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ABSTRACT 

I 

Some effects of inelastic channels on elastic partial wave amplitudes 

are discussed. A Lmvinson's <heorem fo: both the real part of the phase 

shift and the total phase of thz ela;+ic aml;lituie is derived. The CDD 

singularities required to make the elastic amplitude calculated by single 

channel inelastic N/D equations agree with the many channel calculation 

without CDD singuiarities are fully characterized in both the 7 and R 

methods. Finally, a simple explanation of multiple resonance poles on 

different Riemann Sheets of the amplitude is given in-terms of the 

analyticity properties of rj. 
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I. INTRODUCTION 

In this paper we study some of the effects of the presence of inelastic 

channels on the properties of elastic partial wave amplitudes, and also how 

the N/D equations are affected by these agditlcnai channels. In particular, 

we consider the following subjects: 

1. Levinson's Theorem. In the absence of inelastic channels the change 

oj.' the phase shift between threshold and infinite energy is related 

to the number of bound states '(1). With the assumptions that the 

nmplitudc is analytic in the a-gular mdmentum -k and tend.s to zero 

for large values of &, we derive a Levinson's theorem for the real 

part of the phase shift and for the total phase of the amplitude. 

The Levinson's theorem for the real part of the phase shift 6 

involves, as usual, the number of bound states, but also depends 

upon the number of zeros of the S-matrix that retreat through the 

inelastic cut as the angular momentum becomes large. These zeros 

correspond to the presence of inelastic resonances (2). The 

Levinson's theorem for the total phase cp is found to depend upon 

the number of bound states and the number of zeros of the amplitude 

that retreat through the inelastic cut as the angular momentum 

becomes large. 

2. CDD Singularities. Several methods have been suggested for the 

inclusion of inelastic effects in the partial wave dispersion re- 

lations for the elastic amplitude A (3-5). In these methods the 

input information consists not only of the discontinuity across the 

left-hand cut but also of another function used to describe the 
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presence of inelastic channels. We discuss here what CDD (6) singu- 

larities must be added to the N/D equations for two of these methods 

in order to make the single channel calculation agree with a many- 

cnannel N/D :alculat-iLn (I>. 

In the first single-channel method that we discuss, the D-function 

has the phase -6; this gives rise to the Frye-Warnock equations (2). 

In the second method, D is required to have the phase -cp and the 

resulting equations are those of Chew and Mandelstam (4). 

Rather than solve these methods explicitly and compare them with 

the matrix N/D method, we exploit the fact that at large & both 

methods agree with the matrix N/D result without CDD poles. What- 

ever CDD singularities are required then emerge from the inelastic 

cuts when the angular momentum is analytically continued to lower 

values. 

3. Multiple Resonance Poles. In the presence of inelastic channels, 

there are generally many poles on different sheets of the amplitude 

associated with a given resonance as has been discussed by many 

authors (g). These poles become particularly important in the physi- 

cal manifestation of the resonance if its position is near the 

threshold of one of the inelastic channels. A discussion of the 
-28 

analytic properties of the function T=e I, where 6 I 
is the 

imaginary part of the phase shift, leads to a simple understanding 

of the presence of these multiple poles, which does not depend on an 

expansion of the amplitude near threshold or a restriction to two- 

particle inelastic channels. 

-2- 
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II. THE ELASTIC AMFLITUDE 

11: the-' absence of inelasticity only one real function of energy is needed 

tn s pecGi.l'y t.he partial-wave elastic scat.tering amplitude A(s). This is the 

pll:;.::'? shif'l-, . ‘,Jherl inc>l.stic chal reels are sVess-nt,, no-we"tr, two real fUnC- 

tions w.i 1.1 be needed. These two functions can be introduced in several ways. 

'ho wqy 5 , wliich we shall consider in some detail, are: 

2ib 2icp 
A=ve -l=&-1, 

2i.p LlFR 

where 6, 7, ip and R are functions of the energy and angular momentum and 

are real above the elastic threshold. The function w is the real part 

of ihe phase shift, q(s) is the totalphase of the amplitude A(s), and p(s) is 

the ~II;LSC space factor. The functions R and q can be related to the 

i rkcc /;Lst,ii' ('r'c>ss sc:c*tiori u. in ;; 111 given partial wave by the formulae: 

R = 1 + Din/Uel 

(2.2) 

Here u el is the elastic cross section, q is tile cznter-of-mass momentum, 

and & is the angular momentum. 

