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The general procedure of calculating the radiative corrections is well 

known. It is also well realized that the real photon emission part of the 

radiative corrections has to be calculated separately for different types of 

experimental set 'up. Most experiments in the colliding beam program will 

probably be carried out using spark cf,amLer,c: Ir. + his paper we give a gen- 

eral procedure of treating the radiative corrections to the two-body final 

state problem6 

e +e 1 2 
'A + B, 0) 

in the e-e' or e+e' colliding beam experiment using spark chamber as a 

detector. Experimentally, two-body final states are characterized by the 

fact that in the absence of radiative corrections A and B must come out 

with opposite momenta ThA = -ifB whose magnitude is given by 

E2-$(mz-$)+(m:- m;)2(16E2i1] ' (2) ‘- 

However, since photons are always emitted in the process, A and B will 

not, in general, be colinear and their momenta will be less than given by 

Eq. (2). Thus experimenters have to give so-called "criteria of coincidence." 

The most sensible criteria are as follows: An event of the type (1) shall 

be called coincident if for every particle A going in the direction BiA 

(see Fig. la), the particle B comes out within the cone opposite A 

having a half-angle &, I.e., 

o<n-eABae (3) 

and further, the magnitude of the momenta of the particles A and B shall 
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be within the ranges 

(4) 

and 

(5) 

respectively. 

Given these restrictions on the phase space of particles A and B, one 

can proceed to calculate the radiative corrections. It is most convenient to 

transform the restrictions on the phase space cn A and B given by Eqs. (3), 

FL and (5) into t.hose on the photon phase space by the energy momentum 

conservation. In general the resultant photon phase space will look like a 

bomb as shown by the dotted lines in Fig. 1. 

The shape of this phase space can be obtained as follows: From momentum 

conservation PA f pg , and k must form a triangle. From energy conserva- 

tion the sum of the three sides of this triangle must be fixed (see Fig. 2). 

We are interested in obtaining the maximum value of k as a function of OKA. 

1. To obtain a to b in Fig. la we let PA = tin. 

2. To obtain b to c in Fig. la we let eAB = x - Ae. 

3. To obtain c to d in Fig. la we let PB = Gin. Analytical ex- 

pressions for k as a function of e max KA can thus be obtained from elemen- 

tary maniplllations. 

In order to obtain a reasonably compact formula for the radiative cor- 

rr~~*t,ior15, WC may api-roximate this bomb-shaped photon phase space by three 

r-~*J-~,invs indicated by solid lines in Fig. lb. The construction of this appro- 

ximzte phase space is based on the following considerations: 
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1. Most of the photons are emitted in the directions along either el, 

e 
2’ 

A or Bet due to the 6 function-like behavior of the matrix element 

in these four regions. Hence, only in the vicinity of these four regions one 

needs to be very careful and can safely deform other parts of the phase space 

to simplify the calculation. 

3 -* The ph3e space of one p'.-&on.emiss-or can Le written as 

s d3k d3PA d3PB 
y= w-- 

2u, 2EA 2EB 
6*(P1 + P2 - PA - PB - k) 

+i $L[ d(cos Q) 
271PA 

athin cos (PF) 
2E - ~(1 - cos 8 

Ak) 

The deformed photon phase space is to be chosen such that the w dependence 

of cam e 
max 
Ak shall be so simple that the subsequent 

analytically. 

integration can be done --. 

3. Let Y = Ysoft + YA + YB as shown in Fig. lb. The spherically sym- 

metric part Ysoft corresponds to the phase space for the soft photon emis- 

sion. For this part cos(9E) = -1, amin = h (fictitious photon mass) and' 

cu The contribution of this part contains max = (Of X ?& (see Fig. lb). 

infrared divergence and its treatment is well known. The top and bottom 

parts of the dotted lines are replaced by spherical surfaces with radii G 

and Od respectively. 

Rather than proceeding with general discussions, we give the result of 

our calculation for the process e' + e' -+e' f e' . For this case we let 

tin = gin z Emin , we have then G = Od = E - Emin. The equation 
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satisfied by line bc of Fig. la is 

",a,xce&) = A8 + sin b, 
Ak *PZin(e 

Ak - &I) 

