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The general procedure of calculating the radiative corrections is well
known. It is also well réalized that the real photon emission part of the
radiative correcticns has to be calculated separately for different types of
experimental set‘up. Most experiments in the colliding beam program will
prouably be carried out usirz spark chamverc. Trn fhis peper we give a gen-
eral procedure of treating the radiative corrections to the two-body final

state problems

e, +e, ~A+B, (1)

in the e-e~ or ete” colliding beam exporiment using spark chamber as a

detector. Experimentally, two-body final states are characterized by the

fact that in the absence of radiative corrections A and B must come out

with opposite momenta ‘§A = -%B whose magnitude is given by
w2 1 (m2 - 2 2 _  2y2 27,
P2 = |E° - % (m3 - m2) + (n? - nd)7(1687) (2)

However, since photons are always emitted in the process, A and B will
not, in general, be colinear and their momenta will be less than given by

7" . ’ N .
criteria of coincidence."

Eq. (2). Thus experimenters have to give so-called
The most sensible criteria are as follows: An event of the type (1) shall
be called coincident if for every particle A go&ng in the direction 91A
{see Fig. la), the particle B comes out within the cone opposite A

having a half-angle A8, i.e.,
O<m =6, <06 (3)

and further, the magnitude of the momenta of the particles A and B shall
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be within the ranges

in
Po <P Py Q
and
P o
B B < Lma.« (5)
respectively.

Given these restrictions on the phase space of particles A and B, one
can proceed to calculate the radiative corrections. It is most convenient to
transform the restrictions on the phase spuce on A and B given by Egs. (3),
(4), and (5) into those on the photon phase space by the energy momentum
conservation. 1In genergl the resultant photon phase space will look like a
bomb as shown by the dotted lines in Fig. 1.

The shape of this phase space can be obtained as follows: From momentum
conservation PA ’ PB , and k must form a triangle. From energy conserva-
tion the sum of the three sides of this triangle must be fixed (see Fig. 2).

We are interested in obtaining the maximum value of k as a function of GKA'

1. To obtain a to b in Fig. la we let P, = Piin.

2. To obtain b to ¢ in Fig. la we let GAB =71 - A8,

3. To obtain ¢ to d in Fig. la we let PB = Pgin. Analytical ex-
pressions for kmax as & function of GKA can thus be obtained from elemen-
tary manipulations.

In order to obtain a reasonably compact formula for the radiative cor-
rect.ions, we may approximate this bomb-shaped photon phase space by three

repions indicated by snlid lines in Fig. 1b. The construction of this appro-

ximate phase space is based on the following considerations:
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1. Most of the photons are emitted in the directions along either el,
e A or Be{, due to the & function~like behavior of the matrix element
in these four regions. Hence, only in the vicinity of these four regions one
needs to be very careful and can safely deform other parts of the phase space
to simplify the‘calculation.

2. The phase space cf cone p*oton emiss-or can ke written as

f a3k d3PA a3p

B a
Y = 8*(p. + P_ - P, - P_ - k)
: 1 2 A B
2w 2EA EEB
(6)
w
aa, max 2 2rp,
= — Jf deJf d(cos eAk)
8 2E - w(l - cos eAk)

@, ax
min cos(enA‘k )

The deformed photon phase space 1s to be chosen such that the « dependence

of cos 67 shall be so simple that the subsequent integration can be done

Ak
analytically.
3. Let Y = Ysoft + YA + YB as shown in Fig. 1lb. The spherically sym-

metric part YSoft corresponds to the phase space for the soft photon emis-

max

3 ol = - = i it 1
sion. For this fart cos(eAk ) L oo A (fictitious photon mass) and
w = (Of X Og)2 (see Fig. 1b). The contribution of this part contains

max
infrared divergence and its treatment is well known. The top and Bottom
parts of the dotted lines are replaced by spherical surfaces with radii Oa
and Od respectively.

