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ABSTRACT

Some effects of inelastic channels on elastic partial wave amplitudes
are discussed. A L~vinson's theorem for hoth the real part of the phase
shift and the total phase of tho elastic amplitude is derived. The CDD
singularities required to make the elastic amplitude calculated by single
channel inelastic N/D equations agree with the many cheannel calculation
without CDD singularities are fully characterized in both the 1 and R
methods. Finally, a simple explanation ofimultiple resonance poles on
different Riemann Sheets of the amplitude isigiven in terms of the

analyticity properties of 7.



I. INTRODUCTION

In this paper we study some of the effects of the presence of inelastic

channels on the properties of elastic partial wave amplitudes, and also how

the N/D equations are affected by these =daditicnei channels. In particular,

we consider the following subjects:

1.

Levinson's Theorem. In the absence of inelastic channels the change

ol' the phase shift between threshold and infinite energy is related
to the number of bound statesl(i). With the assumptions that the
amplitude is analytic in the amgular momentum 2 and tends to zero
for large values of {q we derive a Levinson's theorem for the real
part of the phase shift and for the total phase of the amplitude.
The Levinson's theorem for the real part of the phase shift B
involves, as usual, the number of bound states, but also depends
upon the number of zeros of the S-matrix that retreat through the
inelastic cut as the angular momentum becomes large. These zeros
correspond to the presence of inelastic resonances (2). The
Levinson's theorem for the total phase @ is found to depend upon

the number of bound states and the number of zeros of the amplitude

that retreat through the inelastic cut as the angular momentum
becomes large.

CDD Singularities. Several methods have been suggested for the

inclusion of inelastic effects in the partial wave dispersion re-
lations for the elastic amplitude A (3-5). In these methods the
input information consists not only of the discontinuity across the

left-hand cut but also of another function used to describe the
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presence of inelastic channels. We discuss here what CDD (6) singu-
larities must be added to the N/D equations for two of these methods
in order to make the single channel calculation agree with a many-
cnennel N/D calculatica (7).

In the first single-channel method that we discuss, the D-function
has the phase -B; this gives rise to the Frye-Warnock equations (2).
In the second method, D is required to have the phase -¢ and the
resulting equations are those of Chew and Mandelstam (k4).

Rather than solve these methods explicitly and compare them with
the matrix N/D method, we exploit the fact that at large 4 both
methods agree with the matrix N/D result without CDD poles. What-
ever CDD singularities are required then emerge from the inelastic
cuts when the angular momentum is analytically continued to lower
values.

Multiple Resonance Poles. In the presence of inelastic channels,

there are generally many poles on different sheets of the amplitude
associated with a given resonance as has been discussed by many
authors (Q). These poles become particularly important in the physi-
cal manifestation of the resonance if its position is near the
threshold of one of the inelastic channels. A discussion of the

-20
analytic properties of the function 7 = e I, where © is the

I
imaginary part of the phase shift, leads to a simple understanding
of the presence of these multiple poles, which does not depend on an

expansion of the amplitude near threshold or a restriction to two~-

particle inelastic channels.
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II. THE ELASTIC AMPLITUDE

In the absence of inelasticity only one real function of energy is needed
to specily the partial-wave elastic scattering amplitude A(s). This is the
phase shift.. “hen inel stic charaels are p»esent, kowever, two real func-
tions will be needed. These two functions can be introduced in several ways.
Two ways, which we shall consider in some detail, are:
ezib _ 21¢p

1 e - 1

=1 =
A 515 SIeR (2.1)

where &, 7, @ and R are functions of the energy and angular momentum and

are real above the elastic threshold. The function &(s) is the real part
of the phase shift, ¢(s) is the total phase of the amplitude A(s), and p(s) is
the phase space factor. The functions R and 1 can be related to the
inclastic cross sccetion Gin in a given partial wave by the formulae:

R=1+a0a, /o

in’ el

)

0. g< -
1nq

n° = 1 - ——rr
(28 + 1)n

Here 9.1 is the elastic cross section, g is tue center-of-mass momentum,
and 4 1is the angular momentum.

