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Abstract

The multi~functional purpose of powerful elec-
tromagnets to be used for high-energy physics ap-
plications requires specific featurvs sucr as
magnetic field strength, field hamosenelity in a
requcsted space, :ield configu.ation and Z:.stribu-
tion, resolution, solid angle, dispersion sna
focusing properties. These demands are easlly met
i1f boundary conditions such as dimensional and
material limitations, geametrical and environmental
effects, power consumption, and adequate cooling
are not restricted.

The paper deals with magnets which fulfill as
closely s possible the above requirements, con-
sidering actual limitations given by conditions in
laboratories as well as dimensionsl, geametrical,
and material properties.

An approach to designing iron-bound magneils
using Fabry factors is given. Coil configuration,
pole form and shaping, iron boundaries; impurities
in ferramagnetic materials, cooling methods and
media, and magnet performance are explored. Magnet
design features such as reliability, cholce of
conductor, magnetic materials, and coll insulation
are included. Coll damage due to fatigue, electri-
cal breakdown, moisture and other influences on
insulation, and environmental conditlons are
discussed.

I. Introduction

In recent years, the electramagnet has grown
to become one of the most important (as well as
one of the most expensive) parts of high-energy
accelerators — so much so, in fact, that in modern
physice we can not envision any hlgh-energy sccel-
erator without the use of electromagnets. They
are used for many purposes in different areas,
such as steering, bending, focusing, separating
particles, and momentum anslysis, as bcam transport
devices, and in experimental areas such as in
spectrometers; spark chambers, and bubble chambers.

In circular accelerators, the magnet function
frequently 1 to bend particles to keep them in
orbit and to provide framing force, to restrict
thelr horizontal end vertical motion, so that the
particles remain well inside the vacuum tublings
and chambers.

In linear accelerators the two functione cen be
separated. The provicion of focusing forces ls
done by the use of megnetlc focusing lenses, and
the steering and bending are proVideﬁ by constant-
gradient magnets. ST

~ The mdgnet in a high-energy system io not an
independehif entity. Ito design io influenced by
othef compofients such as the vacuum system, the
injector Eotitfol system, and the buildings.

The requirements for magnetic flelds, thelr
shape, hamogeneity, and optical propertles have
increased considerably with the growth of acceler-
ators. In early stages of megnet deslgn, simple

calculations based on known engineering practices
and, in a few caces, scaled models were sufficient
to satisfy most requirements. For modern acceler-
ators a vast team effort cambining scaled models,
confucting developmental work, study of materilals
and ipsulat.ion, computor calculations, and the use
¢’ pr.oise and sophisticated field and mechanical
tolerance measuring techniques and devices are
necensary before the optimally designed magnet is
realized.

The function of the magnet design group 1s also
manifold. It must maintain close contact with com-
ponent design groups as well as the theoretical or
experimental physicist in order to know the future
role, purpose, and extensions of the magnet to be
designed. It must bear in mind the capabilities
of the manufecturer, who will provide the camponents
a=d parts of the magnet. Unfortunately, it is not
alwaye possible to use standard parts and straight
manufacturing techniques due to the predominant
requirements of the accelerator; i.e., the use of
special thermosets may be necessary to protect the
insulation fram radiation damage, and complicated
pole shaping may have to be done to provide high
hamogenelty fields in gaps or a certain fileld
gradient in AGS magnets. However, radical de-
partures fram standard menufacturing techniques
often lead to undesirable delays and frustration
due to lengthening of delivery schedule.

The magnet design group has to plan the magnet -
delivery progrem to fit the overall accelerator -
program, and therefore provide ample time for re-
search, design and magnet procurement.

It 18 not the purpose of this report to cover
all possible and basic problems for various types
of magnets. However, baslc requirements sre common
among the majority of magnet types; these will be:
dealt with below.

II. Opticel Definitions

Electromagnets may be divided basically into
a few main groups: alternating-field ac end dc
magneto and constant-field ac and dc magnets. In
both cases, the magnetic field within a useful
volume over a certain time period must follow a
pre-chosen pattern. Any dc magnet may be consider-
ed as = speclal case of alternating fleld magnets;
therefore, the theoretical studies on field shaping
remain the same In both cases.

A number of cammon requirements on all high-
energy magnets are dlscussed by several authorsl, 2
but are scattered in various reports, so that a
bricf summary at this point seems appropriate.

I Symmetry Plancs

We conflne our discusslon to magnets having a
symmetry plane. In Cartesian coordinates, the
potential function can be written as scalar

N (X; Y, 5) = -V (X;’ =Y 5) (l)
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B. Field Hamogeneity

Field homogeneity 1s normaelly defined over the
cymmetry plane. However, in & more generalized
form it should be noted as

B
e =1 -3 5alnZ (2)

B (0,0,0)

where B (0,0,0) denotes the .ield vector in the
gty Or bore cente=, Equation ‘2) muv alsc be
adapted as the definition of Iield-gradieut e% any
peint in space.

C. FPhase Space

The beam of monoenergetic particles with no
appreciable coupling between horizontal and ver-
tical motions can be described by means of density
distribution in the horizontal and vertical phase
planes., All particles of Interest are contained
within en area bounded by a closed curve in each
phase plane.

With "s" being the coordinate along the beam
axis and x(s), x'(s) = dx/ds = €; the transverse
deviations and the angular divergence of the par-
ticles may be written for all closed curves in a
normalized form (see Fig. la):

0x® + 2Dxx! + Fx'2 = E (3)
and
A=CF - D2 (1)
as the determinate of Bg. (3).
We define
Fllz = Displacement profile
01[2 = Divergence profile
E = (Alle/n) + A = emittance, with A as the

area of the ellipse.

D determines the orientation of the phase
ellipse in phase space.