We assume t-hat the amplitude A(s) has the familiar analyticity pro- 

perties in s: it is real analytic with a left-hand cut, and a right-hand 

cut beginning at s . 
1 

Inelastic thresholds will be denoted by si with 

bl :i - <s < s3 . . . . The only other singularities are the bound-state poles. 
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Some useful relation between 7, R and the amplitude above and below the 

(1111. :UY? summarized in Table I. We also assume that A(&,s) is an analytic 

function of the angular momentum &. 

III. LEVINSON'S THEOREM FOR THE REAL PART OF THE PHASE SHIFT 

AND THE TOTAL J=iiSE OF Z-ii3 AKPLITUZE 

It will be valuable for our consideratioti of the IX/D equations in the 

next section as well as of interest for its own sake to derive a Levinson's 

theorem for the phases 6 and rp (I). We shall assume in this section only 

the analyticity properties mentioned in Section II and the following: 

a. A(&,s) -+O as s --km so that S(&,s) --tl as s -+m. 

b. A(&s) -+O as & -+a for all energies except possibly at the 

branch points. Therefore, S(&s) --+l as &+-tm. 

C. The discontinuity across the left-hand cut is finite. 

d. For sufficiently large 4 th ere are no poles or zeros of S(&,s) for 

any s. 

Since S carries the phase 26 on the right-hand cut, we obtain an expres- 

sion for the change in 6 between s = si and s = w by considering the 

contour integral of the logarithmic derivative of S: 

I = Jds' w = 2ni(No-NR) 

C 

where the contour C is shown in Fig. 1. The integers No and NR are 

the number of zeros and poles of S respectively.' 

These zeros and poles of S may be classified by their behavior as the 

angular momentum & is varied. At iarge 4 the S matrix approaches 1 for 

all energies and no zeros or poles are present on the physical sheet. As 
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e is (decreased, zeros can emerge frdm the left-hand cut or the right-hand 

cut, . 

On the sheet that is reached by going through the elastic cut there will 

be a pole corresponding to each zero on the physical sheet (this follows from 

elastic uritarity). Tk_-3se poles which retre?? +3rough the left-hand cut on 

this sheet as & b ecomes large are called elastic resonance poles and those 

which retreat through the right-hand cut are called inelastic resonance 

poles (1). 

As 4 is decreased, some of the poles on the second sheet may move onto 

the first sheet to become bound states (the corresponding zero moves onto the 

second sheet at the same time). The classification of the poles into inelas- 

tic and elastic resonances may thus be extended to a classification of the 

bound states as elastic bound states or inelastic bound states. 

We denote the number of inelastic and elastic bound states by NIB and 

NP:B respectively. Thus 

NB = NIB +- NEB (3.9 

Inelastic or elastic resonance poles always occur in complex conjugate pairs 

(2) so that for each bound state pole there exists a companion resonance pole 

located on the real energy axis below threshold on the second sheet. We de- 

note by 2NI the number of inelastic resonance poles that are e companions 

for inelastic bound state poles. In a similar way the number of elastic 

resonance poles that are not companions to elastic bound states will be de- 

noted by 2NS. Since every zero of S on the first sheet corresponds to a 
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pole on the second sheet,the total number of zeros is 

No = 2NE + 2NI + NIB + ND (3.3) 

We now return to an evaluation of Eq. (3.1). $'ollcJwing closely at this 

pain? the development given b:r !%a (101, we rote that the integrals over the 

semi-circular contours at infinity in Fig. 1 vanish and we can thus write 

I = %slc, +&SIC , 
L 

where 5, 
and C R are contours around the left-hand and right-hand cuts. 

