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ABSTRACT

The anomalous magnetic moments of the baryon octet are calculated
in broken SU(3) symmetry using low energy pole dominance as.a dynamical
model and keeping only the lowest lying intermediate states, the pseudo-
scalar meson, baryon states. Using dispersion theory the ancmalous moments
are related to an energy integral over the S% and P% photomeson production
amplitudes which at low energy and for vanishing meson mass are exactly
given by the pole terms. From this exact information we calculate the
low energy contribution to the anomalous moments keeping all orders in
baryon and meson mass splittings and using the SU(3) symmetric strong
coupling constants. We are able to account for the dominant contribution
to the proton and neutron magnetic moment and find in addition for F/D
ratio ~ 0.6 that K(A) ~ 0.4 K(n) in agreement with the observed value.
The SU(3) predict;ons for the other moments and the 2% A+ ¥ transition

moment are found to be more badly violated.

(This paper to be submitted to Physical Review)
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I. INTRODUCTION

Our purpose here is to present a dynamical calculation of the magnetic
mcments of the baryon octet in broken SU(3) symmetry by applying the method
of low energy pole daminance.® It has been shown®” that to all orders in
the SU(3) symmetric strong couplings and to first order in the electro-
magnetic coupling that ail the static magnetic moments of the baryons,
including the EO-+A9 + 7 transition mament, can be expressed in terms of
the proton and neutron magnetic maments. The question to which we now
address ourselves is how are these predictions in the limit of exact SU(3)
symmetry altered by taking into account the observed splitting of the
baryon and meson masses? To answer this we must appeal to a specific
dynamical model which we shall now describe.

We assume that the charged baryons have an intrinsic Dirac moment
Mp = e/2MB while for the uncharged baryons up = O. The anomalous part, KB’
of the total moment, pp , given by KB e/aMB = pp-bp  1s to be accounted
for in terms strong interaction corrections to the baryon electromagnetic
current. We estimate these corrections by applying the method of low
energy pole dominance already successfully applied to the calculation of
the electron anomalous mcment, g€-2, and the anamalous moments of the

1 The fundemental assumption of this method is that

nucleons, Kp and Kn'
the static electromagnetic properties of a particle emerge predominantly

as a consequence of the physics of the low energy region. For the baryons
this implies it is the lighter charged mesons in the cloud surrounding the

baryon whose coupling with the electromagnetic field transforms like

Q=e (F3 + FS/\/E) that are responsible for contributing the major part



of the anomalous moment. In Ref. 1 the hypothesis of low energy docminance
was applied to nucleon moments with the result KP = - Kh which followed
fram the pure isovector character of the electromagnetic coupling to the
nucleon current in the 1limit of low momentum transfer.

To estimate the magnitude of the low energy contribution to the
anomalous moments we use sidewise dispersion relations first used by
Bincer in an examination of the electromagnetic properties of the nucleons.*
Bincer was able to relate, as we shall spell out in more detail below,
the anomalous static moment of a fermion to an energy integral over the
S% and P% photomeson production amplitudes. The pole terms of the photo-
meson production amplitude for vanishing meson mass correspond at thres-
hold to the exact amplitude. 3By including only the pole terms in the
photomeson production amplitude and extending the energy integral only
over the low energy region this exact threshold behavior is incorporated
into the calculation of the static moments. In agreement with the hypothesis
of threshold dominance it is found in the case of the nucleons that the
major contribution to Kp and Kn can be accounted for from the low
energy region M < E< 1.7 M of the photopion production amplitude with

expt expt
the result K(p) =~ 1.5, K(n) =~ - 1.6 where X(p) = 1.79, Kn) = -1.91.
Purely on the basis of this successful estimation of the nucleon moments
assuming threshold dominance do we now attack the problem of camputing

the moments of the remaining members of the baryon octet.



IT. CALCULATION OF THE ABSORPTIVE AMPLITUDE

Here we shall show how the static mament is related to the photo-
meson production emplitude. Consider the transition amplitude for a
virtual fermion of momentum p + 4 and invarient mass W, W2 = (p+£)2,
to produce a real fermion of momentum p, p2 = Mf and a real photon of
momentum {9 42 = 0, (Figure 1.). Bincer® has shown that the most general

form for this vertex consistent with Lorentz invariance, parity invariance,

time reversal, and the generalized Ward and identity is

aM M
1 1
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where the invariant functions K(W2), K (W), F (W2) are analytic functions
3