The range of veriables Xos @05 Yor Poy and
£p/p for the coordinates at a point P and the
importance of one or several of them must be con-
sidered for specific cases. A unit set does not
necegsarily define all megnet types or combinations.
For & monochramatlic beam and a point source,

o]

where the phase space is defined as:

< 90: P >=10 {5)

and @ 1s defined as solid angle.

For particles
phase ellipse is defined as

with momentum py at’ x, the
(sce Fig. 1b)

Cx% + 2Dxp + Fp? =

with

and the ednittance

A = /ﬁdpx * dx

For a perlodic system of focusing elements, the
transfer matrix for first-order optics is written”

n

X a 8 X
n 11 12 n-i
Pn a21 a22 Pp-1
) A l(n) Al (n) Xy
A A
LA ]
where
- a
- 11 2z , sin{n 9)
A11 n) = cos{n 9) + e
A (n)=a , sin(n 8)
12 1z sin O -
A (n) = sin{n 9!
21 21 ein 6
a -a
= con . 11 z2 . sin(n 6)
Azz(n) cos(n 6) 2 sin 6
and
1
8 = = -
cos 5 (all a12 .

The acceptance region of particles 1s an elliptical
cone with the semi-major angle @ and semi-minor
angle PB. The solid angle is given by

Q=08 .

D. Resolution

If the displacement at the image point is X3 0
the beam resolution with the y Yo source co-
ordinate is defined in first orger as

= .2 1 ,
Rlst order M x (6)

©

Brechna — Page 2 { of pages)



where M 1s the magnification x,
momentum dispersion.

¢ Xp

D

= (7

Rana order xl

where

x =

Y-S 2y o2 o> -
L=< x§> x5+ x> of + <x[x 0> - x P

Generel Field Equations for Magnets with
Median Planes*

The existance of median planes requires that
the potential V be an odd function; i.e.,

V(X)Y;s) = V(X; "Y,S)

In terms of a series expansion (Fig. 2),

oo [2-]
- <’ 2+
V(x,y,s) = zJ zJ c(s) T G (8)
oo Voo (2HH1),V
and the fields are:
= = v ey
v NN X 2
B % "24 24 c(e) vi e @
=0 Vo (2p+1), v+l
[ -]
— = v
oV zJ zJ X 2H
B = = c(s) T 7 (10)
Y 3}7 (2u+l),v vi 2p)l
u=0 VY=o
L] o ‘V
- N _ e, ' x_
By "ok '3 " pHx 24 24 c'(s) vt
=0 V=o 2u+l;V
21+1
2p+1)! (11)
with p as the bending radius of particles.
At the median plane for y = o,
-] -] v
- X

* N
The field equations in this chapter were first
developed by Dr. K. Brown.

and D the
For second-order resolution,

3

or
OB
B =B + X "
¥ Vx=0 X=0
y=0 y=0
(13)
%2 3%B
+ 2—, — + e 4.
* dx?
X=0
y=0
This correspoﬁds to
3B
= —X functions of s only.
v BXV
X=0
y=o

or in well-known form

B =01 1- g 8) . x4 2s), ¥ -] ()
Yy 0,0,8 s R2(s)
with
OB
- . R(s) |
n=-"y EEX
VA X=0
y=0
2 -
. R2(s) . (a Bﬁ -
T 2B
¥ ox® X=0
y=o0

These equations generally may be modified for any
special type of magnet.

The magnetic field in the y-s direction follows

Eg. (15) (we assume magnets with magnetic mirrors)
for symmetric cases; only even numbers of V are
encountered. .
o 9B
B = + E(s) %2+ ... (15)
v 0,0,8 2B 3x2
Y X
X=0
y=0

For a given beam size and particle momentum
the particle bending radius is & function of the
magnet strength, defined as

=B
JFBG{Eff =c P

(16)

with % = p the particle mamentum and b the
bending angle in radians. The appropriate split
_between the cholce of the maximum field B over
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the median plane and the effective magnetic length
off 1s dictated by a number of requirements.
A design with high flux density but short magnets
gives high saturation in pole corners and the
magnetic field homogeneity is Jeopardized. To
improve homogeneity inside a given gap volume,
several methods are undertaken. One can increase
the pole dimension, which leads to lasrge magnets,
or use pole shaping, and avoid excessive high
flux density in corners. Auxiliary poles; pole-
face windings, or the introduction of additioral
correcting magnets such &s quadrupoles, sextupol:zs,
and nctupoles, a-= coamon pre tice.. On t': othe
hand, the increase in B requires high powe:
consumption. Any magnet with low flux density in
the gap will require more space and will be heavy
and, for tight tolerances, more difficult to man-
ufacture. However, such magnets may use less
power. The right choice between maximum flux
density, power consumption, the magnet size, and
initial capital cost for each individual magnet
type with respect to space and other components
and parts, is important.

ITI. TField Homogeneity and Poleshaping

The pole shape and cross-sectional area of the
magnets are determined through studies of the
dynamic motion of particles and from the first-
and higher-order optical requirements. Basically
the aperture inside the vacuum chamber must be
large enough to accammodate the oscillation
arising from the spread in space, angle, and
energy of the beam. Due to the physical slze of
the beam, space in the x,y directions l¢ nceded for
the particle excursion and phase oscillation, or
mis-steering. ) ) .

The cross-sectional size and pole shape of the
magnet 1s mainly determined through studies of the
dynamic motion of charged particles. The gap width
is glven by the size of vacuum chamber or experi-
mental equipment located between the pole tips.

The aperture inside the vacuum chamber must be
sufficiently large to accommodate oscillations
arriving from the beam spread in space. Rsdial
space 1s needed for the excursion of the phase
oscillation. The proper match of the pole size
snd contour to & required fleld shape over an
aperture dictated by the trajectory equations is
the main task in magnet design. The matching of
the pole and, subsequently, gap dimensions to the
vacuum tubes, etc., sets the magnet parameters and
the requirements in bulldings, power, cost of
materials, etc. Most of the high-energy magnets
are iron~-core or iron-bound magnets, and the magnet
outer dimensions as well as the power requirements
are related to the desired field shape in the bore
and the iron saturation.

