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ABSTRACT

By making a pole approximation to the spectral integral over the
kinematical factor p (z) it is shown that the partial wave matrix Np t
integral equations are reduced to algebra. The approximation depends
only on the particular partial wave and not the dynamics of the reaction
and it admits of systematic improvement. The resulting scattering
amplitude I%ﬂz) is symmetric, independent of the subtraction point for
the D function, has the correct-discontinuities on the right and left
hand cuts and can morecver be explicitly expressed as an algebraic function
of the driving term E%jz). This last feature enables us to directly
inspect the relation between the driving force and the scattering amplitude
and establishes the general usefulness of the method. We find, for
example, that the solution imposes general conditions on B{KZ) for the
existence of bound states, resonances or possible ghosts. The self-
consistency property of bootstrap calculations imposes additional explicit

restrictions on acceptable B{ﬂz) for the existence of the bootstrap.

(This paper to be submitted to Physical Review)
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I. INTRODUCTION

In partial wave dispersion relations for multichannel processes the
matrix ND 'method!’?Z has came to assume a major role in obtaining sclutions
to the non-linear integral equations arising out of the demand of unitarity
on the partial wave scattering amplitude Tp(z). More recently many of

3719 pased on the bootstrap hypothesisll have appealed

the dynamical models
to the ND * integral equation formalism as a means for obtaining self-
consistent solutions to the coupled integral equations which arise from
the dynamics Imposed by unitarity and analyticity.lz’l3 Although some
understanding of the nature of the exact solutions to the ND ! equations

has been obtained,t*?15216

particularly in the single channel case, no
general solutions to the npt equations has been found. Consequently one
is motivated to find approximations to the integral equations which admit
of systematic improvement towards the exact solutions. Various approxi-

v and

mation schemes begining with the determinental method of Baker®t
including the methods of Shaw,l8 Fulton19 and Martin® have been proposed
each of which enjoys undesirable features. It is known that the exact

solution Tp(z) is independent of the subtraction point for the D

20 20,21

function®" and is symmetric, a reflection of time reversal invariance,
for a symmetric driving term B{ﬂz). The determinental method yields
sclutions which have neither of these features. The other approximations
methods while they have the property of independence of the subtraction
point and symmetry of Tmﬂz) proceed by approximating and modifying the
driving term B{Kz). This last feature implies that a different approxi-

mation must be found for each scattering problem with a different B{ﬂz)



and no general insight as to the relation between T{ﬂz), the scattering
amplitude, and the driving term, representing the forces, is obtained.
Hence much of the physics can remain obscure.

In this paper we present another approximation scheme which admits
of systematic improvement. It has the desired features of providing a
solution that is independent of the subtraction point and has a symmetric
Tp(z) for a symmetric input Bp(z). Moreover since we approximate only
a spectral integral over p{jz), the kinematical factor, on the left by
putting a pole on the right, the dynamical term B{ﬂz) remains unchanged
and we are able to establish an explicit algebraic expression for T&(z)
in terms of Bﬁ(z), Eq. (21), which has the correct discontinuities across
the right- and left-hand cuts. With such an explicit algebraic solution
available we may investigate directly the dependence of the scattering
matrix on the parameters appearing in B&(z) as the coupling constants
and mass ratios. For applications such as bootstrap calculations, this
method, since it involves only algebra and no integrations, provides a
reduction of computing time and alleviates the characteristic "curse of
dimensionality."22 More importantly it offers a very direct method for

obtaining physical insight into the bootstrap mechanism.

II. APPROXIMATION METHOD

Our integral equation formalism is based on the ND ' matrix formulation
of Bjorken2 and we assume an unsubtracted dispersion relation for the

symmetric scattering amplitude TZKZ)
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Here R stands for the integration over the right hand unitarity cuts, =z
is the energy variable, p,f/(z) is a diagonal matrix of kinematical factors
containing the 8-functions for the two particle thresholds and B/&(z)

represents the forces arising from the dynamical singlarities on the left.