We assume that the amplitude A(s) has the familiar analyticity pro-
perties in s: it is real analytic with a left-hand cut, and a right-hand
cut beginning at sl. Inelastic thresholds will be denoted by S5 with

5, <8, <8, e The only other singularities are the bound-state poles.



Some useful relation between 1, R and the amplitude above and below the

cul are summarized in Table I. We also assume that A(d,s) is an analytic

function of the angular momentum L.

III. LEVINSON'S THEOREM FOR THE REAL PART OF THE PHASE SHIFT
AND THE TOTAL FHASE OF THE AMPLITUDE

It will be valuable for our consideration oif the N/D equations in the

next section as well as of interest for its own sake to derive & levinson's

theorem for the phases © and ¢ (i). We shall assume in this section only

the analyticity properties mentioned in Section II and the following:

a. A(d,s) >0 as s —»» so that S(d,s) 1 as s —o
v. A(d,s) =0 as L - for all energies except possibly at the
branch points. Therefore, S(£,s) =1 as £ —w.
c. The discontinuity across the left-hand cut is finite. .
d. For sufficiently large 4 there are no poles or zeros of S({gs) for
any s.
Since 8 carries the phase 25 on the right-hand cut, we obtain an expres-
gion for the change in ® Dbetween s = s and s = » Dby considering the

1

contour integral of the logarithmic derivative of S:

I= J as' g—(é-?-yl = 2ni(Ny-Ny) (3.1)
C

where the contour C is shown in Fig. 1. The integers N and N

0 B are

the number of zeros and poles of S respectively.’

These zeros and poles of S may be classified by their behavior as the

angular momentum £ is varied. At iarge £ the S matrix approaches 1 for

all energies and no zeros or poles are present on the physical sheet. As
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[ is decreased, zeros can emerge frcm the left-hand cut or the right-hand
cutb.

On the sheet that is reached by going through the elastic cut there will
be a pole corresponding to each zero on the physical sheet (this follows from
elastic uritarity). Thkose poles which retre=i tryough the left-hand cut on
this sheet as 4 becomes large are called elastic resonance poles and those
which retreat through the right-hand cut are called inelastic resonance
poles (2).

As 4 1is decreased, some of the poles on the second sheet may move onto
the first sheet to become bound states (the corresponding zero moves onto the
second sheet at the same time). The classification of the poles into inelas-
tic and elastic resonances may thus be extended to a classification of the
" bound states as elastic bound states or inelastic bound states.

We denote the number of inelastic and elastic bound states by N and

IB

NFB respectively. Thus

N, =N__ +N (3.2)

Inelastic or elastic resonance poles always occur in complex conjugate pairs
(g) so that for each bound state'pole there exists a companion resonance pole
located on the real energy axis below threshold on the second sheet. We de-
| note by 2NI the number of inelastic resonance poles that are not companions
for inelastic bound state poles. In a similar way the number of elastic

resonance poles that are not companions to elastic bound states will be de-

noted by 2NE. Since every zero of S on the first sheet corresponds to a
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pole on the second sheet, the total number of zeros is
Ny = 2Ny + 2N_ + N + N (3.3)

We now return to an evaluation of Eq. (3.1). Following closely at this

poirs the development given b Iwa (;9), w2 note thew the integrals over the

+ {ns|c , - (3.4)

where CI and CR are contours around the left-hand and right-hand cuts.