For a chogen pole width, the magnet designer
wants to achieve the maximum possible range of
field homogeneity and constance of magnet strength
i fB&%. This is possible by shaping the pole ends
and the pole sides.

In this section we treat constant field megnets
for rectangular-shaped poles, where circular
symmetric poles may be considered as a special case
of this three-dimensional problem and slternating
gradient magnets (AGS) to be used in circular
accelerators.

.

A. Field Profile in the x-y Planc Pcrﬁcndicular
to the Beam Direction

We assume that the pole contour at the beam
entrance and exit does not affect the field in the
y-x plane, which is true 1f {@ff > 2w. Rectan-
gular poles with faces perpendicular to the pole
surface are treated, as shown in Fig. 3.

For manufactured and tested magnets, the
field profile over the midplane measured for the
specific case of h/g = 6 and w/g =4 gave the
relutive vaiues of B(x,0,0)/B(o,0,0) = £(x/g),
¥ fch are ptutted in Fig. 3. The curve follows

tne equations
B%x,o,o; = 1
Blo,0,0) X (17)

l+e

with

3

X=c¢c +cx+cxs+ex
o 1 2 3

and the congtants computed as

= - 1.373; c = b o5, o, = - 2.1 ¢, = 0.52

o}

For the case of iron permeability p, >>1 5 the
field calculatlions can be based on conformal
mepping.”?®

The field profile slong the symmetry plane
follows the equation

1/2

B(x,0,0) _ [t - h)Z -
B%o,o,o; = real( T+ 1 ) (18)

where the relation (z,t) can be taken from

re | ’
+1
5 . {a/m)?
z = X+Jy = & .4 t -
n 1
1+7
L2 -1
p .
1 - {e/n)®
L t -
1fa
- ?FH' £a -1 tt + 1 (19)
-1
(g/h
For t>> 1, Eq. (18) is simplified to
1)z

[ X
— V(== + 2)
g %0,0) _ |7 . 2J (_l)v CoVhr g
50,0,0;
V=1
(20)

Brechna — Page 4 (of Pages )



A comparison between curves 1 and 2 in Fig. 3
reveals a divergence in the field profile although
B(o,jg) is infinity in the mathematical treatment.
Due to iron saturation, this does not represent
actual fact. As a first approximation, however,
a field calculation according to Eq. (18) is
appropriste.

For many applications a field homogeneity
l-€ = 1074 in the midplane over x/g > % (2 ... 3)
is desirable. In the above calculation we achieve
€ =0.99 at x/g = 1.9 and € = 0.8 at /g =~ 0, To
correct this deficiency f-r a given peie widtl,
or t~ reduce the pole width for 2 rzquired field
uomogeneity, vhe poles wusv be soimmen. Possible
solutionsSs6 to limit flux density in the pole
sldes in the x-y planes require that iron should
be added to some parts of the pole and removed in
other parts of a rectangular pole edge. The
solution proposed by HedinS requires a graphical
integration:

ft(x)e" /8 ax = 0.086 g2 (21)

with t +the shim thickness.

The mathematical model used by Brechna® uscs
curved boundaries. In Fig. 4 the corner model and
the modification to arcs of circles are illustra-
ted. The modified Schwarz-Christoffel equation
for curved corners is

(t +a)' a
[(Hl) + xl(g—;)’ﬂt(t-c)l/z

Z=x+jy=§7\2

(t+ + )Y 2at
[(1-7\1) + %l(%%)llz} + (£-1)Y2

+ %(l-%a) +C

(22)

‘

The potential difference between the pole and
the midplane requires the form:

aw

d_Z‘=Bx+JBy

_ e et e (23)
5 1 '
v, [7\1(%—:—‘}) + (1-7\1)] (t-c)?

K [xa + (1A )(-E%’)E] (t+a)

=

The shape of the rounded corners is fixed by
the choice of the constants Kl and XZ . To
calculate the parameters a ... ¢ for'a given
magnet, the following boundary values must be

specified:
- - _ Blt=-1
Kl 8/b Ka go/g Ky = B% t= eo;
- B5t=—a; _ B(t=-b
K4 Blt=w K% =J B(t=-a

Equations (21) and (22) may be extended if desired
over many more parameters. The simple case of
one rounded corner is calculated below.

The Schwarz-Christoffel transformation for the
pole contour as in Fig. 5 may be written:

.y [ Mo 1N (0a)2

£ (£-b)42

The poventisl difference is

a Yo (t - p)i2 (25)
g 7\(t+l)l/‘2 + (1-7\)(t+a.)1/2

dz

with
bpb<a<l,

For the pole contour -1 < t < -a, the equations
of the pole contour can be expressed as

N P U N SR 12
y=68 x en b -t

- [b 1+t ]1/2

A . b-t
T e

bt+a l/2

x = & (1-0) )4 —— i

e

t-b

<28 b [ ] Y2

a t-b

=5~=l
Kl h 3

_ B(t=-1
Ka_Bt=°°

_ B{t=-a
Kz_JBt=—l
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The constants &, b and A are calculated for
different cases and the field distribution
is plotted in Fig. 3.

The model calculation has the advantage that
for a given distribution of B, required for
particle optical reasons [Eq. {1k)]

!
R a(s) xZ -+ ..]

B =3B
R{s Re(s)

[1
Yy 0,0,8

Tn the median plsne, using “g. {23},

1

£41\2 i
B = YQ ¢« real [xl (EKE) * (l-klﬂ (t-c)Z
yo8 5 ) (R %] 1

[7\2 + (1~ 2) (m) (t+a)

or Eq. (25) .
B = YE * real (t—b)lk
y 8 AE+1) Y2 & (1-2) (t+a) /2

we can compute &, b, ¢, and A. Inserting these
values in Eqs. (24) and (26) for z or x and y in
the simplified model, we can determine the pole
contour for two-dimensional cases. The pole con-
tour then obtained may be approximated by a set of
straight lines in order to simplify manufacturing
problems.

