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ABSTRACT 

By making a pole approximation t o  the  spec t r a l  i n t eg ra l  over the  

kinematical f a c t o r  p&(z) 

i n t eg ra l  equations a re  reduced t o  algebra.  The approximation depends 

only on the  pa r t i cu la r  p a r t i a l  wave and not the  dynamics of the  react ion 

and it admits of systematic improvement. The resu l t ing  sca t te r ing  

amplitude T-e<z) i s  symmetric, independent of the subtract ion point f o r  

t he  D function, has the  correct-discont inui t ies  on the  r i g h t  and l e f t  

hand cu ts  and can moreover be e x p l i c i t l y  expressed a s  an algebraic function 

of the  dr iving term B&(z). 

inspect t he  r e l a t ion  between the  dr iving force and the sca t te r ing  amplitude 

and es tab l i shes  the  general  usefulness of the  method. We find, f o r  

example, t h a t  t he  solut ion imposes general  conditions on 

existence of bound s t a t e s ,  resonances or  possible ghosts. The s e l f -  

consistency property of bootstrap calculat ions imposes addi t ional  e x p l i c i t  

r e s t r i c t i o n s  on acceptable B&(z) f o r  the existence of the bootstrap.  

it i s  shown t h a t  the p a r t i a l  wave matrix N D - l  

This l a s t  fea ture  enables us t o  d i r e c t l y  

B&(z) f o r  the 

( T h i s  paper t o  be submitted t o  Physical Review) 
~ 
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I. INTRODUCTION 

In  p a r t i a l  wave dispersion r e l a t ions  f o r  multichannel processes the  

matrix ND-lmethodlY2 has cane t o  assume a major r o l e  i n  obtaining solut ions 

t o  the  non-linear i n t eg ra l  equations a r i s i n g  out of t he  demand of u n i t a r i t y  

on the  p a r t i a l  wave sca t t e r ing  amplitude 

the  dynamical models 

t o  the  N D - l  i n t e g r a l  equation formalism as  a means f o r  obtaining s e l f -  

consis tent  solut ions t o  the coupled i n t e g r a l  equations which a r i s e  from 

the  dynamics imposed by u n i t a r i t y  and a n a 1 y t i ~ i t y . l ~ ~ ~ ~  

understanding of t he  nature of the  exact solut ions t o  the  N D - l  equations 

has been obtained,14y15y16 p a r t i c u l a r l y  i n  the  s ing le  channel case, no 

general  so lu t ions  t o  t he  N D - l  equations has been found. Consequently one 

i s  motivated t o  f i n d  approximations t o  the  i n t e g r a l  equations which admit 

of systematic improvement towards the  exact so lu t ions .  Various approxi- 

mation schemes begining with the  determinental method of Baker17 and 

including the  methods of Shaw,” Fultonlg and Martin2’ have been proposed 

each of which enjoys undesirable fea tures .  It i s  known t h a t  t he  exact 

solut ion T&(z) i s  independent of the subtract ion point  f o r  the  D 

function2’ and i s  symmetric, 20,21 a r e f l e c t i o n  of time r eve r sa l  invariance, 

f o r  a symmetric dr iving term B&(z). The determinental  method y ie lds  

so lu t ions  which have ne i the r  of these f ea tu res .  The other  approximations 

methods while they have the  property of independence of t he  subtract ion 

point  and symmetry of T&( z )  

dr iving term B&(z).  

mation must be found f o r  each sca t t e r ing  problem with a d i f f e ren t  

T&( z )  . More recent ly  many of 

based on the  boots t rap hypothesis l l  have appealed 3-10 

Although some 

proceed by approximating and modifying the 

This l a s t  fea ture  implies t h a t  a d i f f e ren t  approxi- 

Bt(z) 
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and no general  ins ight  a s  t o  t he  r e l a t ion  between 

amplitude, and the  dr iving term, representing the  forces,  i s  obtained. 

Hence much of t he  physics can remain obscure. 