'The first term on the right side of Eq. (3.4) can be evaluated in terms of 

the change in the phase shift: 

%SI CR = 4i[S(m) - e(si >I l 

In order to evaluate the term &S 
cL 

it is convenient to begin at 

high angular momentum, & -+m , In this limit, it follows from assumption 

(b) that &SIC = 0. 
L 

We now continue S to lower values of 4. Since the left-hand cut has 

a finite discontinuity [assumption (c)l, no poles can emerge from the left- 

hand cut. The integral around CL in Eq. (3.1) thus changes by 2ni every 

:;ime a zero crosses the contour and we can write 

&SIcL = 2niNb 

(3.4) 

(3.5) 

(3.6) 

where L 
NO 

is the number of zeros that emerge from the left-hand cut as & 

is decreased. But No" is just the number of elastic resonance poles plus 
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!,!IOSC poles which have become elastic bound states so we have 

Combining Eqs. (3.1) - (3.7), we have the lkvinson's theorem for the real 

part of the phase shift 

GJ - s(m) = n(Nm - NI) . 

(3.7) 

(3.8) 

If there are no inelastic channels, the second term is absent and the 

usual Levinson's theorem holds. As we see irom Eq. (3.8), the presence of 

inelastic channels modifies Levinson's theorem by an amount -aN I' where 

NI 
is the number of inelastic resonances. 

In an analogous manner, we can derive a Levinson's theorem for the total 

phase cp of the amplitude A. We define the contour integral y by: 

y =Jds' As = 2xi(EC - NR) , (3*9) 
c 

where NB represents the number of bound state poles and co is the num- 

ber of zeros of A. The contour C is the same as in Fig. 1 and we write, 

as before, 

i:?f,n.A +-iLA I . 
cR I cL 

Here we have 

&lA 
1 cR 

= 2i[(p(m) - Cp(Sl)l . 

-7- 
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WC sha.II also assume that under some variation of the angular momentum or 

cou.pling strengths, the zeros and poles of A will emerge from the right- 

hand or left-hand cuts of A. As before, we shall suppose that no poles 

of A will emerge from the left-hard cut. Thus we may write 

4kJA 

T 

cL I 
= 2fliZi (-3.12) 

where iT; is the number of zeros of A associated with the left-hand cut. 

If GR 0 
is the number of zeros of A on the physical sheet which came from 

the right-hand cut, we have No = and detixe that2 

cp(sl ) - (P(=J) = “(JIB - g, l (3.13) 

The physical interpretation of Eq. (3.13) is less direct than that of 

Eq. (3.8) since the number or zeros of A is not closely linked with the 

number of resonances or bound states. 

IV. CDD SINGULARITIES IN INELASTIC N/D METHODS 

In this section we consider the problem of solving a set of single 

channel N/D equations for the elastic amplitude A(s). Our goal is to clari- 

fy-and to compare the role of CDD singularities (singularities of D which 

are not singularities of the amplitude) for the D functions defined in two 

ways of formulating this problem. What we discuss here is not the CDD singu- 

larities associated with elementary particles. Our concern is rather with 

those CDD singularities that must be introduced into a single channel calcu- 

lation of A in order to make it agree with the more complete method of 



inc*orporating inc>lastic states by means of the matrix N/D technique (9). 

Tht3 two methods we consider are distinguished by the way in which D 

is defined. In both methods for the cases we study D can be defined such that: 

a. D(s) is an analytic function of s with a right-hand cut and pos- 

sible CDD sinbularities; 

b. D(s) +l as s +m; 

C. the zeros of D(s) are in one-to-one correspondence with the bound 

states of A(s). 

In order to complete the definition we give the phase of D on the right- 

hand cut. In the method we shall call the n method, D 
v 

has the phase 

-6(s) on the right-hand cut (2); in the method we shall call the R 

method, D R has the phase -q(s) on the right-hand cut (4). We shall dis- 

tinguish the functions employed in the two methods by the subscripts q 

and R. The relationships between the S-matrix and N and D defined 

by these requirements are given in Table II. For a derivation and 

discussion of the integral equations that result from these definitions we 

refer the reader to the original papers of Frye and Warnock (2) (the 7 

method) and Chew and Mandelstsm (4) (the R method). The equations that 

relate D to N are given in Table II. 

As a basis for our discussion of CDD singularities, we may imagine the 

following procedure: 

1. The matrix N/D equations are solved without CDD poles; 

2. From this solution the functions R and 7 are computed; 

3. The single channel N/D equations employing the R and TJ methods 

are then solved. 