Numerical methods for flux plotting have been
developed for establishing field patterns and the
pole contour. 1In these methods the potential func-
tion is obtained by numerical solution of the
second-order equation, which describes it. Cam-
pounding magnetic fields with nonrectangular pole
boundaries, we face a deficiency in using the
vector potential in relaxation calculstions because
of the necessity that at the air-iron boundary the
normal derivative of the vector-potential must be
zero. The virtual points in this boundary condi-
tion are not true get points.

For two-dimensional boundaries, a modified
potential function V¥ is proposed by Livingston
and Blewett.’

' oV
Bx +\/ ul Idy = - 3

o]

¥ behaves like a scalar potential in non-current-
bearing regions and is related to the total current
enclosed at a given point in current-bearing
regions.

The Leplacian of ¥ is given by

y
v2w=%jpldy.
o]

V2 15 zero at current-free regions and through-
out the coil.

B. Pole Profile for Alternating Gradient Fields

Generally the pole shaping for AGS megnectg src
performed by means of relaxation methods for two-
dimensional cases.®? A treatment bascd on con-
formal transformation is reported by A. Hardt.®
The hyperbolic pole contours in the Z-plane are
transformed in the t-plane, where they convert to
straight lines (Fig. 6). The itrensformation fram
the t-plane to the potential plane W is

<

oo Ts

at

i

1+t 1+t/0
£(14t)2-0T

fe

(27)

S
o]

with y <1 <@, yg in the pole contour ordinate
corresponding to xg , the center of the particle
orbit in the midplane

2 |a®

[}

Using the relation
1

= 6

8 = (14t)% = (1+pciP%)

Hardt calculated the pole contour for % = 2 :
- 2xsys
2 = = [a{8) - A(6~1)]
5
with "L
_6 (8 (o-1)(1-y) 6-1
A(e)‘§<5 - 9 +{"9+1
T I
53 0c o-c >
e 3 dn vy e
b X
3T a7
f+d > f+e

The field equation at the pole contour is given

by
B{x s)|8 _
B{o,o,o; -
om (28)
fa . " [
xZ4y/2 (1 + 20 cosP_ + P )

2 2
X 2P P 2P
s l + * + = ll + = 5
1 y cos@s (7> 1 q CO @s

and at the midplane,




The aperture confining the beam of strong-
foensing AGS magnets is smaller than that of
constont-Ticld magnets. This may have a more sig-
niTicsnl influence on particle oscillations about
thelir equilibrium orbit. Also, the desire to
carry out several experiments requires that suffi-
cient space must be provided to move and share the
beam Lo various targets.

The pole chape which produces a constant field
gradient is hyperboliec, assuming the {lux leakage.
the side gaps providing spat= for the co’ls and the
colls themselves do not affect the field shape,
which 15 only & Jirst snd crude approximuiion.

llowever, most computations are still for two-
dimenclonal or axial symmetric poles. Two-
dimensional model studies with resistance paper,11l
with stainless steel plates and sheets,12 and three-
dimensional studies with electrolytic tanks, as w
well as actual reduced or full size magnets, are
almed to determine the final pole and core shape,
the forces on coils, and in the case of ac magnets,
the core losses and the heating of the pole edges
and ends.

Tield Profile for Iron Profiles with Finite
Permeability

The calculated values in Sections A and B do
not represent values of finite permeability.
Saturation in pole corners represents a shortening
of the iron path. As & first approximation we may
consider that the line of maximum field in the pole
corner penetrates uninterrupted in the iron. Con-
necting points of equal flux, we derive the flux
density and the permeability in iron, using the
magnetization curve. The direction of the field
line can be corrected from pexrmeability ratio, and
from Simpson's relation we obtain the average flux
densities as a function of penetration depths.
Using iterative methods, we finally derive the
final equipotential line corresponding to the
effective pole contour, shown in Fig. 7.

The contour line may be approximated by the
polygon

C.

a
n(t+t)Tt
z ﬁf at +Cc_ (30)
. )% 2
The field distribution is calculated froam
v v )é’
9,1, & _ o, (tB)7
By + 3B, = x t dz g o, /n (31)
! n(t+ti) 1

The evaluation of finite permeability is also
possible, using the model calculations discussed
in Section B. The maximum field in the pole con-
tour is obtained for any medium plane field dis-
trivution; acccrdingly, the pole may be shaped
such that pole corner saturation is avoided.

10

" ang essume that v(s)

‘medium plane.

Field Profile a% Fcle Entrance ond Exit

The pole end effects are lknowvn to be disturbing.
Due to iron savuraticn in corners, cffcetive
length of the magnet is reduced, and the f:cld N
index is changed due to varietion of S Ral e
and as & function of the flux density in iho &

In case of ac wagnets, the alter-
nating field gradient in the end parts causes
field disturbance and heating of the pele iron.
Pole end shaping has been performed by Argonne,
DCY, 3nd TLAC and a summary of these efforts is
viver briclly.

e consider magnets with mognetic guard plates
or mirrors. If the two pole end faccs arc per-
pendicular to the pole top surface, the same field
equations are valid, as dealt with in Section A,
for the xy plane. If we use the notation for ilhe
median plane

the

at the guard plate ls cmall,
we may work with an equivalent fringing field
tengtl, (Fig. 8a)

(32)

The effective length of the magnet is delincd os

g -
lorr =‘/ b(s) ds (33)
-4
The pole ends may be shaped in the ssme manner, as

discussed in Section A; however, at the pole cor-
ners at the intersection of the xy snd yz planen,

. the problem is three-dimensional snd an accuraic
“analytic expression cannot be glven presently.

At
the y, s plane with x=o, we discuss cases rcported
in 1it. cit:

blz The gap is opened according to the relationl?