The first term on the right side of Eg. (3.4) can be evaluated in terms of

the change in the phase shift:

Ins|, = bi[8(=) - 8(s )] . (3.5)
CR 1

In order to evaluate the term {nSlC it is convenient to begin at
L

high angular momentum, £ —-® . 1In this limit, it follows from assumption

(b) that 4dns|, = 0.
‘L
We now continue S to lower values of 4. Since the left-hand cut has
a finite discontinuity [assumption (c)], no poles can emerge from the left-

hand cut. The integral around C, in Eg. (3.1) thus changes by 2xi every

+ime a zero crosses the contour and we can write

£ns|CL = 2niny | (3.6)

where Ng is the number of zeros that emerge from the left-hand cut as L

is decreased. But Ng is just the number of elastic resonance poles plus
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those poles which have become elastic bound states so we have
NIO‘ = 2(N + N (3-7)

Combining Egs. (3.1) — (3.7}, we have the Levinsor's theorem for the real

part of the phase shift

8(s,) - (=) = n(Ngy - M) - (3.8)

If there are no inelastic channels, the second term is absent and the
usual Ievinson's theorem holds. As we see [rom Eq. (3.8), the presence of
inelastic channels modifies ILevinson's theorem by an amount -ﬂNI, where
NI is the number of inelastic resonances.

In an analogous manner, we can derive a Ievinson's theorem for the total

phase @ of the amplitude A. We define the contour integral I by:

- a t(g? -
I =j ds' %_éf;_)l = Eni(NO - NB) s (3.9)
c

where NB represents the number of bound state poles and ﬁb is the num- B

ber of zeros of A. The contour € is the same as in Fig. 1 and we write,

as before,

'I'=&1A,CR+&LAICL : (3.10)

Here we have

tna| . = 2ilo(=) - 9(s)] - (3.11)
CR 1
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We shall also sssume that under some variation of' the angular momentum or
coupling strengths, the zeros and poles of A will emerge from the right-
hand or left-hand cuts of A. As before, we shall suppose that no poles
of A will emerge from the left-hard cut. Thus we may write

Lna| | = 2l (3.12)

CL 0

where ﬁg is the number of zeros of A associated with the left-hand cut.
It ﬁg is the number of zeros of A on the physical sheet which came from

the right-hand cut, we have T, = ﬁg + ﬁg and deurce that?
o(s,) - o(=) = n(uy - T . (3.13)

The physical interpretation of Eq. (3.13) is less direct than that of
Eg. (3.8) since the number or zeros of A is not closely linked with the

number of resonances or bound states.

Iv. (DD SINGULARITIES IN INELASTIC N/D METHODS

In this section we consiaer the problem of solving a set of single
channel N/D equations for the elastic amplitude A(s). Our goal is to clari-
fy and to compare the role of CDD singularities (singularities of D which
are not singularities of the amplitude) for the D functions defined in two
ways of formulating this problem. What we discuss here is not the CDD singu-
larities associated with elementary particles. Our concern is rather with
those CDD singularities that must be introduced into a single channel calcu-

lation of A 1in order to make it agree with the more complete method of
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incorporating inclastic states by means of the matrix N/D technigue (9).

The two methods we consider are distinguished by the way in which D

is defined. In both methods for the cases we study D can be defined such that:

a. D(s) 1is an analytic function of s with a right-hand cut and pos-~
sibl§ CDD singularities;
b. D(s) -1 as s — o
c. the zeros of D(s) are in one-to-one correspondence with the bound
states of A(s).\
In order to complete the definition we give the phase of D on the right-.
hand cut.  In the method we shall call the 7 method, Dﬂ has the phase
-5(s) on the right-hand cut (3); in the method we shall call the R

method, D, has the phase -@(s) on the right-hand cut (4). We shall dis-

R
tinguish the functions employed in the two methods by the subscripts 1q
and R. The relationships between the S-matrix and N and D defined
by these requirements are given in Table II. For a derivation and
discussion of the integral equations that result from these definitions we
refer the reader to the original papers of Frye and Warnock (3) (the
method) and Chew and Mandelstem (4) (the R method). The equations that
relate D to N are given in Table II.

As avbasis for our discussion of CDD singularities, we may imagine the
following procedure:

1. The matrix N/D equations are solved without CDD poles;

2. From this solution the functions R and 17 are computed;

3. The single channel N/D equations employing the R and n methods

are then solved.