We assume B,[)/(z) admits of the Hilbert representation,

Byo) = 3 [ derpedzl) (2)

i z! -z
L

where the integral extends over the left hand cuts. Dropping the subscript

£ we assume next that the solutions to Egq. (1) are of the form

T(z) = N(z) D-l(z) (3)

where D(z) has cuts only on the right and T(z) has no CDD poles.=>
Since both N(z) and D(z) can be multiplied by an arbitary constant matrix
without effecting the solutions T(z) we have the freedom to normalize
D(z) to 1 at some point 2z = S, e N(z) dis assumed to have cuts only on the

left and we assume N(z) —+0 as |z| >w=. We thus obtain from these demands

and the unitarity condition, Im'I‘—l(z-f-ie) = -p(z), the represem:ai:ionsl7
z-8 d.xp(x)N(x,So) N
Dlzys0) =1 - = [CEREE=Y )
R
- x dx ImN(x,sq)
N(z,so) == f — (5)
L
where
ImN(x,s ) = ImB(x) D(x,so) . (6)



The solutions to this inhomogeneocus linear system of integral equations
will then be a solution of the original non-linear Eg. (1).

Substituting Eq. (5) in (4) and interchanging orders of integration,
which causes no additicnal terms to appear since the integrations are

over different ranges, one obtains

Z

D(z,s.) = 1 + ; s f dayK(z,y,s_) Inl(y,s ) (7)
L

where the kernal depends only on the kinematical factor and is symmetric

in z, y and 5,

NI

Jf : dx p(x) . (8)

K(z,y,8.) = x-s_)(x-2)(x-y
R

Using

101 _ .1 z %
X-2 X-8 Z-5 x(x-2) x(iFSO)
we may write for K(z,y,so)

_ 2F(%) yF(y) 555 (55)
K(Z,y,SO) - (E..y)(z—so) + (y—z)(y—so) * (SO'Z)(SO'yj (9)

where the diagonal matrix

dxpp(x)
Fp(z) = 2 f — (10)

R x=(x-2)

depends only on z and the kinematical factor Qﬁ(x). Substituting Eq.

(9) in (7) and doing algebra there results

s
D(z,so) =1 - zF(z)N(z,so) + sOF(sO)N(sO,sO) + % L/ﬂdyF(y)ImMy’so)(_&_z___z_ - ngo>
' L

(11)



In obtaining Eq. (11) no approximations have been made. Our approxi-
mation now follows from the observation that to obtain D in terms of
N we need to know F(y) given by Eq. (10) on the left hand cuts. The
function H{ﬂz) = F%ﬁz)/z is a spectral integral over the positive
definite kinematical factor, p{ﬁz) > 0, and hence on the left will have

)

n
all its derivatives positive, H% (z) >0 » and can be quite accurately

approximated on the left by a pole on the right

Fmﬂz)/z = H{!z) o C{/(z-a{) (12)

where C{’ and ay are constants which are chosen to reproduce HQKZ),
which is known exactly once p{ﬂz) is given, as best as possible. The
constants Cﬁ' and ayp are coampletely determined once the partial wave is
specified. The one pole approximation is rather gocd (see Fig. 2) repro-
ducing the exact HQﬂz) within 8% over a large range. If greater
accuracy is desired one may add more pole terms or double poles to Eq. (12)
more closely approximating the exact H{ﬂz). However for most applications,
for which cne assumes the nearby singularities dominant, Eq. (12) will
suffice and reproduces the main features of the exact solution. Of course,
no finite number of pole terms can ever reproduce the exact H{jz) with
its branch cut. This is the only approximation we shall make and it does
not presume a modified form for B(z). This approximation, moreover, has
the advantage of reducing the ND~t equations to algebra.