T&(z), the  sca t t e r ing  

In t h i s  paper we present another approximation scheme which admits 

of systematic improvement. It has the  desired fea tures  of providing a 

so lu t ion  t h a t  i s  independent of the  subtract ion point  and has a symmetric 

T&(z) f o r  a symmetric input B&(z). Moreover s ince w e  approximate only 

a spec t r a l  i n t e g r a l  over 

pu t t ing  a pole on the r igh t ,  the  dynamical term 

and we are  able t o  e s t ab l i sh  an e x p l i c i t  a lgebraic  expression for 

i n  terms of 

t he  r igh t -  and lef t -hand cuts .  With such an e x p l i c i t  a lgebraic  solut ion 

avai lable  w e  may invest igate  d i r e c t l y  the dependence of the  sca t te r ing  

matrix on the  parameters appearing i n  a s  the  coupling constants 

and mass r a t i o s .  For appl icat ions such a s  bootstrap calculations,  t h i s  

method, since it involves only algebra and no integrat ions,  provides a 

reduction of computing time and alleviates the  cha rac t e r i s t i c  "curse of 

dime ns i onal i t y . 
obtaining physical ins ight  i n t o  the boots t rap mechanism. 

P&(z), t h e  kinematical fac tor ,  on the  l e f t  by 

B$(z) remains unchanged 

T&(z) 

B&(z), Eq. (21)J which has the correct  d i scont inui t ies  across 

B&(z) 

More importantly it of fers  a very d i r e c t  method f o r  

11. APPROXIMATION METHOD 

Our i n t eg ra l  equation formalism i s  based on the  ND-' ma,trix formulation 

of Bjorken2 and we assume an unsubtracted dispersion r e l a t ion  f o r  t he  

symmetric s ca t t e r ing  amplitude T&( z )  

R 
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Here R stands f o r  t he  in tegra t ion  over t he  r i g h t  hand u n i t a r i t y  cuts,  z 

i s  the  energy var iable ,  

containing the  6-f'unctions for t he  two p a r t i c l e  thresholds and 

represents  t he  forces  a r i s i n g  from the  dynamical s i n g l a r i t i e s  on the  l e f t .  

We assume B&(z) admits of the  Hilber t  representation, 

p&( z )  i s  a diagonal matrix of kinematical f ac to r s  

B&(z) 

L 

where t h e  i n t e g r a l  extends over t he  l e f t  hand cu ts .  Dropping the  subscr ipt  

we assume next t h a t  t he  solut ions t o  Eq.  (1) are  of the  form 

T ( z )  = N ( z )  D-l(z) ( 3 )  

23 where D(z) has cu ts  only on the r i g h t  and T ( z )  has no CDD poles.  

Since both N(z) and D ( z )  can be mul t ip l ied  by an a r b i t a r y  constant matrix 

without effect ing the solut ions T ( z )  

D(z )  t o  1 a t  some point  z = s . N ( z )  i s  assumed t o  have cu ts  only on the  

l e f t  and we assume 

and the  unitariw condition, ImT-l( z+ic)  = -p( z), 

we have the  freedom t o  normalize 

0 

N (  z )  -+O as 1 z I -+m. We thus obtain from these demands 

the r e p r e s e n t a t i o r ~ s ' ~  

where 



The solut ions t o  t h i s  inhomogeneous l i n e a r  system of i n t e g r a l  equations 

w i l l  then be a so lu t ion  of t he  o r ig ina l  non-linear Eq. (1). 

Subs t i tu t ing  Eq. ( 3 )  i n  ( 4 )  and interchanging orders of integrat ion,  

which causes no addi t iona l  terms t o  appear s ince the  in tegra t ions  a re  

over d i f f e r e n t  ranges, one obtains 

where the  kern81 depends only on the  kinematical f ac to r  and i s  symmetric 

i n  z, y and s : 
0 

Using 

S 1 -- 1 1 -  _ -  2-s (3% - e) 
x - z  x-s 

0 0 

w e  m a y  wr i te  for K ( z , ~ , s ~ )  

where the  dia.gona1 matrix 

depends only on z and the  kinematical fa.ctor P&(x). Subs t i tu t ing  Eq. 