We then ask when CDD singulerities must be included in these methods to
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meke the single channel calculations agree with A(s) calculated by
the matrix N/D method.

It is more convenient, however, to adopt a procedure that from the
beginning assumes and exploits the analyticity of the amplitude in the
angular momentum. At laige 4 we shall assumz +12t the amplitude is

tending to zero. An examination of ¥q. (2.L1) reveals

5(s) -0
(4.1a)
n(s) »1 .

IT we further assume that the imaginary part of A tends to zero faster

than the real part,” we have also

o(s) -0 . (4.1p)

Only the first assumption will be used in our discussion of the 17 method
while the more restrictive second assumption will be employed when the R
method is considered.

As a consequence of Eq. (4.1) the phase differences 6(s1) - 5(x) and

@(sl) - o(w) vanish at large 4 and D functions satisfying requirements

a — ¢ may be written as

o
o]
—N
117}
e’
i
g
1
Sy
0
}_J
Q\\38
o
on
Re]
1 {n




where we put @(x) = 8(x) = 0. These D functions have no CDD singulari-
ties and we conciude that with our assumptions about the force no CDD
singularities are required at large {4 in either method.

We shall now analyticelly contihue these D functions to lower values
of {5 any necessary DD singuiarities will then emerge from the cuts in
the problem. This is equivalent to the procedure outlined above because
the many channel N/D equgtions give solutions that are analytic in L ir
the force is; The many channel N/D equations also do not require CDD poles
as 4 is decreased. We shall see that although a close analogy exists
between the n and R methods, the presence of CND singularities in one

method does not imply their occurrence in the other.

A. The R-Method

We shall now examine what happens to DR as 4 is decreased. Zeros

or poles can emerge from the cut of DR as 4 is decreased, but no other
form of singularity, since otherwise the amplitude would not have the as-

sumed analyticity in the energy variable. The zeros of DR which emerge

are bound state poles of the amplitude. The emergence of a pole or zero

in DR will correspond to a logarithmic singularity in the phasé ® and

the contour integral over ¢ in Eg. (4.2) will have to be distorted. As
long as the distorted contour is not dragged to infinity, that is, as long

as the emerging pole or zero of D remains at a finite point of the energy

R

plane, DR will maintain its normalization to one as s —« . This enables

us to exploit the Levinson's theorem for ¢, Eq. (3.13). Setting o¢(») = 0,

we have
®(s ) = (1, - ) (4.3)
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Near s = sl we have
o© —]
' N-N'R
exp | - % \/ﬁds' E$£§—% — const (s—sl) B0 (. 4)
s
i

Now since DR is generally finite and non-zero at s = sl, the only form

for D consistent with the asymptotic property (b) is

( )( )ﬁg R (s")
s )(s-s 1 '
° SBl ° - . exp - — fds' ii_—

Sty 1=t o

W= S

(.5)
. NB

; l(s—sPJ.)(s—sl)

where SBi indicates the location of bound states and SPi the location

of poles of DR' There are thus ﬁg CDD poles and the emergence of CDD

poles in DR is concommitant with the emergence of zeros from the right-

hand? cut of the amplitude A. This, in turn, means that N can have no
CDD poles at Spy since then A would be non-zerc at these points.

We now demonstrate that the CDD poles, which have been shown to cor-
respond Lo zeros of the amplitude which emerge from the right-hand cut,
must, emerge from the inelastic part of the cut. First we show that such

zéros of the amplitude cannot come from the elastic cut. On the elastic

cut we can write

(4.6)

!JUU+ Ibdbl

where the "+" and "-" refer to above and below the cut.
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Suppose we are at large {4 where no CDD poles (i.e., zeros of the amplitude)
have come onto the physical sheet. if an emerging CDD pole is on the sheet

reached by going through the elastic cut, then we may contimue Eq. (4.6)
+
R

S to be one at this point and the amplitude vanish, DR must also have a

pole at the same position. The function D_, however, is now evaluated in

downward into the complex s-plane uatil D, lLas a pole. But in order for

the lower-half s-plane and this éontradicts our assumption that there are
no CDD poles on the phyéical sheet. Thus no CDD poles can come from the
elastic cut.