We then ask when CDD singularities must be included in these methods to 
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make the single channel calculations agree with A(s) calculated by 

the matrix N/D method. 

It is more convenient, however, to adopt a procedure that from the 

beginning assumes and exploits the anaiyticity of the amplitude in the 

angular momentum. At large 4 we sha!T as .;liTco +'~a% the amplitude is 

tending to zero. An examination of kq. (Z.lj reveals 

6(s) +o 
(4.la) 

If we further assume that the imaginary part of A tends to zero faster 

than the real part,3 we have also 

d4 -+o * (4.lb) 

Only the first assumption will be used in our discussion of the 71 method 

while the more restrictive second assumption will be employed when the R 

method is considered. 

As a consequence of Eq. (4.1) the phase differences 6(si) - 6(m) and 

'PCs1 > - rpb) vanish at large 4 and D functions satisfying requirements 

a - c may be written as 

(4.2) 

- 10 - 



-- - I 

where we put cp(m) = 6(m) = 0. These D functions have no CDD singulari- 

ties and we conclude that with our assumptions about the force no CDD 

singularities are required at large & in either method. 

We shall now analytically continue these D functions to lower values 

of C; any necessary CDD singuiuities will than emerge from the cuts in / 

the problem. This is equivalent +.o the proce,dure rjutlined above because 

the many channel N/D equations give solutions that are analytic in & if 

the force is. The many channel N/D equations also do not require CDD poles 

as t is decreased. We shall see that although a close analogy exists 

between the 7 and R methods, the presence of CDD singularities in one 

method does not imply their'occurrence in the other. 

A. The R-Method 

We shall now examine what happens to DR as 4 is decreased. Zeros 

or poles can emerge from the cut of DR as & is decreased, but no other 
, - 

form of singularity, since otherwise the amplitude would not have the as- 

sumed analyticity in the energy variable. The zeros of DR which emerge 

are bound state poles of the amplitude. The emergence of a pole or zero 

in D R will correspond to a logarithmic singularity in the phase 'p ad 

the contour integral over cp in Eq. (4.2) will have to be distorted. As 

long as the distorted contour is not dragged to infinity, that is, as long 

as the emerging pole or zero of DR remains at a finite point of the energy 

plane, DR will maintain its normalization to one as s -+oJ . This enables 

us to exploit the Levinson's theorem for (p, Eq. (3.13). Setting cp(m) = 0, 

we have 

(4.3) 

- 11 - 



Near s=sl wehave 

.- -. 

Now since DR 
is generally finite and non-zero at s = 5: 1, the only form 

for DR consistent with the asymptotic property (b) is 

DR = 

93 
i~l(S-SBi)(S-S1) Tl 

fi5 

' (s-sPj)(s-sl) 

NB 
j=l 

where 'Bi indicates the location of bound states and sPi the location 

of poles of DR. 
There are thus % CDD poles and the emergence of CDD 

poles in DR is concommitant with the emergence of zeros from the right- 

hand* cut of the amplitude A. This, in turn, means that N can have no 

CDD poles at 'Pi since then A would be non-zero at these points. 

Wo now demonstrate that the CDD poles, which have been shown to cor- 

respnnd to zeros of the amplitude which emerge from the right-hand cut, 

must emerge from the inelastic part of the cut. First we show that such 

zeros of the amplitude cannot come from the elastic cut. On the elastic 

cut we can write 

D- 
s=$ 

DR 

where the "+" and "-'I refer to above and below the cut. 

(4.4) 

(4.5) 

(4.6) 



Suppose we are at large & where no CDD poles (i.e., zeros of the amplitude) 

have come onto the physical sheet. If an emerging CDD pole is on the sheet 

reached by going through the elastic cut, then we may continue Eq. (4.6) 

+ 
downward into the complex s-plane until GR ks a pole. But in order for 

S to be one at this point and the amplitude vanish, Di must also have a 

pole at the same position. The function Di, however, is now evaluated in 

the lower-half s-plane and this contradicts our assumption that there are 

no CDD poles on the physical sheet. Thus no CDD poles can come from the 

elastic cut. 