(9) i n  ( 7 )  and doing algebra there  r e s u l t s  
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In obtaining Eq. (11) no approximations have been made. Our approxi- 

mation now follows from t h e  observation t h a t  t o  obtain D i n  terms of 

N we need t o  know F(y) given by Eq.  (10) on the  l e f t  hand cu ts .  The 

funct ion H&(z) = F&(z)/z 

d e f i n i t e  kinematical fac tor ,  

a l l  i t s  der iva t ives  posi t ive,  (z) > 0 , and can be qui te  accurately 

approximated on the  l e f t  by a pole on the  r i g h t  

is  a spec t r a l  i n t e g r a l  over the  pos i t ive  

P&(z) > 0, and hence on the  l e f t  w i l l  have 

( n )  
Ha 

F~(z)/z = H&(z) = C.e/(z-at) 

where C& and a t  a re  constants which are  chosen t o  reproduce Ht(z), 

which i s  known exac t ly  once p t (  z )  

constants C& and a$ a re  completely determined once the  p a r t i a l  wave i s  

spec i f ied .  The one pole approximation is  r a t h e r  good (see  Fig.  2) repro- 

ducing the  exact Ht(z) with in  8% over a la rge  range. If g rea t e r  

accuracy i s  desired one may add more pole terms or double poles t o  Eq.  (12) 

more c lose ly  approximating the  exact 

f o r  which one assumes the  nearby s i n g u l a r i t i e s  dominant, Eq. (12) w i l l  

su f f ice  and reproduces the  main fea tures  of t he  exact solut ion.  

no f i n i t e  number of pole terms can ever reproduce the  exact 

i t s  branch cu t .  This i s  the  only approximation we s h a l l  make and it does 

no t  presume a modified form for This approximation, moreover, h a s  

t he  advantage of reducing the  

i s  given, as bes t  as  possible .  The 

Ht( 2).  However f o r  most applications,  

O f  course, 

with H&(z) 

B(z).  

ND-’ equations t o  algebra.  

Subs t i tu t ion  of Eq. (12) i n  Eq.  (11) yie lds  D i n  terms of N: 
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where 

This expression (Eq.  (13 ) )  has the  propert ies  of the  origina.1 in t eg ra l  Eq. 

( 4 )  : D( z,s0) - 1 = - D( so,z) f 1 h D (  z , s o ) = -  p( z)N( z ,so) .  

Using F (z )  = Cz/(z-a) Eq. (13) becomes 

and u n i t a r i t y  

which, within the  limits of our approximation, i s  an accurate expression 

for D ( z )  along the  l e f t  cu t .  This i s  what i s  required t o  solve for 

N ( z )  from ljnN(z,so) = ImB(z)D(z,so) and Eq. ( 3 ) .  From Eqs. ( 5 ) ,  (6), 

(15) and the  iden t i ty  

Z a - - X - 
x-a) x-z) ( z-a)  (x-a) 

there  r e s u l t s  

f o r  N(z) i n  terms of  B(z).  Since D(z , so )  given by Eq. (13) and 

N( z, s o )  i s  independent 

of so (Appendix I) and symmetric T ( z )  = T ( z )  (Appendix 11) we may s e t  

so=O 

given by Eq. (16) imply T( z )  = N( 2,s )D-l( z, s ) 
0 0 

T 

without l o s s  of accuracy and a gain i n  s implici ty .  

Then from Eq. (16) 

CaM a 1 
z -a. N(z) = B(z) - (zB(z)-aB(a)) 
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and Eq. (13) 

D(z) = 1 - zF(z)N(z) + - z-a (18) 

and one f inds  from Eq. (17) s e t t i n g  z=a 

(19) 

where B'(a) = dB(a.)/da. For S waves, L O ,  beca.use of t he  asymptotic 

behavior of kinematical  f a c t o r  we f i n d  thak it i s  b e t t e r  t o  approximate 

F(z)  = C / ( Z - a >  ins tead  of H(z) ( see  Appendix 111). Then Eq. (18) i s  

replaced by 

C(z) = 1 - zF(z)N(z) + *  z -a (N(z) - N(a)) ( 2 0 )  

L O  

and 8. replaced by C in Eq.(l7) and (19). The addi t ion of more pole terms 

and double poles t o  our approximation does not e f f e c t  the  method f o r  

obtaining N(z) and D(z) a s  e x p l i c i t  a lgebraic  functions of B(z) 

although the  inversion going f rom Eq. (17) t o  (19) would now involve the 

solving of a l i n e a r  system of a lgebraic  makrix equations which can be 

solved using standard techniques. 

