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Most recent numerical calculations of scaftering and bound states duse

to the strong interactions make use of driving terms given by the Born ap-
proximation for single particle exchenges which are unitarizzd by solving
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the \/D equations® for the partial waves. This meth

sense that the result does not guentitatively corre spond in the non-
relativistic limit to solving the Schroedinger equation for 2 povential with
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the same Born approximation.2 A related d;*chuxJJ is that,

N/D equetion it explicitly unitary, the phase shifts for high
waves do not approach zero a5 k= T 2% threshold. unless sud
made in uhe dispersion relasion {(which introduces arbitrary parameters and
causes difficulties with th=2 asymptotic belavior at infiﬁity)’or some other

L2 2 - = T . - PR Eal
oLONT LS uEed. wWe presens LeLOW & newy redyresentation Ior

the two-particle scettering ampliiude which avoids both difficulties simul-
ey O iy
taneously, while preserving the unitarity of the two-particle scattering
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mabtrix. A further advantage of the approach given below is thabt i1t leads

to a non-singular 1ﬂueg“a1 equation for thz behavior of the scavtering

J"’“,

matrix off the energy shell, whose kernel is explicitly determined by th
(off-shell) Born ap%roximation for the interaction, and which is equivalent
to “the Schroedinger equation in the non-relativistic case. This off-shell
A,

behavior is explicitly separated from the two-body scattering mabtrix on tae
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energy shell, giving a simpl
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construct the kernels for the Faddeev equ

£ 4,

%aqcb this representablon will allow separate study of these fegtures of the
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three-body problem coming from the (experimentally determinable) two-body
T matrix, and those due to the (model dependent) off-shell behavior.
If we denote the usual non-relativistic wave function in the center-

of-mass system by YI(E) = exp(ik © r) + ak(g), or in momentum space by

<
¥, (p)

5(2;5) + Qk(g), and make the partial wave expansion

?;(B) = (l/eﬂe)ZQK;é+l)P2K2 ~-§)a§(p), it is easy to show that
at(p) = kty(k) |1 f 39 (1 g (ke JoZar
@)
b [ Ingler) - con 0,3, () - w ()3, (p0)r%a (1)
(@]

where Qﬂ(k) = exp (i&aﬁk)) sin §£(k)/k and wk(r) is the real wave func-
tion which approaches n{Xkr)‘— ctn 6{Q€(kr) outside the range of forces.

FEence we can represent the scattered wave function in momentum space by

tp(k)fp(i,p)
dﬁ o) = LANEILR
p2 - ie - k°

with
i

f&(k,p) = (p/k){'+ (p® - ke)h/ drkrzagﬂpg)[n{ﬂkr) ~ ctn Sj{jkr) -wk(r)] (
S

)

W

Ve see immediately from Eq. (3) that f/&(k,k) = 1, and that f is real for

all real values of p and X, since the integral is real and finite, If

we substitute this representation into the Schroedinger equation in momentum

’
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space, i.e., (kg-pa)at(p) = Vp(p,k) + (2/“)6/ dq ng{KpJq)di(q), we find

immediately that

oo
~ 2

tp (k)T (k,p) = ~Vp(p,k) - t{ﬂk)0¥ﬂ2\/ dg - ~ Vo(p,a)fp(k;q) (k)

o qz"'i€"k‘:

Hence, from the property f{Kk,k) = 1, the on-shell t matrix is given by

-V, (K, %)
by (k) = = - (5)

- (Qn) A’ -
’ / 6/'dq g

Q

P=4 : B

- ig - k%

V{p\/(k, Q>f&(k: Cl)

Note'a) that t{ﬁk)'l = (a principal volue integral) - ik making it expli-
citly unitary, and b) that the numerator is just the Born approximation,
thus insuring the correct kzﬁﬁl threshold behavior for Oy(k) as k —0
.
provided only that the derominator remains finite in this 1limit, as we now
demonstfate.
Substituting Zg. (5) back into Eg. (&), we find that f satisfies

the integral equation

Vo{p,) 2 ¢f v Gua)Velesk) o f
£5(k,p) = + - f dg = e - Va(pya) | £(k5) (6)
V{KR:K) oY g~ - k7! Vy(k, k) ‘

Note that the kernel of the equation is finite at ¢ = k, so that the equa-
tion is of the Fredholm type. Tor a Yuli:wa potential, the off-ghell Born
approximation is proportional %o (1/2pq)0 ! (p®+q®mB)/2pq], which gives ‘a

square-integrable kernel, showing that the equation should be readily



soluble by numerical methods. DNote further that k occurs only as a para-
meter in the equation, not as a variable, so that any singularities due to
the wvanishing of V{Kk,k) can cause no essential difficulty. In particu-
lar, although V{Kp,k) vanishes at threshold, for any reascnable potential
such as that considered above, this behavior can be factored as p&K&
times a function which is finite for either (or both) p and k equal to
zero. Referring back to Eq. (6), we see that this leaves the kernel finite
at k = 0, the only singularity coming from the inhomogeneous term, which
goes as k . Consequently ikxk,p) will also behave as k =~ as k

goes to zero, but if this behavior is inserted in tﬁe denominator of Eq. (5),
we see that this precisely cancels the k% behavior of V in the inte-
grand. The dernominator is therefore finite at k = 0, and the threshold
behavior coming from the Born term in the numerator is preserved.