Substitution of Eq. (12) in Eq. (11) yields D in terms of N:

D(z,so) = g(so) - zF(z)N(z,so) + %%E (zN(z,so) - aN(a,so)> (13)



where

Cs

g(so) = 1+ soF(so)N(so,so) - E_%a (sON(so,so) - a N(a,so)> (1k4)

g(o) 1

This expression (Eq. (13)) has the properties of the original integral Eq.
(W): D(z,sy) - 1= - D(so,z) + 1 and unitarity ImD(z,sO)=— p(z)N(z,sO).
Using F(z) = Cz/(z-a) Eq. (13) becomes

D(z,5,) = &ls,) - == Na,s) (15)

which, within the limits of our approximation, is an accurate expression
for D(z) along the left cut. This is what is required to solve for
N(z) from ImN(z,so) = ImB(z)D(z,so) and Eq. (5). From Egs. (5), (6),

(15) and the identity

X — Z _ a
(x-a)(x-z) = (z-a)(x-z) = (z-a)(x-a)

there results
can(a,s )

Z-a

(16)

@)

N(z,s ) = B(z)g(so) - (zB(z)—aB(a))

for N(z) in terms of B(z). Since D(z,so) given by Eq. (13) and
N(z,so) given by Eq. (16) imply T(z) = N(z,sO)D-l(z,so) is independent
of e (Appendix I) and symmetric T(z) = TT(z) (Appendix IT) we may set
so=O without loss of accuracy and a gain in simplicity.

Then from Eq. (16)

N(z) = B(z) - (zB(z)-aB(a)) 2] (17)



and Eqg. (13)

D(z) = 1 - zF(z)N(z) + gﬁg '(zN(z)—aN(a.)) (18)

and one finds from Eq. (17) setting z=a

N(a) = [1 + cafB(a) + aB’(a))] B(a) (19)
where B'(a) = dB(a)/da. For S waves, £=0, because of the asymptotic
behavicr of kinematical factor we find that it is better to approximate
F(z) = ¢/(z-a) instead of H(z) (see Appendix III). Then Eq. (18) is
replaced by

D(z) = 1 - 2F(2)N(z) + 2= ((z) - N(a)) (20)

2=0

and Ca replaced by Cin Eq.(17) and (19). The addition of more pole terms
and double poles to our approximation does not effect the method for
obtaining N(z) and D(z) as explicit algebraic functions of B(z)
although the inversion going from Eq. (17) to (19) would now infolve the
solving of a linear system of algebraic matrix equations which can be
solved using standard techniques.

Our solution for T(z), the scattering amplitude, as an explicit

function of the driving terms, B(z), is

ﬂz)=[ﬂz)— GHZ)-&Ha> Ca M84 .

Zz-a

[1 - 22 w(a) - 5 (R(2) - &) (B(z) - (23(2) - aB(a)) -%N(a))]-l (21R)

Z-a

where N(a) is given by Eq. (19). On the left cut Eq.(21R) becomes



since F(z) = Cz/(z-a)

T()-[B() (28(2) B())Q"Z‘—N()][l fza ]—l
z) = z) - (2B(z) - aB(a)) T N(a - a) (21L)

Z
z=-a

This solution has the correct discontinuities since (21R) implies
ImT_l(z) = - p(z) and (21L) implies ImT(z) = ImB(z). Hence we expect
many of the features of the exact solution are reproduced by Eq. (21).
In obtaining these solutions we have assumed that all integrals are
convergent. Our proposed approximate solution Eq.(21l) for T(z) in the
low energy region depends only on B(z) in that region and we may con-
jecturé that the above solution is valid irrespective of B(z) in the

high energy region simply on the basis that it has the correct discon-

tinuities.

ITI. BOUND STATE AND BOOTSTRAP CONDITIONS

For simplicity we restrict ocur attention to the single channel 8
wave case and we scale the energy so that the threshold is at z=Uk.
Let us suppose the forces are attractive in this channel and sufficiently
strong to produce a bound state with energy 0 < Z, < 4. In this energy
region, to the left of the unitarity cut, we approximate F(z) = C/z-a

and from Eq. (20) and Eq. (19) (with Ca replaced by C) we have

Dz) =1 - %%5 N(a)

(22)




Factoring the coupling constant from the driving term B(z) —+g2 B(z) the
condition that T(z) have a simple pole at z = z., corresponding to the
bound state implies D(zo) = 0 which imposes the restriction on the form

of B(z):

1 . G (B(a) - (z-a) B'(a)) (23)

Z =a
= e}

This condition has its basis in the unitary condition; it is understood
to be approximate.