To see that poles can consistently emerge from the inelastic right-hand 

cut we consider the following expression for S evaluated above the inelas- 

tic threshold: 

I (4.7) 

Again we consider large & where no CDD poles have yet emerged onto the 

physical sheet. We now continue downward from the real energy axis through 

an inelastic cut in order to locate a CDD pole. Since 

1 
R=l-S 

1 

+ 
+1-2=- ? (4.8) 

R will also have a pole at the location of the CDD pole on this second 

inelastic sheet. So we see from Eq. (4.7) that S = 1 at the CDD pole 

as it should. 

We may, in fact, also see the emergence of the CDD pole directly from 

- 13 - 
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the dispersion equation for DR: 

DR(s) = 1 _ $ jnds’ p(s’)R(s’)N(s’) 

Sl 
s’-s l 

(4.9) 

As we h>ve already noted, the oc?.u-rexe of a CD? ~31" 7.n the D-function 

does not result in a corresponding CDD pole in the N-function, so from 

Eq. (4.7) we see that a pole of R crossing the real axis distorts the 

contour of the integral and gives rise to a pole in DR* 
This again de- 

monstrates why the pole must come from the inelastic cut as R is one at 

all points on the elastic cut. 

B. The 7 Method 

In the 7 method as $ is decreased, singularities of D 
7 

as given 

by Eq. (4.1) may emerge from the right-hand cut. In contrast to the R 

method, singularities other than poles may emerge from the inelastic part 

of the cut because ir, the 7 method, the N-function, N , also carries an 
7 

inelastic right-hand cut. From the inelastic cut of N , cancelling singu- 
71 

larities may arise leaving the cut plane analyticity of the full amplitude 

A = N/D intact. We shall find, in fact, that generally both D and N 
II rl 

have branch-point singularities emerging from the inelastic cut. 

As in the R method the poles, zeros or other singularities of D will 
-f-l 

arise from singularities in 6 which distort the contour integral over 6 

in Eq. (4.2). If these distorting singularities do not move off to infinity 

the normalization of D to unity at infinite energies is preserved. The 
7 

emergence of these singularities of 6 generally give rise to a change in 

the phase shift difference [6(sl) - 6(w)]. By Levinson's theorem for 6, 
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151. (3.8), this phase shift difference is, in turn, related to the number 

of bound states and inelastic resonances. The bound states correspond to 

the emergence of zeros of D whereas the inelastic resonances come from 
'1 

zeros of S that migrate onto the physical &eet from the inelastic cut. 

These zeros of S give rise to cuts in D as we shall now demonstrate. 
7 

We recall the relation 

s+s- = q2 , (4.10) 

which applies along the inelastic cut where the ‘I+" and "-" subscripts as 

before refer to above and below the cut. At large & we may continue 

Eq,. (4.10) down into the complex energy-plane to find a zero of S, at 

s = s V' 
At this point, S- must be non-zero and finite since it is evalu- 

ated on the physical sheet where the boundary condition S+l,&+m , -_ 

applies. Thus as s = SV 

s, N b - “$ 

l-j - (s - sv$ 

We may also employ the relation 

D- 
s, = T-j + 

D 
7 ' 

to see that 

1 
D; N (s4 - @ 

(4.11) 

(4.12) 

(4.13) 
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sinre D 
7' 

which is evaluated at the corresponding point in the lower-half 

cne:l*i:y plane of the physical sheet, must be near one in this limit of large 

t/. As t is decreased this inverse -square root singularity of D at 
11 

and a corresponding branch point at the mirrored position 
* 

s = s s=s 
V V 

may move ontc the physical sheet, corres;undlL:g t.o :". p?ir of zeros of S 

migrating onto the physical sheet from the inelastic cut. 

It is clear that N must cancel the branch point in D at s = s 
'1 7 v 

since S has just a simple zero at this point. This fact 'can also be seen 

directly from the relation 

N; = 
vD- - D' 

. 
2ip 

(4.14) 

A detailed examination of the question of analytically continuing the inte- 

gral equation for N in & is given in Ref. (2). 
7 

We emphasize here that the CDD, requirements in the R and 7 methods 
, -_ 

nre generally quite different. As we have seen, CDD poles in the R 

method are associated with zeros of the amplitude that emerge onto the 

physirsal sheet from the inelastic cut. In the 7 method, CDD singulari- 

ties become required when zeros of S come onto the physical sheet from 

the inelastic cut. In the 7 method, there is a simple physical criterion 

-for CDD poles, since the emerging zeros of S correspond to inelastic 

resonance poles being fed into the second elastic sheet of the amplitude. 