L= cos h (5/g)

L (3h)

The field profile at the midplane ic cslculsted

to be
B(o,0,5) _ —omnfygy” ”
Blo,0,0) (1 +e 2) (z5)
and at the pole surface
Blo,jg,z) ~nofuy” (30)
Blo,0,0) (1+e )
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The flux density over the pole in the y,s plane is
constant. Figure 8b shows the field plot and the
pole contour at the median plane.

b : The magnet gap is formed according to the
relation® .

3 .
2 _
sy~ = 2 tan O (37)
The angle O is computed such tnat firld perturb.
ance at the intersection between straight and
t=pered pole sirfaces ie kept to 2 min_-m. .ue

field equation at the midplane is calculated to
be ~

Blo,0,8) _ =2 (38)

for -8 <s< +s8
1 2

In both cases, the end profile in the x-y plane
will be extended over the shaped pole end, as
shown in Fig. 8c. Comparisons of the field dis-
tribution for different cases are given in Fig. 3.

The length of the tapered pole part including
the region for the coil must be:

(39)

8,2 2 %an @
The advantage of this solution is that the

effective magnet length changes.proportionally

to the magnetization current.

E. Effect of Coils

In previous sections it was assumed that coils

were located far fram the gap, so that they do

not influence the pole fringing field. Actually,

the coils are located close to the gap and their

effect on the field pattern 1s not negligible.

The coil influence for quadrupole lenses is
treated by Blewettl* and Hardt.1© A simple
method of handling field superposition will be
given below for s quadrupole magnet.

Assuming the poles of the magnetic lens are
formed such that they produce a pure quadrupole
field in region A, the potential and flux equations
can be written as

v

2k, Xy (ko)

U= (k1)

The coil produces a hamogeneous field with the
potential and flux functions in the region B:

V=k
2Y

K (x2 - v2
J‘(x ¥®)

(k2)

U=%x

2

(43)

12

If the homogeneous field extends %o a point
X, on the ordinate (Fig. 9), the superposition of
the flux equation leads to
(4k)

22y _ _ R 2 _
kl(x y ) k2(x xo) klxO o

and the superposition of the potential functions
to

2k xy - ky = J(x) (hj)
Fram Bq. (%)
1
2
y = £f(x) = {%2 - xi - £ (x - xoi} (46)
1
or
ok 2 x \2
y2+(xo-5_§—> ( i) (¥7)
3 1 1

At a point P(xlyl) on the pole surface com-
mon to the guadrupoles and the hcmogeneous field
region, by using the relation

kz
=1 - =5~
2klxo
we get .
2
2 2 -
x =x 1-0 + X2 1-¢ 2_xl-yl s
o] 1 1-20¢ — {7y \l1-2¢ 1-2¢

The space distribution of current density in
the coils may be calculated from

Iuy) | xy [ Lo
bs

aklxlyl xlyl
The choice of x, is a matter of weighing the
guadrupole field against the homogeneous field.
This method can be extended to superposition
of guadrupole flelds with different strength,
gquadrupole and sextupole fields, etc.

50%y) (1- aj] (18)

IV. Magnet Design

In large-volume experimental magnets, the iron
functions not only as coil support, protection,
and to shunt the stray fileld around the megnet in
order that equipment may be placed close around
the magnet, but it also contributes markedly to
the field in the gap or bore produced by the coils.
A. Colls
In order to give a general idea on iron-bound
large experimental magnets, we treat a case of a
pair of Helmholz colls confined by iron, as shown
in Fig. 10.
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For pairs of axial symmetric Helmholz coils the coils
such as for bubble- and spark-chamber magnets, the )
axial field component fram the coils alone with P = 2782 pa’® (B-1) A ' 2
uniform current distribution may be calculated:15;16 ST 0 1 ( ) Bl + 52 (52)

_ }2__ g z /f . (h9) Fram Eqs. (50) and (52) we get the Fabry formula
(a- x)z]E % ‘
_ o (B
Hy, =G (a p) (53)
for the cmse illustrated in Fig. 9 wu intercate 1
Eq. (49):
' wit™ tr-: geameiry c. Fabry factor
2
2 B
- F
. 1 1,,(61;1)] ¢ - R (54)
HZA = —2— OS7\ 8‘1 (Bl~71) . ’F/n 04 % [(az-l)(ﬁl-i-ﬁz)]

1+ [l+(!31-7l)2]
The correct ratic B Bl > 1 must be found to

I achieve a certain field homogeneity to compensate
B 4y )2]) for the field due to the iron shell. However, for
1

1+ [1 + < 12 ee~h individual coll the well-known Fabry factors
+ (B+7) In |a o4 fcr constent current distribution can be used to
11 1 check ties optimum design of the magnet. Figure 11
1+ [1 + (B + )2] 2 gives a plot of G-factors for individusl symmet-
171 ric coils and uniform current density distribution
as function of @ end B. The field calculations in
1 any point in space may be cbtained fram lit. eit.l?
B -y \2 2 " The case of rectangular Helmholz pairs is
1+01 4 ( 2 2) treated by Grant;1® however, this work must be
.« dn o 2] ) extended for unequal coil sections.
1
]2 B. Core

The field contribution from iron core comes
% } from aligned dipoles in the iron crystals. If the

+ (ﬁ2-72)

l+lrl+(8-7)2
22

B+ 2 magnetic dipole m is oriented at an angle 8 Fig.
1401+ ( 2 72) to the z axis, the field camponents in cylindrical 12
a J coordinates arel® (Fig. 12): =

+ (Bewa) In a

=

1+ [l + (B2+72)2]