A similar condition may be obtained for the existence of a rescnance
using Bq. (20) for D(z) instead of Eq. (22). Since g >0, C <0,

0 < zZ, <L <a » Eq. (23) implies that for there to exist a bound state

B(a) - (zo-a) Bf(a) >0 (24)

the equality holding in the limit of infinite coupling. Egquation (23)
may admit solutions with z < 0 which implies the existence of a ghost
state. One may, of course, use Eq. (23) to obtain the location of the
bound state in terms of g=, B(z).

If we furthermore employ the bootstrap hypothesis then this bound
state corresponds to the exchanged particle producing the force B(z,zo)
and the residue of T(z) at =z = z, is the coupling constant -g2 .

From the condition éz = - D'(zo)/N(zo) and Eq. (22) and (23) one obtains

.];_2- = - Ca [Ba(a,zo) + B’(a,zo)] (e5)
along with Eg. (23);

1 Ca

g

[B(a,zo) - (zo-a) B'(a,zo)] . (26)

2 Z -3
e}

- 10 -



If the bootstrap is to work and the exchanged particle is to correspond to

the bound state we have an additional restriction from Eqs. (25) and (26)

B(a,zo)(a - zo) =1 (27)

These bootstrap conditions for the single channel case have appropriate
generalization to the multichannel case. If we use an improved approxi-
mation for F(z) including additional pole terms then the conditions do
not take the simple form above; in fact, there may be more than one solution

ror g2 . (2%)

From Eqs. (25) and (26) one can obtain the self-consistent solutions for
g2 and Z if the bootstrap conditions are satisfied. One picks z, 80O
that Eq. (27) is satisfied and g% can then be obtained from either Eq. (25)
or (26). For S waves a good one pole fit to F(z) is obtained with
C =-1.8/, a = 7.6 (see Fig. 1 and Appendix IIT). In the bootstrap example
of two pseudoscalar mesons of mass = 1 scattering in the S state via the
exchange of a gcalar meson of (mass)g = Zo to produce a bound S gtate
with (mass)® = Zg > the Born term is given by

B(z,zo) = (E%ET 1n (l + E:E ) . (28)

e}

We find that condition (27) is satisfied for Z, = 4.5 and (25) implies
that the self-consistent value for the coupling is g2 ~ 2.7.
The multichannel pole approximation method can be expected to reduce

self-consistency type calculations to matrix algebra prior to any

- 11 -



specification of the input forces in the crossed channels. The driving

terms can then be solved in a self consistent manner.=>
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APPENDIX I

Here we demonstrate the independence of T(z) on the subtraction

point. Our solution is

N(z,s_) = B(z) &(s ) - (EB(Z) - aB(a)) (Eﬁéiéigl (1.1)

D(z,so) = g(so) - zF(z)N(z,so) + %%g (zN(z,so) - aN(a,so)) (1.2)

Equation (I.1) with z = s, implies

,N(a,so) = R(a) g(so) - (1.3)
with R(a) independent of s_. Then Eg. (I.3) ana (I.1) imply |

N(z,so) = R(z) g(so) (I.%)

with R(z) independent of 5, Substitution of Eq. (I.3) and (I.4)
into (I.2) implies

D(z,s.) = Qz) &(s ) - (1.5)

with Q(z) independent of s, and hence fram (I.4) and (I.5).

T(z) = N(z,so) D-l(z,so) = R(z) Q" (z) independént of 8.

- 13 -



APPENDIX II

Here we shall show that T(z) = TT(Z) for a symmetric driving temm
B(z) = BT(Z). Since the solution is independent of s choose s = z
so that D(z,z) = 1 from (I.2) and T(z) = N(z,z). Hence we must demon-

strate N(z,z) = NT(z,z). Writing

glz) = 1 + A(z)

where

A(z) = zN(z,2)F(z) - S%E (zN(z,z) - aN(a,z)) (11.1)

T

and F(z) = FT(z) and C = C~ are diagonal matrices, we find from (I.1)