It is clear that if the potertial vanishes at some point ko other
than threshold, and this zero cun be facsored out as (p-ko)a(k—ko)ay the
argument just given shows that t{KkO) will also' vanish at this point. In
general we would not expect this zero to be factorable, and also would not
expect pe(ko) to vanish where the Born approximation does. Howover, if
V/&(ko,ko); 0 and t%(lqo) £ 0, we see that Eq. (4} requires that
1+ (2/n{/ﬁdq qEV{KkO,q)f&(KO,q)/(q2~ie~k&) = 0, thus insuring consistency
with Iq. (5). g

In order to construct the kernels of the Faddeev equations for the
three-body problem (assuming only two-body interactions), we require the
general off~shell T matrix <:ng(z)|E;> defined by the Lippman-Schwinger>

eguations T =V -+ VGOT and G = GO + GOVG, which are eguivalent toc



GOTGO =G - Go' For the case at hand the full Creen's function G is
[ee)

given by Jld?kY;(g)Yk(B)/(z+ie-k?/2m) and the free-particle Green's
0

i

. - .2
function by GO1 (z+ic-p /2m)®(p-q), so, if we make the partial wave ex-

pansion

1
= zja(%l)%(ﬁ'.a.)frfp(c,) (7)

<g|T(z)jp > =
2 1

with § = 2mz
the partial-wave T matrices are given in terms of the notation defined

above by

k2al” ()al(p)

£ + ie -~ K=

(0) = (62?)(670?) f a - (@) - (FDale) (B

. g . .
Using our representation for aﬁ(p) and the completeness relation, the

definition of T in terms of G and G” reduces to

00 x

Tﬁp(g) - [wdk/(g2+i€k2) - 3 |t () (p,q) + [de/Pg'ie'kE)
Y S
: | orON ) / o 1'2)—} (9)
- %] tpla)fp(a,p) + chllc (g7 +ie-k j
. e
where
w(k250,p) = (3/n) sin® 8y(k)f, (k.p)y(k,q) - (0)



The symmetry of the T matrix in p and g 1is guaranteed by the com~

pleteness relation, which can be shown to require that

« ©

*
tp(p)fp(,a) + Of wdk/(p#-ie-k%) = ty(a)fy(q,p) + f wdk/ (q®+ie-k?) (11)
o
Note that if we put one of the particles on the energy shell, we also
obtain a simple result for the half-off-shell T matrix recently dis-

cussed by Sobel® in connection with p-p bremsstrahlung, namely
) [ \
T, (6) = -ty (0)2p(6p) (12)

Note also that if we make use of the unitarity relation sin® §&<k) =
ketz(k)wk) = (ik/2)[tz(k) - tp(l)] = (2k/2)[ty(-k)-tp(k)], we can® con-
vert the dk integration to a contour integral along the real axis with
a halfjcircle at infinity. This allows us to separate out the term coming

from the singularity of the real axis and obtain

Tﬁé(g) = ~§&(C)ﬂﬂ(§,q)ﬁﬁ(§,p) + non-separable terms (13)

To see that this can be expected to be a dominant contribution to T, we
evaluate fo(k,p) for a wave function which differs from its asymptotic

-ur . - P
value by e using Eq. (3) and find that

- .

fo(k,p) =1 + (k3-p2)/[ (pZ-k2)" + 202 (p3+k3) + u*]1, showing that other
contributions from the singularities of w are separated from the domi-
nant singularity on the real axis by at least the range of forces. Since

this leading term is separable in p and g, it will reduce the Faddeev



equations to (coupled) integral equations in a single variable, which are
readily soluble on a computer. It is therefore to be hoped that this re-
presentation will provide a good first approximation for at least some
aspects of the three-body problem. Finally, it should be emphasized that
p&(k) can be determined without ambiguity directly from two-particle
scattering experiments, independent of any assumptions (other than that
they are of short range) about the nature of the strong interactions. We
can therefore construct different local, non-local, or velocity-dependent
models for the strong-interactions leading to identical results for
pﬁ(k), and study separately the influence of these differing physical as-
sumptions about the strong-interactions on the three-body problem, indepen-
dently from the (experimentally determinable) two-particle amplitude

tplk) which we adopt.
2(

I am indebted to M. Bander, D. Wong, and T. Osborn for several useful
discussions of this problem, and in particular for helping to show that no

trouble arises from the zeros of V&(k,k).
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We see from Eq. (3) that fp will be odd rather than even in p and
k for odd 4, but since only the symmetric product f{Kk,q)f£ﬂkyp)
occurs in the weight function w, this will be a function only of kz;

which is all we need to extend the k integration down to -~ .