To see that poles can consistently emerge from the inelastic right-hand

cut we consider the following expression for 8 evaluated above the inelas-

tic threshold:

1 D% -
S+ =1 + - '—+— - (M.?)
R DR

Again we consider large {2 where no CDD poles have yet emerged onto the
physical sheet. We now continue downward from the real energy axis through

an inelastic cut in order to locate a CDD pole. Since

-, (8

R will also have a pole at the location of the CDD pole on this second
inelastic sheet. So we see from Eg. (4.7) that S =1 at the CDD pole

as it should.

We may, in fact, also see the emergence of the CDD pole directly from
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the dispersion equation for DR:

DR(S) -1 __i_ fds' p(s R(s"N(s') (5.9)
81

s! - s

As we have already noted, the oc-~urrence of a CD® pols in the D-function
does not result in a corresponding CDD pole in the N-function, so from
Eq. (4.7) we see that a pole of R crossing the real éxis distorts the
contour of the integral and gives rise to a pole in DR. This again de-
monstrates why the pole must come from the inelastic cut as R is one at

all points on the elastic cut.

B. The 1 Method

In the 7 method as 1 is decreased, singularities of Dﬂ as given
by Eq. (4.1) may emerge from the right-hand cut. In contrast to the R
method, singularities other than poles may emerge from the inelastic part
of the cut because in the n method, the N-function, Nﬂ’ also carries an
inelastic right-hand cut. From the inelastic cut of Nﬂ’ cancelling singu-
larities may arise leaving the cut plane analyticity of the full amplitude
A = N/D intact. We shall find, in fact, that generally both Dn and Nﬂ
have branch-point singularities emerging from the inelastic cut.

As in the R method the poles, zeros or other singularities of Dn will
arise from singularities in © which distort the contour integral over &
in Eq. (4.2). If these distorting singularities do not move off to infinity
the normalization of Dﬂ to unity at infinite energies is preserved. The
emergence of these singularities of 8 generally give rise to a change in

the phase shift difference [5(51) - 8(w)]. By Levinson's theorem for &,
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Eq. (3.8), this phase shift difference is, in turn, related to the number
of bound states and inelastic resonances. The bound states correspond to
the emergence of zeros of Dﬂ wheréas the inelastic resonances come from
zeros of S that migrate onto the physical ohcel from the inelastic cut.
These zeros of S give rise to cuts in Dﬂ as we shall now demonstrate.

We recall the relation
S S = '(]2 y ()4--10)

which applies along the inelastic cut where the "+" and "-"

subscripts as
before refer to above and below the cut. At large {4 we may continue

Eq. (4.10) down into the complex energy-plane to find a zero of §_ at

5 = sV. At this point, S_ must be non-zero and finite since it is evalu-
ated on the physical sheet where the boundary condition § —1, L —w e

applies. Thus as s = s

v
S (s - sv)
. (4.11)
~ - 2 }
n~ (s - sy)
We may also employ the relation
.
D
n -
to see that
+ -3 '
~ - T
Dy~ (s - sy) (4.13)
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since D;, which is evaluated at the corresponding point in the lower-half
eneryy plane of the physical sheet, must be near one in this limit of large

L. as 4L is decreased this inverse-square root singularity of Dﬂ at

s = SV and a corresponding branch point at the mirrored position s = s

*
Vv

may move ontc the physical sheet, corresponding +o & pair of zeros of S
migrating onto the physical sheet from the inelastic cut.
It is clear that Nﬂ must cancel the branch point in D at s = sV

since S has just a simple zero at this point. This fact can also be seen

directly from the relation

nD- - DfL
N = ——7 . (4.1h)
2ip
A detailed examination of the question of analytically continuing the inte-
gral equation for Nﬂ in 4 1is given in Ref. (2).