Our so lu t ion  f o r  T ( z ) ,  the  sca t t e r ing  amplitude, a s  an e x p l i c i t  

funct ion of the  dr iving terms, B(z), i s  

T(z)  = [B(z) - (zB(z) - aB(a)) --(a)] Ca . z -a 

where N(a) is given by Eq. (19). On the  l e f t  cut Eq. (2m) becomes 



since F( z )  = Cz/( z-a,) 

(21L) 
T ( z )  = [B(z) - (zB(z) - aB(a)) Ca N(a)] [l - - Cza 

z -a z -a 

This so lu t ion  has the  cor rec t  d i scont inui t ies  s ince (2LR) implies 

ImT-l(z) = - p(z )  and (21L) implies ImT(z)  = ImB(z). Hence we expect 

many of the fea tures  of the  exact solut ion are  reproduced by Eq. (21). 

In obtaining these solut ions we have assumed t h a t  a l l  i n t eg ra l s  are  

convergent. Our proposed approximate so lu t ion  @ . ( = ) f o r  T ( z )  i n  t he  

low energy region depends only on 

jec ture  t h a t  t he  above solut ion i s  v a l i d  i r respec t ive  of 

B(z) i n  t h a t  region and w e  may con- 

B ( z )  i n  the 

high energy region simply on the  bas i s  t h a t  it ha.s the cor rec t  discon- 

t i n u i t i e s .  

111. BOUND STATE AND BOOTSTRAP CONDITIONS 

For s impl ic i ty  we r e s t r i c t  our  a t t en t ion  t o  the s ingle  channel 

z=4. 

S 

wave case and we scale  the  energy s o  t h a t  the  threshold i s  a t  

Let us suppose the forces  a re  a t t r a c t i v e  i n  t h i s  channel and s u f f i c i e n t l y  

strong t o  produce a bound s t a t e  with energy 0 < zo < 4. 

region, t o  the  l e f t  of the  u n i t a r i t y  cut,  we approximate 

and from Eq. (20)  and Eq. (19) (with Ca replaced by C )  we have 

In  t h i s  energy 

F (z )  21 C/z-a 

N( a >  
cz 
z -a D ( z )  = 1 - - 

z-a) 1 i- C B(a) i- aB'(a))  
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Factoring the  coupling constant from the  dr iving term B( z )  +g2 B( z) t he  

condition t h a t  T ( z )  have a. simple pole a t  z = z corresponding t o  the  

bound s t a t e  implies which imposes the  r e s t r i c t i o n  on the form 

of B( z )  : 

0 

D(z ) = 0 
0 

This condition ha.s i t s  bas is  i n  the  uni ta ry  condition; it is  understood 

t o  be a,pproximate. 

A s imi la r  condition ma.y be obtained for the  existence of a resona.nce 

using Eq. (20)  for 

0 < zo < 4 < a. , Eq. (23)  implies t h a t  for there  t o  e x i s t  a bound s t a t e  

D ( z )  instea.d of Eq. (22 ) .  Since g2 > 0, C < 0, 

B(a) - (zo-a)  B ' ( a )  3 0 (24) 

the equa.l i ty holding i n  the  l i m i t  of i n f i n i t e  coupling. 

may admit so lu t ions  with z < 0 which implies t he  existence of a ghost 

s take.  

bound s t a t e  i n  terms of 

Equation (23)  

0 

One may, of course, use Eq. (23)  t o  obtain the  loca t ion  of the  

g2, B ( z ) .  