N(z,z) = B(z) + B(z) A(z) - (zB(z) - aB(a.)) %N(a,z) (11.2)

the first term of which is obviously symmetric. Solving Eq. (II.2) for
the first term B(z), taking the transpose of the resulting equation and
substituting this expression for B(z) into the second two terms of (II.2)

there results:

N(z,z) = B(z) + NT(z,z) (zF(z) - g%;) N(z,z) + NT(z,z) g%% N(a,z)

AT(2)B(2)A(z) + N (a,2) 2 (zB(z) - aB(a)) (zF(z - g-f-:)m(z,z)

z NT(z,z) - [ZNT(z,z) (F(z - %%E) + NT(a,z) %%% B(z)

N

+

T(a,z) g%; (zB(z) - aB(a)) %%E:N(a,z) + aB(a) E%E N(a,z)

= s(z) - aNT(a,z) g%g B(a) ( zF(z) - %%;) N(z,z) + aB(a) g-?‘-—-N(a,z)

- 14 -



where s(z) 1s a symmetric matrix consisting of terms of the form WTBW,
WTBX + XTBW. We must still show that the remaining terms of Eq. (II.k4)

are symmetric. Setting z=a and s =2 in Eq. (I.1) there results
Q(a)N(a,z) = B(a) &(z) (I1.5)

with Q(a) = Q,T(a) = 1+Ca (B(a) + aB'(a)> . Multipling by NT(a,z) on

both sides of Eq. (II.5) and using Eq. (II.1)

NT(a,z)Q(a)N(a,z) = NT(a,z)B(a) + NT(a,z)B(a) (zF(z) - %%2) (z,z)

(II.6)
+ NT(a,z)B(a) Cza N(a,z)

Z-a

when multiplied by Ca®/(z-a) and substituded in (II.4) yields
T T Cza
N(z,z) = s(z) + |N"(a,z) B(a) + B(a)N(a,z) + N (a,z) B(a)N(a,z) Py

- NT<a’Z)Q(a)N(a,Z)] g%g

so that N(z,z) = NT(Z,Z) where we have used the fact that C is

diagonal and commutes with any matrix.

- 15 -



APPENDIX IIT

Here we consider the details of the pole approximation to the spectral

integral. The function Fkﬁz) depends only on the kinematical factor

dx X
F,&(z)/z = Hp(z) =% f -—2-2-)—(——;- . (III.1)
R X \X-2Z

Setting the beginning of the unitarity cut at =z = L and writing for the

kinematical factor

N 2041
- {2-% 2. — (Z-LP) 2

P (2) = ( - ) 5 pplz) = (III.2)

=0 £>1 z =
we find for Hgﬂz) from Eq. (III.1)
H (2) = ;l; % + 282 (1 - £ 1og -Z‘{%)]
H£+l(z) = a? Hp(z) + "z’(?%@')_:? (III.3)
a€ =1 - E 1>1
A

From Eq. (III.3) we have Hl(z) —1log z/z ; z - o . For S waves we

shall use F(z) instead of H(z)

_a _a a+l
Fo(z) = = [l 5 log ETT] + const (III.4)

where we may set const = O since the addition of a constant to F(z) does

not change the solution. The single pole approximation then consists of

- 16 -



writing

H{ﬂz) o C{/(z-a&) 4>1

el

N

~—
R

CO/(z-aO) =0

and the constants C{,and ap are chosen to reproduce the behavior of
H&(z) and Fo(z) given by (III.3-4) for -60 < z < k.

For S and P waves the results of a single pole fit are shown in
Fig. 1 and Fig. 2. We reproduce the exact function to the accuracy shown

with C_ = - 1.8/x a = 7.6 and c = - 1.71/x, a_ = 1k.3.

- 17 -
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FIGURE CAPTIONS
Pole Tit to the S wave spectral function Fo(z). The sclid line
is MKFO(Z) and the dotted line is the single pole fit with
a, = 7.6 and C, = -1.8/x.
Pole fit to the P wave spectral function Hl(z). The solid line is

MﬂFo(z) and the dotted line is the single pole fit with a = 1k.3

and C = - 1.71/x.
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