The requirement of CDD poles in the R method, on the other hand, appears 

to have no simple connection with poles in the amplitude. 

- 16 - 
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V. PROPERTIES OF ?j AND MULTIPLE RESOl7~cE POLES 

Recently, it has been emphasized by many authors that resonance poles 

in the scattering amplitude do not occur singly (g). A given resonance 

will generally manifes t itself as a pole on many'Riemann sheets of the ampli- 

tude. Thus if one increases the angular momen;;ilM (or decreases the all-over 

coupling strength), a resonance that progresses through a threshold during 

this process will have‘different poles producing the "bump" in the cross 

section, depending upon whether the resonance energy is above or below the 

threshold. 

We shall show here that these mny poles associated with a given reso- 

nance have a simple interpretation in terms of the analyticity properties 

of 7. The discussion that we give here frees one from the need to discuss 

threshold expansions and also is not restricted to two-body inelastic channels. 

A discussion of multiple resonance poles without using threshold expansions _ , - 

has also been given by Eden and Taylor (g). 

Although we have not explicitly considered the fact up to now, actually 

there are n different analytic functions ?j where n is the number of 

channels. We shall write vi to represent the function that is appropriate 

in Eq. (2.1) between the i th and (i+l)st thresholds. Thus 7, = 1. The 

functions vi are real between the i th and (i+l)st thresholds but will 

generally be complex if continued to other regions, Let us suppose a reso- 

nance pole at sV is present on the second elastic sheet, that is, the 

sheet reached from a point P on the physical sheet by continuing down 

through the elastic physical region as shown in Fig. 2. The various 

Riemann sheets that are adjacent to the physical region are labelled 

in Fig. 2 as R,, R,, . . . . The resonance pole we are considering is on 

- 17 - 
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sheet R . We may now write 
1 

s:st = 71; 

where S : denotes S evaluated slightly above the real axis between the 

i 'h and (~+l)~~ thresholds. 13y arlaiyI,ically l;on,ir*iling Lq. (?*l) down to 

the point s = sV, we find as in Sec. IV that Si has a simple zero at 

s=s: V 

7: = const. (s-sv) s=s 
? 

Now we imagine the coupling between the channels 2, 3, . . . i and 

channel 1 being gradually and analytically switched off. During this pro- 

cess the function 7: must approach unity at all points. Thus -;19 must 

have a pole at some point s = si where sk +sv during the decoupling 

just described in order for 77 to approach unity. That is, 

S - s 
2= 

rli 
v -2 
i rli 

S - s P 

(5.1) 

(5.2) 

where % is neither singular nor zero at sV and S;. 

Continuing Eq. (5.1) down to the point s = sg, we find that St will 

have a pole there since St, which is now evaluated on the physical sheet, 

should be non-singular at this point. Thus the existence of a pole in the 

amplitude on sheet R 
1 

of Fig. 2 leads to the presence of poles at s = sk 

on the sheets Ri. There are in addition, of course, mirror image poles to 

all of these just discussed on Riemann sheets reached by analytically 

(5.3) 

I 
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continuing upward from below the physical cut. 

We can, of course, invert the above argument. That is, a pole on the 

sheet Ri for i > 1 gives rise to a pole of 7:. From this we conclude 

that there must be a zero of 7: at s=s v' Since S:Si = 7~4, the zero 

at s=s V 
may eithe- occur ii1 E, or ;j-. Tr, either event it can be shown 

that n poles occur on n different s;leets of.the amplitude, not including 

the mirror image poles.' 

These poles associated with a given resonance are just those discussed 

recently by a number of authors (g). By making use of threshold expansions 

they have been able to show that if si is close to the threshold (i+l) 

i+l 
then sp is also near this threshold. The existence of these poles, as 

we have seen, follows simply from the analyticity properties of 7. 

VI. CONCLUSION 

Much information is contained in the assumption that the scattering am- :-- 

plitude is an analytic function of the angular momentum &. By making use 

of this analyticity, we have been able to connect by analytic continuation 

the region of high &, where properties of the amplitude are generally 

simple, to regions of lower 4, where resonances and bound states may occur. 

