properties within a core or from differ- 
ent heats are required to be a minimum. 

The ac magnets require low remanence fields 
ana low coercive force in order to eliminate, if 
possible, the use of degaUESing coils. It is also 
required that Ur should be high at low flux 
densities. 

In ac magnets, due to the effect of eddy cur- 
rent and hysteresis losses, the choice of 1-3s 
silicon steel is preferred 24J25 over low carbon 
steels. 

In alternating-gradient magnets with variable 
gaps the variation of permeability does influence 
the field in the gap. At high fields with per- 
meability values of less than 100, the field 
gradient may be reduced by several percent. At 
low fields of less than lo-' gauss the relative 
permeability may vary up to 28$, which influences 
the field in the midplane by about 1.5%. 

Local heating in the core and nonuniform 
pressing of the core stack has Undesirable effects 
on the permeability and the field distribution in 
the gap. In order to avoid local heating in bolts, 
and additional losses due to bolt holes, the 0.1' 
SLAC deflection magnet core has canmited all bolts. 

._ The core was pressed byenhydraulic press, welded 
at the external surfaces, and impregnated with 
epoxy.6 The welding was performed such that iron 
crystal distortion and sheet Undulation, which 
leads to nonuniform pressing in local spots and 

-%ay ruin the properties of the iron,26 were elim- 
inated. Needless to say, undulation and nonuni- 
form pressing alEo influence the mechanical toler- 
ances of the gap. 

Grain-oriented sheets, which have excellent 
magnetic and mechanical properties, can not be 
Used due to the two-dimenEiona1 sheet EtrUcture. 
If the grain and flux directions are not parallel, 
the flux density in iron at a Constant eXCitin 
magnetization force can change by more than 15 I 
aE a function of the deviation angle between flux 
and the rolling direction.27 

Hot rolled and cold reduced sheets with low 
loss factors and coercive force less than one are 
available commercially end have been used in 
accelerator magneto.1° 

Magnetization and permeability curves for dif- 
ferent sheets manufactured from different ingots 
are given in Fig, 13. The curves are measurements 
of 10 samples and show the variation of relative 
permeability of different samples at 1 oersted to 
be about 28% and at 3.12 oersted about ~CY$. , The coercive force, which varied for the dif- 
ferent samples measlured, is 

1.602 + 0.763 
- 0.577 

In order to reduce the coercive force, many labor- 
atories specify the annealing of sheets in an 
N H, atmosphere even if hot rolled sheets are'used, 
w fi* ich can result in a reduction of coercive force 
by more than 56. 

In high frequency magnets high flux density 
cores operating at 60 cps or higher (360 cps at 
SIX) are subject to cconpression and relaxing 
forces, which are variable over the core due to 
different core saturations. The hammering effect 
ac-eierates the core fatigue, and the magnetic 
properties may deteriorate within the lifetime of 
the magtlet. The comprmnise in chasing low flux 
density in iron to improve reliability, the magnet 
price, and space limitation is again a problem 
each laboratory has to cope with. 

In ac magnet cores the effect of small amounts 
of impurities in the form of nonferro-magnetic 
materials, gas channels, voids, cracks etc., has 
been investigated by various authors. 2Q Forged 
steel is usually preferred over cast steel, even 
if the price of forgings is slightly higher. In 
poles, due to the high homogeneity requirements -_ 
in the gap, exceedingly'pure steels are preferred. ' - 
In yokes, a comprcmise in choice of less expensive 
steels is permissible. The alloying elements in 
the steel form ccmpounds, which are deposited in 
steel crystal boundaries or as grains in pure iron. 
Hedin' derives relations for macroscopic flwc 
density and field strength in a structure with 
nonmagnetic ccmpounds occupying p parts per weight 
of the pure iron. His conclusions, which are in 
agreement with measurements carried out by CEBN 
and BNL, show that for a total amount of 2 parts - 
per weight impurities, carbon has by far the 
strongest influence. Next important elements are 
Al, MO, S end P, which have a detrimental effect 
on magnetic properties. The third group of 
elements are Mn, Ni, Cr, Cu and Si. 