Rafher than proceeding with general discussions, we give the result of

our calculation for the process e~ + e~ —e~ + e~ . For this case we let

Pmm=Pmin§E. , we have then Oa =0d = E - E, . [The equation
A B min min
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satisfied by line bec of Fig. la is

2EAG
+ sin(éAk - A9) (7)

w (6, )= e
max ' Ak A8 + sin eAk

From this we can obtain the maximum energies of photons emitted along e,

and e, and by taking their gecmetricel average we obtain the radius (de-

fined as. AE) for Yo ort

1
= : - . >
AE = [“hax<9Ak elA) x m.max(eAk 7 elA)J
(8)
o 2ENG
2 sin GlA + Af

For YA we replace two sides by straight lines parallel to 0a as shown in

1 .
. max = oS min
Fig. 1b. We have then for Y,, cos 6, " = (1 - E306%w=2)2, cos 6 w =L
w = AE nd =E -~ E For Y we have cos emax = =1, W = AE
min a max min’ 2 B Ak~ 7 “min T T
in _ A8 E )2
Crnax = E - Emin’ and  cos gik T2 (m 1, -1

The radiative corrections to the e~e~ scattering were considered by
the author in 1960. The virtual radiative correction plus the soft emission
part [Eq. (T.-23)] can be used without change except that the new definition
of AE, given by Eq. (8), must be used. _An approximate expression for the
matrix element squared for the hard photon emission is given by Eq. (T.33),
which can be used to evaluate the hard photon emitted into YA and, by appro-
priate change of particle indices, it can be used to evaluate those emitted

into YB. The result can be written as

%% = %% (1 +8)
' Mgller
(9)
= S0t T 04 T O
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where & is given by Eq. '(T.24), with AE defined by Eq. (8),

ft
o ({n E - Emin E - Em1n - A 2 28" In B - Emm
5, = = - -
Ay OF E m? OF
_ (10)
: AGE - E Wa(E - E . )
- 2 + 2 min %n! min ,
V2( - E_, ). E Y-} :
. min
and
- - - 2 -
B 2 ({HE “min _ © 7 Fmin O {H<EM) _&IE__EIEQ+£H2_E (11)
B n OF E m AF AR

The numerical examples are given in Fig. 3. Tt shculd be noted that & is
more sensitively dependent on the choicz of & than Emin in the range
of values considered. The relatively insignificant dependence of & on
Emin implies that the hard photon emission is rare, and thus one.is al-

lowed to make very crude approximations on both the phase space (YA and YB)

and the matrix element in calculating &, and BB (see Ref. 2 for details).

A
We can treat similarly all the ete” colliding experiments with two-

body final states

et + e~ A+ B.

"We have not made detailed analyses of all the processes of this type. How-

ever, the following comments may be of general interest.

1. The"virtual"'radiative corrections to many of the ete™ colliding

+

beam experiments such as e + e"—et + e, et +e” ot 4 n, et

+ e —2y,

et + e” —*u+ +u”, and et + e ~+p + 5 can be obtalned from the existing

resultsl?@34I5 of " e we” +e7, " + " e + 17, e” +y 2e” + 7,

+

€ +pu” —e +pu7, and e +p —+et + p by the well-known substitution

rule.



2. The cross section for one soft photon emission from the process

et + e~ =+-A + B can be written as

AF

o ~ ~ P
dosoft = -do, — J kdw J dﬂk —~ - + Z - (11)
b A Py + kK p.°

where dco is the lowest-order cross section, and Z = 1, -1, O, depen-
ding on whether the charge of particle B is +l1, -1, or 0, respectively.
The integration of the type (11) is well known! For simplicity we treat

the case

The result can be written as

Q E Lg? 2EZ - MF (E+P, )? (p.'p,)

a0, =do, —dn —|1+2% - 2tn — - 27 fn —A 4 by —LA
2 2 .

n AF m EP, M (P, pB)

(12)

-doorz k(+,+) = K(+,-) + 23k(A,A) - Z3K(A,B) + 2ZK(+,A) - 2ZK(+,B)
T
where?l K's are the infrared terms and always cancel put completely against
similar terﬁs in the virtual radiative corrections.

3. If we ignore the radiative corrections, all the processes of the
type et + e~ - A + B must be symmetric with re;pect to 906 in the c.m.
(e¥ + e- —e¥ + e~ is the only éxception). From the term linear in Z in
Eq. (12) we notice that if the final particles are charged, then there will
be more positively charged final particles going in the direction of P+

than the negatively charged ones. This phenomenon is very similar to the
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difference between the e+p andj e“p scatterings where e¥p in general
has a larger cross section at’a finite fixed angle than e"p if higher-
order terms are included.

4, In reaching the abofe conclusion we have assumed that the two-photon
exchange graphs-&o not.contribute anything significant except for supplying

<

infrared terms

ao % 27(K(+,A) - K(+,B)] (13)

which cancel out with the similar terms in Eq. (12). This assumption has
been verified in all the .calculations®’*’S done by perturbation theory for
ee, ey, and en scatterings. When the Tinal perticles A and B are

strongly 1nt§racting, there may be some additional non-negligible contribu-

tions beside the infrared terms in the two-photon exchange diagrams.
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