[(3 cos®p - 1) * cos 6 . (55)

t
n

(50) - 3+ sin® - cosy sine] . . dv
(x3)
m .
H,=Sa_ -F(5B8;8;7;7 )=
zA 1 1 T2’ 1t T2) 2
B. = [(3 gin®p - 1) « siné (56)
The relation between coil ampere-turns, . .
current density S, and space factor A 1is given -3 sing cosp * cos® (x3) *
by
INl ZIZI\T2 Assuming uniform magnetization in iron, the field
8 = = values are:
222 (0-1) A 2 (a-1) A
af (1) A B~ 287 (a-1) A B, Vs
(51) Bz = / l:(2z2 -~ 42) v cos8
N - v, (57
= Y-A-BM
2 -3z‘£-sin9]--————'d‘y
28’ (o-1) N( Bl+Be) [

for A, = Az =\, and with the same radial dimen-
sions for both coll sections, we get the power in
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v

2
B_ =/ [(z%-zz)- siné
v, (58)

. Y-AB-M(Y-cos V-r)
hrxSL

- 32‘& . cose] ay

The assumption of uniform fiel? distributiun
in iron leads to errors of the order of "2% to %,
For generul iron shape, by using the fielda dierri-
bution in spsce from the coil geometry, applying
the relation

tan 71 - uri

v Yy Myl

and using Ampere's law for the fHd'ﬂ, the magnet-
ization curve for the iron used, the actual mag-
netization in iron can be calculated for three-
dimensional iron geometry by successive
approximation.

Another approach currently under investigation
at SLAC is the solution of nonlinear quasi-Poisson
equations. We start with Maxwell's equation

v x (%-V b4 A) =85

or in expanded form
3 108\ 3 f1o0a
S \ndr Ty \ndy

+ g; (% g%) + 8(x,y,2) = o

where A = A(x,y,z) 1s the vector potentisl and
u = p(x,y,z) the permeability. To calculate the
field distribution in the core, magnetization
curves and values of relative permeability obtained-
from various measurements at CERN and SIAC, shown
in Fig. 13 and expressed in Eq. (60), are used to
calculate Eq. (59).

For

(59)

o< H< 700 At n™*

B=16.91 H

and
700 < H < 28 x 107

Y
B= —11988 3. (n)?

33-H
.

The differential Eq. (59) is approximated by
a8 difference equation by constructing a rectangulaer
mesh with values of A and ¢ in the intersections.
If the bar length between mesh points is h, we
have at a polnt P:

(60)

+ 1.243

18

1
ne
gé =A1‘Ao 5 B "h b
X h
P ho
- 3
- A‘-A
Y A
W X;P ‘-\"ul uo h
and

In the two-dimensional case (x,y) we may write for

Eg. (59)

&
A Z L,k -Zl+L A, - 2438 = A
o ui 1) K, i o residual

(¢) 1
1

As an example, the field distribution in the x,y,
plane of a bubble chamber with 2a=1.3 meters is cal-
culated with the camputor B5500 and shown in Fig. 1k,
The SLAC computor program "Nutcracker” is being used
for solutions of two-dimensional and axial symmetric
cases.

The convergence of a mesh containing variable
A 8nd p values is poor. If we consider one mesh

.as a system of finite difference equations, the

convergence is achieved with the knowledge of the
elgenvalues of the difference equation matrix. The
eigenvélues depend on the geometry and boundary
problem, and one may use Frankel's formula to
approximate principal eigenvalues:

1

. 1 2

w=2 -2 n° j; + ;% (61)
P g

thefe » is a céﬁvérgencéwfactbf‘énd p; gvthé"

numbers of nodes in the x,y direction.
The three-dimensional case can be solved by
using the notation

X- Ax(xzy’z) 1+ Ay(x:y,-z) 3 + AZ(X:Y;Z) ﬂ

> l > &+
UxH = Vx (5 VxA) = 8 (%,¥,2)
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In terms of gifference equations, the three 4
camponents of VxB are written in the form 8 N1 1

A = A ~+2L~+— (A' -A")

Z,res Z,0 | H

1 1

- B - 1
N EI Y T PO e I =
Sy |u ox udy | "%z |n "3z n &—xox,y,z)
| | & i) k)
" 3A 3] A 3A : 2 &8 E A
O |1z 1 3 11 NS
£ et B~ et I SR C R .
! ! ¥ 1 [ 2
. K -E-(A;/-Ay -l+hsZO
[ 2A a7l A A S Nt e
D le Tx 1 z2f 3 1 o -5 .
PR e el R |
- J -2Z(L+l~>A
TINRIRTIN B
[] i i

The residual potential function can be written
using the terminology in Fig. 15:

V. Magnet Coils

A = A 8_ + 2 jq 1 + L A' - A" The primary purpose of the coils is to provide
X,Tres Xs0 [ B et} o N enough smpere-turns to give the chosen magnetic
i=1 f1eid in the gap or working area. The splitting -
of the At in number of turns and current influ-
ences the size of the coil and, therefore, the
LY PORU I S FY I AN magnet overall dimenslons, the weight, and the
22 2 5 pover requirements.
Campact coils, with complicated two- and three-
dimensional shape and high current density need
A" )} - Ln3s better cooling provision, superior coil insulation,
4 X0 extensive and efficient cooling, and a thorough
study of stresses due to temperature gradient,
. current, and magnetic forces. Coils with a large
1 1 cross-sectional area and low current density lead -
-2 >— ( + ") Ax to large overall coil dimensions and thus to ex- -
' i pensive magnets. Due to limitations of manufac-
turers in producing long, hollow copper bars with
large cross sections, one must solve the problems
of joints, parallel cooling passage, and choice
of material. In many cases, the coil must be
' adjusted to the power supply ratings, and in the
A = A —+27-+L A - p" ca \ it 1
¥,res y,0 |1 ) z 2 se of large multi-megawatt magnets it is de-
1 1 sirable that power supplies could be shared between
. ; different magnets. From extensive studies, it
! ' ‘ seems feasible to keep the ‘applied voltage to the
1 " 1 " magnet terminals low, and design the magnet for a
= (A} - A - = A; - A high current. The high power density in the coil
2 3 3 + requires direct cooling. To keep the temperature
gradient in the coolant boundary layers down and
1 , " 2 to reduce frictional losses, the cooling media is
“h (A - AL ) - Syo in direct contact with the conductor. Present
: magnets with hollow conductors operate at a low
water speecd rate ¢f 3-10 m/sec with Reynolds
numbers > 2400. The flow is turbulent. Higher
(i_ + l.) A vater speeds, which may lead to copper erosion in
¥y case the water 1s in contact with air and for
which protective measurements prove to be im-
practical, should be avoided. Studies carried out
at CERN indicate that current densities of 600-
1000 A em™2 give the optimum magnet-power supply
system. This number may very well vary between
different high-energy laboratories in various
countries.
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In the design of magnet colls, the magnet de-
signer faces the choice between different conductor
materials, such as copper and copper alloys, alumi-
nun and its alloys, the type of coolant, and cool-
ing methods. In most magnets, high resistivity
water is preferred over gases, insulating ligquids,
and cryogenlc liquids for obvious reasons. Alumi-
num conductors can be obtained in very long length
and are econanically attractive, but most designers
prefer copper to aluminum due to power consumption,
even if the conductor length mvst be sacvif.ced.
Continuous leungths of hollcw copper conductors
with cross sectione up to 5 X 5 ~m™= may be -btairn
ed in lengths up to 50 meters, and in smaller
cross sections longer than 100 meters by a newly
developed continuous casting process.