From this we canpbtain the maximum energies of photons emitted along el 

and e2 and by taking their gecmetrical average we obtain the radius (de- 

fined as. &I) fbr Ysofta 

AE = [a maxce Ak 

2FLM -=z 
2sine +A@ IA 

For YA we replace two sides by straight lines parallel to ?% as shown in 

Fig. lb. We have then for yA' 
max cos 8 Ak = 0 - 

0 min = AE and (u max = E - Emin. For YB we have cos em;" = -1, timin = AE, 
2 

u) max = E - Emin, and cos emd;n = mG - 1 . --- 

The radiative corrections to the e-e' scattering were considered by 

the autho?in 1960. The virtual radiative correction plus the soft emission 

part [Eq. (T.23)] can be used without change except that the new definition 

of AE:, given by Eq. (8), must be used. ,An approximate expression for the 

matrix element squared for the hard photon emission is given by Eq. (T.33), 

which can be used to evaluate the hard photon emitted into YA and, by appro- 

priate change of particle indices, it can be used to evaluate those emitted 

into Yg* The result can be written as 

da' da -= - 
dQ dR (1 + 6) 

Mdller 
(9) 

6 = Gsoft + CIA + 6B 
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where 6 soft is given by Eq. '(T. 24), with AE defined by Eq. (8), 

- Emin E - Emin - nE 
- 

LIE E' 
<, 

b E - Emin 

AE 

AGE '.E - E 
-'jp 

'~(E - 
-+2 min bi j 

E ; j, AeE I' 

and 

E - Emin E - Emin - AE 

AE E 

(10) 

The numerical examples are given in Fig. 3. Tt shcu3.d be noted that 6 is 

more sensitively dependent on the choice of & than E min in the range 

of values considered. The relatively insignificant dependence of 6 on 

E min implies that the hard photon emission is rare, and thus one is al- 

lowed to make very crude approximations on both the phase space (YA and YB) 

and the matrix element in calculating 6A and 6B (see Ref. 2 for details). .- 

We can treat similarly all the e+e- colliding expertients with two- 

body final states 

e+ + e’ +A+B. 

iWe have not made detailed analyses of all the processes of this type. How- 

ever, the following comments may be of general interest. 

1. The"virtual*.radiative corrections to many of the e+e- colliding 

beam experiments such as e+ + e--+e" + e-, e+ + e- -+II+ + I[-, e+ + e- +27, 

e+ + e’ --v+ + p-, and e+ + e- -+p+i; can be obtained from the existing 

results192~3~495'Of e-' ,+ e' ye- + e-, e' + 7-r. +e' + IT-, e- + 7 +e- + 7, 

iZ +p---+e-+p-, and e++p-+e++p by the well-known substitution 

rule. 
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2. The cross section for one soft photon emission from the process 

e+ + e' +A+B can be written as 

da soft 
= -da, 5 rkdm ,/-% lp;; k - p;; k + ' 

L 
G1’1k-p;:k)~ (“) 

where duo is the lowest-order cross section, and Z = 1, -1, 0, depen- 

ding on whether the charge of particle B is +l, -1, or 0, respectively. 

The integration of the type (11) is well known? For simplicity we treat 

the case 

da soft 
"&J = da0 - 
II AE 

iI 

4E2 2E2 - M2 
- 1+22-2&l--- Z2 &l( 

E+PA)2 + 4z& (p+*pJ 

m' EPA M2 b,.pB) 

(12) 

l-a 
-duo - 

L 
k(+,+) - K(+,-) + Z2K(A,A) - Z2K(A,B) + 2ZK(+,A) - 2ZK(+,B) 

II 1 
wherei K's are the infrared terms and always cancel out completely against 

similar terms in the virtual radiative corrections. 

2- 2 
'A - 'B 

= M’ and 2: = p’ = m2 

The result can be written as 

3. If we ignore the radiative corrections, all the processes of the 

tne e+ + e’ -+A + B ,must be symmetric with respect to 90' in the c.m. 

(e+ + e- -+e+ + e' is the only exception). Prom the term linear in Z in 

Eq. (12) we notice that if the final particles are charged, then there will 

be more positively charged final particles going in the direction of P+ 

than the negatively charged ones. This phenomenon is very similar to the 
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difference between the e+p and. e-p scatterings where e+p in general 

has a larger cross section at a finite fixed angle than e-p if higher- 

order terms are included.' 

4. In reaching the above conclusion we have assumed that the two-photon 

exchange graphs-do not contribute anything significant except for supplying 

infrared terms -( : ' 

da o ; 2Z[K(+,A) - K(+,B)] (13) 

which cancel out with the similar terms in Eq. (12). This assumption has 

been verified in all the.calculations2'4'5 done by perturbation theory for 

ee, ep, and erc scatterings. When tht final particles A and I3 are 

strongly interacting, there may be some additional non-negligible contribu- 

tions beside'the 'infrared terms in the two-photon exchange diagrams. 
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