We emphasize here that the CDD: requirements in the R and 1 methods
are generally quite different. As we have seen, CDD poles in the R
method are associated with zeros of the amplitude that emerge onto the
physical sheet from the inelastic cut. In the n method, CDD singulari-
ties become regquired when éeros of S come ontoc the physical sheet from
the inelastic cut. In the 7 method, there is a simple physical criterion
for CDD poles, since the emerging zeros of S correspond to inelastic
resonance poles being fed into the second elastic sheet of the amplitude.

The requirement of CDD poles in the R method, on the other hand, appears

to have no simple connection with poles in the amplitude.
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V. DPROPERTIES OF n AND MULTIPLE RESONANCE POLES

Recently, it hés been emphssized by many authors that resonance poles
in the scattering amplitude do not occﬁr singly (é). A given resonance
will generally manifest itself as a pole on manleiemann sheets of the ampli-
tude. Thue if one increases the éngular monen cum (or decreases the all-over
coupling strength), a resonance that progresses through a threshold during
this process will have different poles producing the "bump" in the cross
section, depending upon whether the resonance energy is above or below the
threshold.

We shall show here that these many poles assoclated with a given reso-
nance have a simple interpretation in terms of the analyticity properties
of 7. The discussion that we give here frees one from the need to discuss
threshold expansions and also is not restricted to two-body inelastic channels.
A discussion of multiple resonance poles without using threshold expansions -
has also been given by Eden and Taylor (8).

Although we have not explicitly considered the fact up to now, actually
there are n different analytic functions 7 where n is the number of
channels. We shall write 0y to represent the function that is appropriatg
in Bq. (2.1) between the 1°® and (1+1)%% thresholds. Thus n =1, The
functions 1, are real between the 1% ang (i+l)St thresholds but will

generally be complex if continued to other regions. Let us suppose a reso-

is present on the second elastic sheet, that is, the

nance pole at By

sheet reached from a point P on the physical sheet by continuing down
through the elastic physical region as shown in Fig. 2. The various
Riemann sheets that are adjacent to the physical region are labelled

in Fig. 2 as Rl, Ra’ +ee » The resonance pole we are considering is on
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sheet Rl. We may now write
i.d
S (5.1)

where Si denotes S evaluated slightly above the real axis between the
4.- F
i ana (1+l)St thresholds. By aualyuvicaliy vomincing Eg. (5.1) down to

the point s = Syr We find as in Sec. IV that Sf has a simple zero at

2

= ] - ~ .2

n; = const (s sV) s ~ 8 (5.2)
Now we imagine the coupling between the channels 2, 3, ... i and

channel 1 being gradually and analytically switched off. During this pro-

cess the function ni must approach unity at all points. Thus ni must

P P

just described in order for ni to approach unity. That is,

have a pole at some point s = s where st —*sV during the decoupling

V_
nf = ——<ns (5-3)
s - 85
where ﬁ? is neither singular nor zero at sV and s;.

Continuing Eq. (5.1) down to the point s = s;, we find that Si will
hé#era pole there since Si, which is now evaluated on the physical sheet,

should be non-singular at this point. Thus the existence of a pole in the

i
P

on the sheets Ri' There are in addition, of course, mirror image pcles to

amplitude on sheet R of Fig. 2 leads to the presence of poles at s = s
1

all of these just discussed on Riemann sheets reached by analytically
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continuing upward from below the physical cut.
We can, of course, invert the above argument. That is, a pole on the

sheet Ri for i >1 gives rise to a pole of n?. From this we conclude

i

that there must be a zero of ni at 5 = 5, Since SiS

S+ ¢r S_. Iun either event it can be shown

= n?, the zero
at s = SV may either occur iu
that n poles occur on n different sueets of -the amplitude,’not including
the mirror image poles.5

These poles associatéd with a given resonance are just those discussed

recently by a number of authors (8). By making use of threshold expansions

they have been able to show that if s; 1is close to the threshold (i+l)

i+1
then s;+ is also near this threshold. The existence of these poles, as

we have seen, follows simply from the analyticity properties of 7.