If we furthermore employ the  boots t rap hypothesis then t h i s  bound 

s t a t e  corresponds t o  the  exchanged pa . r t ic le  producing the  force 

and the  residue of T ( z )  a t  z = zo i s  the  coupling constant -g2 . 
B( z, zo)  

D'(zo)/N(z0)  From t he  condition - = - and Eq. (22)  and (23)  one obtains 1 
g2 

0 1 1 

along with Eg. (23);  
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If the boots t rap i s  t o  work and the exchanged p a r t i c l e  i s  t o  correspond t o  

the  bound s t a t e  we have an addi t iona l  r e s t r i c t i o n  from Eqs.  (23) and (26) 

B(a,zo)(a - zo) = 1 (27) 

These boots t rap conditions f o r  the  s ing le  channel case have appropriate 

general izat ion t o  the multichannel case. 

mation f o r  F(z)  

not take the  simple form above; i n  f a c t ,  there may be more than one solut ion 

If we use an improved approxi- 

including addi t iona l  pole terms then the  conditions do 

From Eqs.  (25) and (26) one can obtain the  se l f -cons is ten t  solut ions fo r  

g2 and z i f  the boots t rap conditions a re  satisfied. One picks z so 

t h a t  Eq. ( 2 7 )  i s  s a t i s f i e d  and g2 can then be obtained from e i t h e r  Eq.  (25) 

o r  (26). For S waves a good one pole f i t  t o  F(z) i s  obtained with 

C =-1.8/~, a = 7.6 (see Fig. 1 and Appendix 111). 

of  two pseudoscalar mesons of mass = 1 sca t t e r ing  i n  the S s t a t e  v i a  the 

exchange of a sca l a r  meson of ( m a s s ) 2  = z t o  produce a bound S state 

with (mass)2 = zo, the Born term i s  given by 

0 0 

I n  the boots t rap example 

0 

2 
B(z,z o m  ) = 

We find t h a t  condition (27) i s  s a t i s f i e d  f o r  z N 4.5 and ( 2 3 )  implies 

that  the se l f -cons is ten t  value f o r  the coupling i s  g N 2.7. 

0 

2 

The multichannel pole approximation method can be expected t o  reduce 

self-consistency type ca lcu la t ions  t o  matrix algebra p r i o r  t o  any 
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spec i f i ca t ion  of the  input  forces  i n  the  crossed channels. 

terms can then be solved i n  a s e l f  cons is ten t  manner. 

The dr iv ing  

25 

The author would l i k e  t o  thank Prof. A. W. Martin for severa l  he lpfu l  

discussions and c r i t i c a l  comments. 
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Here we demonstra.te t he  independence of T ( z )  on the  subtract ion 

point .  Our solut ion i s  

Equa.tion (1.1) with z = s implies 0 

with R(a) independent of so. Then Eq. (1.3) and (1.1) imply 

N(z,so) = R(z) d s , )  (1.4) 

w i t h  R(z) independent of so.  Subst i tut ion of Eq.  (1.3) and (1.4) 

i n t o  (1.2) implies 

with Q(z )  independent of so and hence f rm (1.4) and (1.5) 

T(z) = N(z,so) D-l(z,so) = R(z) Q- l (z )  independent of s 
0 
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APPENDIX I1 

T ( z )  = T ( z )  
T Here we s h a l l  show t h a t  f o r  a symmetric dr iving t e r n  

T B(z) = B ( z ) .  Since the  so lu t ion  is  independent of s choose s = z 

s o  that D( z,z) = 1 from (1.2) and 

s t r a t e  N( z ,z) = N ( z , z )  . Writing 

0 0 

T( z )  = N( z ,z) .  Hence we must demon- 

T 

g ( z )  = 1 + A(z) 

where 

A ( z )  = zN(z,z)F(z) - z-& cz (zN( z, z )  - aN( a., z)) (11.1) 

T and F (z )  = F ( z )  and C = CT a.re dia.gona1 matrices, we f i n d  from (1.1) 