However, many of these elements are required 
for for-g-::?,: or casting reasons; Al and. Si, for 
example, are used to reduce gas bubbles in the 
cast. Impurities have a tendency to agglomerate 
in the top part of the ingot. SLAC EpeCified that 
about l/3 of the value should be cut off and re- 
moved, whYch results in a fairly pure steel struc- 
ture. Depending on the source of the ore, wide 
tolerances on the impurity ccmpositions may be 
allowed, but the total amount of impurities must 
be limited. 

SIX specifies for dc magnet steels: 
C max. 0.1 . ..0.12 p.p.w. 

Total Al + MO + S + P max. 0.1 p.p.w* 

Total Mn + Ni + Cr + CU + Si max. 0.7 p.p.w. 
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Lowering the carbon content leads to a very soft 
steel structure which is undesirable in core manu- 
facturing to attain close gap tolerances and is 
expensive. 

VI. Conclusion 

The design of electromagnets for high-energy 
physics applications has undergone considerable 
improvement in recent years. However, due to many 
conflicting requirements in every magnet, the 
proper evaluation and balance of the differens 
parameters i? the paramount problem of the maf,net 
d-ignei. With the growth of i'ie nigh-energy 
accelerators the need for large magnets is still 
growing. Bubble chamber and spark chamber magnets 
with 2a, = 2 - 5 meters bore are presently under 
construction. Large bore magnets (2a, = 1 - 2 
meter) with fields more than 100 kG are under 
investigation. However, the power consumption of 
such dc magnets (60-200 MN) with water cooling 
seems economically unsound, and possibilities for 
pulsed and superconducting magnets seem feasible. 
Iron-bound high field magnets are still attractive. 
They contribute up to 16s to the fields generated 
by the coil ampere-turns in high field magnets. 
In many areas the classical coil design with hollow 
conductors may be abundant for more efficient 
magnets with higher values of heat flux, ws . To 
make better use of the iron in combination with 
coils, a thorough understanding of the flux pattern 
in iron is necessary. A program calculating two- 
dimensional potential problems has been developed; 
however, three-dimensional potential problems are 
still in the investigation stage. Matching field 
shapes to particle optics is also one of the im- 
portant problems and deserves more thorough study. 

The author is indebted to Dr. Karl Brown of 
the Stanford Linear Accelerator Center for many 
fruitful discussions and helpful suggestions, and 
to Dale Borglum of Stanford Un,iversity,Iee Anderson 
of Oregon State University, who joined the Magnet 
Research Group a short time ago and Ed Burfine SLAC 
for their active work in the Nutcracker program. 
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ELECTROIWGNETS FOR KIGII EXERGY ACCELFRATORS 

Fig. 1 Phase Ellipce 

Fig. 2 Path and Trajectories..of a Charged Particle in a 

Three Dimensional Magnetic Field 

S = Normal Path 

S' = Trajectory,in the x-z plane 

!. r 
;I ;.:, S = Central I'ra;ectory 

Fig. 3 Pole Shaping and Field Distribution. 

(1) Measured field distribution. . . 

(2) Midplane field distribution neglecting saturation.' 

(3) Xidplane field distribution according to pole contour b. - ,-- 
(4) Flux density at pole contour b. 

.L - 
(5) Field distribution accorilrig YO pole contour c. 

j_ 
(6) Flux density at pole ck.:.uour c. 

(7) Midplane flux distribu,:on according vo pole cc;;tour d. - 
(8) Flux density at pole contour d. 

(9) Midplane flux distribution according to pole contour e. 



Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 6 Pole End Shaping 

Fig. 9 Superposition of Linear and Quadrupole Fields 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

Polecorner Shimming 

Simplified polecorner Shimming 

Pole Contour Shimming for AGS Magnets 

Model LO Calculate Saturation '+ffe& 

Field Calculation of a Bubble Chamber Magnet Assuming 

Circular Symmetry and Uniform Iron Magnetization 

1 and 8: 20.7 kG 2 and 7: 21.19 kG 

3 and 6: 21.13 kG 4 and5. 21.0 kG 

FabrGactors for Solenoids with Uniform Current Distribution 
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