By making use of this connection between high and low &, we have been able 

to deduce Levinson's theorems for the real part of the phase shift and for 

the total phase of the scattering amplitude. The number of multiples of JT 

by which the real part of the phase shift changes between threshold and 

infinite energy is equal to the number of elastic bound states minus the 

number of inelastic resonance poleswhich are not companions of inelastic 

bound states. The number of multiples of z by which the total phaSe of 
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:,h: st,atterini; amplitude changes between threshold and infinite energy is 

cqu;ll to the number of bound states .minus the number of zeros of the ampli- 

tude that emerge l.hrough its right-hand cut. 

With reasonable assumptions about the forces, we have been able to give 

a complete analysis of CDD singularities that are required in the R and 

the 7 ?S/D methods in order to make t;,eir solvticns agree wi-ih those of 

the matrix N/D mt:l;iioo. In the R metilud CD3 IJd”” ;re se,q-uired whenever 

there is a z(:ro (71' the amplitude on its physical sheet that retreats through 

the right-hand cut at large &. In the 7 method CDD singularities are 

required whenever there is a zero of the S-matrix on its physical sheet that 

rei;re3,ts tkircnlfrh ;.Iit3 right-hand cut at large 4.. -11-l t,f11: R method the 

CnD singularitii::; :ir(: poles, h:jt the criteria for thc:sfz poles is difficult 

to state in phy::i(:al i;t:ms. In the 7 method the CDT? singularities are 

usually brancall ~~')itlt.::; however, the locations of :,hesL: singularities have a 

simple interprctntion as the positions of inelastic resonances (2). 

Finally, by assuminj' analyticity in the interchannel coupling strengths, 

we have demonstral.t:ri in a simple way the existence of many poles on differ- 

ent Riemann shec?ts of the amplitude all Co?.TespciIldin{~, ic3 one 'resonance. 

Note Added: After this work was completed we became aware of a paper 

by J. Finkelstein. Whys. Rev. .l& Bill (1963) where criteria similar to 

ours for CDD poles in the R method are obtained. 
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FOOTNOTE3 

1. This is strictly correct in potential theory or when the amplitude is 

computed by the N/D method with no CDD poles. 

2. If some of the zeros that ccme from the left-hand cut move off the 

physica' sheet tb-ougL tne rig?+-hand CUT., %k- (3.13) must be modified 

accordingly. 

3. Thus we exclude here a problem in which the elastic force BL1 is identi- 

cally zero. For such a BL1 the following conclusions about the number 

of CDD poles at large 4 are not velid since in the absence of CDD poles 

the amplitude ALL obtained from the single channel R method equations 

would be identically zero. 

4. The emergence of zeros of A from its left-hand cut corresponds to 

zeros of N. 

5. The poles considered here are on the sheets adjacent to the physical - 

region and are, therefore, the most important for the physicalmanifes- 

tation of a resonance. There are, in addition, other correlated poles on 

more distant sheets of the S-matrix. These poles are discussed by Eden 

and Taylor (c). 
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TABLE1 

_I-- 1 r 
2i6 

A+ = lJe 2ip- 1 

s+ 2i8 
= qe 

7 2=ss f- 

F 

A+= 

,2icp - 1 

2ipR 

2iCp - 1 
S+=l+e R 

1 1 
R =1-s + +1-s 

Relations between R, ?J and the analytically continued amplitude A(s) 

and S-matrix (S = 1 + 2ipA). A '+' subscript denotes an energy just 

above the real axis and a '-' subscript denotes an energy just below 

the axis. 
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TABLE II 

.-- 

I,,_. 
v-Nethod R-Method 

N; = 
r/D; - D: + D; - D; 

Zip 
NR = 

2ipR 

;< z -I- III)-/D+ 
7 'I s+ = 1 + l/R(Di/~i - 1) 

I.,(s ) = 1 - ; Jm ds' D(s) = 1 - 5 Jds' P(s'$(s';N(s') 

S S 1 1 
,...e- 

p. comparison of the R and 7 methods for including inelasticity in the single 

~:ha.nnel N/D method. 
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