Regarding cooling methods, direct cooling is
by far the most efficient. Square or rectangular
conductor with circular or square holes is used
extensively. With this type of cooling, a maximum
heat flux of 4 watts/cm2/°C has been achieved by
water passing through short lengths.1® In dc
magnets with a hydraulic circuit of more than 20
meters length and water speeds of 3-U meters a
modest heat flux of about 0.1 ... 0.5 W/cm2/°C ~an
be utilized.

For more compact coil designs edge cooling is
preferred, where the heat flux of 900 watts/cm®
has been achieved.®® Conductor discs with axial
or radial cooling holes are not used in high-energy
magnets. For coils with uniform current distribu-
tion, using rectangular hollow conductors, the
power density in the coil may be calculated from

- P (62)

w =
v Qnai (02-1) BA,

where Ay and A, are the insulation and the con-
ductor space factors, respectively. Using

the relation between wy and the power per unit
cooling area wg 1s given by

£+
>
=

-
w

—5 (63)
s [

4

with 4, as the hydraulic diameter.
Cambining Eqs. (62) and (63) we get for the
heat flux

4y l-?\c

W= .

s .
8ﬂai (a2-1) B Ki

)\2
c

w

Figure 16 illustrates the ratio g% versus
(402/5d@2 - 1) and the copper space factor. Fram
experience, the choice of wv/wB and A, are
gimple, which gives dn as a first espproximation.

22

The number of cooling holes per unit cross
section perpendicular to the flow direction is
obtained from: :

a6y Ki-fc-cgiég)%. (ES;Z) [em™2])

For a given pressure drop, the maximum current
density may be calculated from

(64)

) : 5 / A
= b (Lore)? ar'2 .
32— 2., \'ﬁ?%) . (i37;) l-ic (65)
c 0. . 2 (.32 w
b Ap-. d
SE:‘%—'(’SE-?) (&73>i (66)

Stresses on the conductors due to magnetic and
current forces and due to different thermal expan-
sizns metween adjacent turns may be mentioned.
Hovever, detailed calculations reported by differ-
ent sutusvs for iron core magnets with up to 30-kG
fields in the bore show that in most cases the
tensile strength in tX: conductor does not exceed

100 kgrem™2, which is still safe for half-hard

copper.‘gl However, winding half~hard copper con-
ductors into a coil may show undesired distortious
of the copper cross section and insulation damage.
A. Coil Insulation

Coil insulation can be regarded as the most
delicate and sensitive part of the whole magnet.

A sound conductor insulation guarantees the life-
time of the magnet. The insulation is subject to
electrical, thermal, and mechanical stresses and
ironization effect due to irradiation. In many
cases, due to water condensation on coil surfaces,
close to the water inlet manifolds, or leaks

through joints, the insulation absorbs water and

the insulation resistance and the dielectric
strength are reduced considerably.22

The aim of suitable coil insulation is to pro-
vide a reliable product that will perform its in- —
tended functions within the environmental condi-
tions in which the magnet must operate. With the
advancement of technology in high-energy accelera-
tors, the demands on insulation have been increas-
ing constantly. From simple cotton shellac insula-
tion in the early magnets, modern accelerator
magnets use high tensile strength, glass fiber
reinforced thermosettings with additional mica and
inorgenic fillers.

If only high mechanical strength and moderate
electrical stress in dry areas is required, glass
fiber and high flexural strength epoxies may be
sufficient. When magnets are subject to moisture
and water vapor, protective coatings, or epoxy-
impregnated polyester-web and mica may be used
additionally in the ground insulation.

In & high irradiation environment (> 10™* rads),
high purity inorganic fillers are added to a suit-
able thermoset.23 Highly filled epoxies show more
affinity toward moisture absorbtion and their
protection is more important. The water absorbtion
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is enhanced when the ilonization due to irradiation
is continuous. Filled epoxies lose mechanical
strength, but the right balance between radiation
resistance and loss in mechanical and electrical
strength and the addition of suitable wetting
agents has to be studied carefully for each in-
dividual case. Needless to say, the manufacturing
problems with these new filled thermosete are
increased many-fold, compared to pure epoxy im-
pregnants, and require new and better monrfachtur-
ing techniques and studies of pot life, v.scosity,
wetting characteristics of the ther oset.

B.

Magnet Core and Choice of Steel

In the design of high-energy magnets there is
a distinct difference in the choice of steel for
the ac accelerator magnets and the magnets for de
operation, such as beam transport and experimental
magnets. Since several magnets may be powered by
one power supply, it is required that the fields
in the gap of each individual magnet should be
within 1072 to 10™> of each other. Variations of
the iron properties within a core or from differ-
ent heats are required to be a minimum.