N(z,z) = B ( z )  + B(z) A(z) - (zB(z) - aB(a,)) z -a N(a,z) (11.2) 

the  f i rs t  term of which i s  obviously symmetric. 

t h e  f i r s t  term 

subs t i t u t ing  t h i s  expression f o r  B(z) 

there  r e s u l t s  : 

Solving Eq. (11.2) f o r  

B( z ) ,  taking the  transpose of the  r e su l t i ng  equation and 

i n t o  the  second two terms of (11.2) 

T T - A ( z ) B ( z ) A ( z )  + N (a ,z )  Ca, z -a. (zB(z) - a.B(a) 
1 

- + N T (a,.) z] B ( z )  - z {NT(z,z) - [,NT(z,z) (F(z) z -a 

+ NT(a,z) - Ca (zB(z) - aB(a))\ N(a,z) + aB(a) - Ca N(a,z) 

z -a 

z -a z -a 

T j 2  Ca 
= s ( z )  - aN (a,,z) B(a) ( zF( z )  - ") N( z,z) + a.B(a) - z -a N(a,z) z -a z -a 

( 11.4) 
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where s ( z )  i s  a symmetric m a t r i x  consis t ing of terms of the  form W T BW, 
T T W Bx + X BW. 

a r e  symmetric. Se t t ing  z=a a.nd s =z i n  Eq. (1.1) there  r e s u l t s  

We must s t i l l  show t h a t  t he  remaining terms of Eq. (11.4) 

0 

T with  

both s ides  of Eq. (11.5) and using Eq. (11.1) 

Q(a )  = QT(a) = 1+Ca + aB'(a)) . Multipling by N ( a , z )  on 

T T 
NT( a,z)Q( a)N( a, z )  = N (a,  z)B( a )  + N (a,z)B( a )  (zF( z )  - @) N( z , z )  z -a 

( 11 .6) 
T Cza 

+ N (a ,z)B(a)  z-a N(a,z> 

when mul t ip l ied  by Ca2/( z - a )  and substi tuded i n  (11.4) y ie lds  

T s o  t h a t  N( z,z) = N (z,z) where we have used the f a c t  t h a t  C i s  

dia.gona1 and commutes with any matrix.  



APPETJDIX I11 

Here we consider the d e t a i l s  of t he  pole approximation t o  the  spec t r a l  

i n t eg ra l .  The function F t ( z )  depends only on the kinematical f a c t o r  

( I11 .l> 

Se t t ing  the beginning of t he  uni ta . r i ty  cut  a t  z = 4 and wr i t ing  f o r  the  

kinematical  f a c t o r  

&O 
2 

Z t > l  - 

we f i n d  f o r  H t ( z )  from Eq. (111.1) 

(111.2) 

From Eq. (111.3) we have H ( z )  +log  z/z ; z +- . For S waves we 
1 

s h a l l  use F(z)  ins tead  of H(z)  : 

(111.4) 

where we may se t  const = 0 since the  addi t ion of a constant t o  

not  change the so lu t ion .  

F(z)  does 

The s ingle  pole approximation then cons is t s  of 
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writing 

and the constants 

Ht(z) and Fo(z) given by (111.3-4) f o r  

C& and a& are chosen to reproduce the behavior of 

-60 < z < - 4. 

For S and P waves the results of a single pole f i t  are shown in 

Fig. 1 and Fig.  2. 

with Co = - 1.8/fi a = 7.6 and C = - 1.71/~r, a = 14.3. 

We reproduce the exact function to the accuracy shown 
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FIGURE CAPTIONS 

1. Pole f i t  t o  the S wave spectraL function Fo( z )  . The s o l i d  l i n e  

i s  4fiF ( Z) a'nd the dot ted l i n e  i s  the s ingle  pole f i t  with 
0 

a. 0 = 7.6 and Co = -1.8/~. 

2 .  Pole f i t  t o  t h e  P wave s p e c t r a l  function H ( z )  . The s o l i d  l i n e  is  
1 

4aFO(z) a.nd the dotted l i n e  i s  the  s ingle  pole f i t  with a = 14.3 
1 

and C = - 1.71/~. 
J. 
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