VI. CONCLUSION

Much information is contained in the assumption that the scattering am-
plitude is an analytic function of the angular momentum £. By meking use
of this analyticity, we havé been able to connect by analytic continuation
the region of high {, where properties of the amplitude are generally
simple, to regions of lower {9 where resonances and bound states may occur. -
By meking use of this connection between high and low {q‘we have beeﬁ able
ﬁo deduce Levinson's theorems for the réal part of the phase shift and for
the total phase of the scattering amplitude. The number of multiples of =
by which the real part of the phase shift changes between threshold and
infinite energy is equal to the number of elastic bound states minus the
number of inelastic resonance poles which are not companions of inelastic

bound states. The number of multiples of =x by which the total phase of
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the scattering amplitude changes between threshold and infinite energy is
cquial Lo the number of bound states minus the number of zeros of the ampli-
tude that emerge through its right-hand cut.

With reasonable assumptions about the forces, we have been able to give
a complete analysis of CDD singularities that are required in the R and
the 7n N/D methods in order to meke tleir soluticns agrze with those of
the matrix N/D method.  In the R metnuod CLD poles -re 1eguired whenever
there is a zero of the amplitude on its physical sheet that retreats through
the right-hand cut at large L. 1In the n method CDD singularities are
required whenever there is a zero of the S-matrix on its physical sheet that
retreats throwh the right-hand cut at large 4. 1a the R method the
CDD singularities are poles, but the criteria for theoe poles is difficult
to state in physical terms. In the 7 method the CDD singularities are
usually branch points; however, the locations of these singularities have a
simple interpretation as the positions of inelastic resonances (2).

Finally, by assuming analyticity in the interchannel coupling strengths,
we have demonstrated in a simple way the existence of many poles on differ-

ent Riemann shects of the amplitude all corresponding to one resonance.

Note Added: After this work was completed we berame aware of a paper
by J. Finkelstein, Phys. Rev. 140, B11l (1965) where criteria similar to

ours for CDD poles in the R method are cbtained.
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FOOTNOTES

This 1is strictly correct in potential theory or when the amplitude is
computed by the N/D method with no CDD poles.

If some of the zeros that come from the left-hend cut move off the
physical sheet tk—ougi. tone righﬁ-hand cu:, By- {3.13) must be modified
accordingly.

Thus we exclude here a problem in which the elastic force Bll ‘is identi-
cally zero. For such a Bll the following conclusionﬁ sbout the number
of CDD poles at large 4 are not valid since in the absence of CDD polee
the amplitude Al:L obtained frum the single channel R method equations
would be identically zero.

The emergence of zeros of A from its left-hand cut corresponds to

zeros of N.

The poles comsidered here are on the sheets adjacent to the physical
region and are, therefore, the most important for the physical manifes-
tation of a resonance. There are, in addition, other correlated poles on
more distant sheets of the S-matrix. These poles are discussed by Eden

and Taylor (8).
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TABLE I

- " R
2i8 1 2ip - 1
A+=ﬂ§.__'__:__ A.|."e
2ip 2ipR
2ip - 1
__2id | _ o2+
S, =ne S, =1+ A
2 1 1
T o= S5,5_ R = T-s, T 5

Relations between R, n and the analytically continued amplitude A(s)
and S-matrix (S = 1 + 2ipA). A "+" subscript denotes an energy just
gbove the real axis and a "-" subscript denotes an energy just below

the axis.



TABLE II

n-Method R-Method
+,_+ +,_+
= A WA
A, Nn/Dn RN
- + - +
+ nD1 - D'I + DR N DR
N = NR =
l 2ip 2ipR
- -+
g = = + -
. an/Dn 5, =1 l/R(DR/DR 1)

n(s)

]

1 2p(s')ReN(s') .
ot [y e | o

. ;l? fds. o(s'%l;(s')N(s') |

- 8

& comparison of the R and 1 methods for including inelasticity in the single

channel N/D method.
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