The ac magnets require low remanence fields
and low coercive force in order to eliminate, if
possible, the use of degaussing coils. It is also
required that uy should be high at low flux
densities.

In ac magnets, due to the effect of eddy cur-
rent and hysteresis losses, the choice of 1-3%
silicon steel is preferred 24525 gyer low carbon
steels.

In alternating-gradient magnets with variable
gaps the variation of permeability does influence
the field in the gap. At high fields with per-
meability values of less than 100, the field
gradient may be reduced by several percent. At
low fields of less than 103 gauss the relative
permeability may vary up to 28%, which influences
the field in the midplane by about 1.5%.

Local heating in the core and nonuniform
pressing of the core stack has undesirable effects
on the permeability and the field distribution in
the gap. In order to avoid local heating in bolts,
and additional losses due to bolt holes, the 0.1°
SLAC deflection magnet core has ommited all bolts.
The core was pressed by an hydraulic press, welded
at the external surfaces, and impregnated with
epoxy.6 The welding was performed such that iron
crystal distortion and sheet unduletion, which
leads to nonuniform pressing in local spots and

“@ay ruin the properties of the iron,26 were elim-
inated. Needless to say, undulation and nonuni-
form pressing also influence the mechanical toler-
ances of the gap.

Grain-oriented sheets, which have excellent
magnetic and mechanical properties, can not be
used due to the two-dimensional sheet structure.
If the grain and flux directions are not parallel,
the flux density in iron at a constant excitin
magnetization force can change by more than 15%
as a function of the deviation angle between flux
and the rolling direction.2”

Hot rolled and cold reduced sheets with low
loss factors and coercive force less than one are
available commercially asnd have been used in
accelerator magnets.1®

24

Magnetization and permeability curves for dif-
ferent sheets manufactured from different ingots
are given in Fig. 13. The curves are measurements
of 10 samples and show the variation of relative
permeability of different samples at 1 ocersted to
be about 28% and at 3.12 cersted about 20%.

The coercive force, which varied for the dif-
ferent samples measured, is '

1.602 + 0,763
- 0.577

In order to reduce the coercive force, many labor-
atories specify the annealing of sheets in an

N H2 atmosphere even if hot rolled sheets are used,
which can result in a reduction of coercive force
by more than 50%.

In high frequency magnets high flux density
cores operating at 60 cps or higher (360 cps at
SIAC) are subject to compression and relaxing
forces, which are variable over the core due to
different core saturations. The hammering effect
ac~elerates the core fatigue, and the magnetic
properties may deteriorate within the lifetime of
the magrnet. The compromise in chosing low flux
density in iron to improve relisbility, the magnet
price, and space limitation is again a problem
each laboratory has to cope with.

In dc magnet cores the effect of small amounts
of impurities in the form of nonferro-magnetic
materials, gas channels, voids, cracks, etc., has
been investigated by various authors.®® Forged
steel 1s usually preferred over cast steel, even
if the price of forgings is slightly higher. In
poles, due to the high hamogeneity requirements -
in the gap, exceedingly pure steels ar2 preferred. ’
In yokes, a compramise in choice of less expensive
steels is permissible. The alloying elements in
the steel form compounds, which are deposited in
steel crystal boundaries or as grains in pure iron.
Hedin® derives relations for macroscopic flux
density and field strength in a structure with
nonmagnetic campounds occupying p parts per weight
of the pure iron. His conclusions, which are in
agreement with measurements carried out by CERN
and BNL, show that for a total amount of 2 parts
per weight impurities, carbon has by far the
strongest influence. Next important elements are
Al, Mo, S and P, which have a detrimental effect
on magnetic properties. The third group of
elements are Mn, Ni, Cr, Cu and 5i.

However, many of these elements are required
for forgiung or casting reasons; Al and 8i, for
example, are used to reduce gas bubbles in the
cast. Impurities have a tendency to agglamerate
in the top part of the ingot. SLAC specified that
about 1/3 of the value should be cut off and re-
moved, which results in a fairly pure steel struc-
ture. Depending on the source of the ore, wide
tolerances on the impurity campositions may be
allowed, but the total smount of impurities must
be limited.

SIAC specifies for dc magnet steels:

C max, 0.1.+.0.12 p.p.Wo
Total A1 + Mo + S + P max. 0.1 PPV
Total Mn + Ni + Cr + Cu + Si max. 0.7 PPV
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Lowering the carbon content leads to & very soft
steel structure which 1s undesirable in core manu-
facturing to attain close gap tolerances and is
expensive.

VI. Conclusion

The design of electromagnets for high-energy
physics applications has undergone considerasble
improvement in recent years. However, due to many
conflicting requirements in every magnet, the
proper evaluation and balance of the differenc
parameters is the paramount problem of +the ma:net
designer. With the growth of ihe nigh-energy
accelerators the need for large magnets 1s still
growing. Bubble chamber and spark chamber magnets
with 2a, = 2 - 5 meters bore are presently under
construction. Large bore magnets (2a, =1 - 2
meter) with fields more than 100 kG are under
investigation. However, the power consumption of
such dc magnets (60-200 MW) with water cooling
seems econocmically unsound, and possibilities for
pulsed and superconducting magnets seem feasible.
Iron-bound high field magnets are still attractive.
They contribute up to 16% to the fields generated
by the coil ampere~turns in high field magnets.

In many asreas the classical coil design with hollow
conductors may be sbundant for more efficient
magnets with higher values of heat flux, w, . To
make better use of the iron in cambination with
coils, a thorough understanding of the flux pattern
in iron is necessary. A program calculating two-
dimensional potential problems has been developed;
however, three-dimensional potential problems are
still in the investigation stage. Matching field
shapes to particle optics is also one of the im-
portant problems and deserves more thorough study.
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