-io A, M
eu(p)T, = eu(p) |7, + <K(W2) vt F;r(wz)qol“>< 1*164)

in the cut W2 plane with the branch cut extending from the threshold of
the lightest intermediate state with the quantum numbers of the fermion
to + ©. We recognize fram Eq. (1) in the limit W —M, K(Mi‘) as the
ancmalous moment of the fermion. From the analytic properties of K(Wg)
and the assumption XK(WZ) —0 as |W¥|—>w we may write an unsubtracted

dispersion relation for K(W2)

kwa) = L [ ImK(r'®) awr?
n o
wte - w2

. (2)

H

where W? = (M2+p)2, the threshold for photcmeson production, corresponds

to the lightest intermediate state contributing to the absorptive amplitude
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ImK(Wa). Here M2 and u are the masses of the intermediate baryon and
meson. The low energy contribution to the static moment may be gotten
fram (2) by extending the range of the energy integration only over the

. X 2 2
threshold region and evaluating Eq. (2) at W< = Ml,

AM_+) 2 5

K(M®) = 1 f awe _Im_KiW_l (3)
1 u W2 M2
(M2+M)2 ]

where A > 1 is the cutoff.

Physics enters our calculation via the absorptive amplitudes ImK(Wé)
in the threshold region. In the case of the baryons the only inter-
mediate states contributing to ImK(WZ) in this region are pseudoscalar
meson-baryon states (Fig. 2). The thresholds for the vector meson-baryon
states lie higher in the mass spectrum and are a correction to the con-
tributions from the lower lying states. Including only the contribution
from the PS-B intermediate state we have as an exact expression for the

absorptive part in the region near threshold,

. 1
Ik (W2) Z [ @ o) Wpye) 3 wliet) Tpe) TR 2 (1)
stotes

corresponding to the graph of Fig. 2. The factor p(Wz) arises from
purely kinematical considerations and is proportional to the available

phase space for the intermediate state

1
2 2
p (W2) = ((w2 + M2 - p2> - 4W2M2> / we (5)
2 2 2
The projection operator Vi serves to project out the anomalous moment

K(W®) from the vertex (Eq. (1)) and is explicitly given in Ref. (1).
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The factor u(k,s!')D(W2), corresponding to the vertex for a virtual baryon
to create a real baryon and ps-meson,we approximate with its threshold
value g E(k,s') i75 where g 1is the coupling constant. The photomeson
production amplitude, E(p,s)JH u(k,s!) for a baryon and meson of momentum
ka and qj(kz = Mi, q2 = u2) to produce a baryon and photon of mcamentum

py and {d (p2 = Mf, 42 = 0) 1is approximated by the pole terms (Fig. 3):

i AL
+ (e -e ) —Eégﬂ;—ﬁz-

L2 (gh)BE-B i75] wlioet)

. K,
d = _J_ -
TS LTy 2, oty 3= L2

where el,2 is the sign of the charge on the final and intermediate baryon
and Kl,2 are the ancmalous maments of the final and intermediate baryons.
In making this approximation we are assured that for vanishing meson mass
Eq. (6) reproduces the exact amplitudes at threshold and thus provides a
low energy "anchor" for our calculation. The angular integration in Eq.

q - I/|E|[EJ in the

Py *+ {b = ko + 9o

(4) extends over the range of scattering angles x

center of mass for scattering process for which W
> > > Y
qQ=-k, p=-~ {9 and the sum is understood to include all contributing
B-PS states.

Inserting Eq. (6) into Eq. (4) we obtain for the contribution of a

single B-PS intermediate state to the absorptive part
2 2 2 2
W=) = W W
Ink (%) (%-ﬂ) p_(WE) B (W) (7)
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F (W3) = e E(W2) +e E (W3) + KK (W3) + K K (W)
12 1 1 2 2 11 2 2

where El,e and Kl‘,2 arising from charge and ancmalous magnetic moment
interaction in the photomeson production amplitude are given in Appendix I.
Equation (7) for the absorptive amplitude along with the SU(3) predictions
of the B-PS coupling constants in terms of the F/D ratio form the basis of
our calculation in the next section.

The SU(3) symmetry is broken through the introduction of nondegenerate
baryon and meson masses in Eq. (7). For simplicity let us examine the
symmetric case and set all the meson masses equal to zero and assume the
baryon masses degenerate Ml = M2 = M. Moreover, we shall evaluate the
dynamical factor Fle(wz) at threshold WZ = M® (p = 0) where FlE(ME) =
e -e2 = charge on intermediate meson, simply a reflection of the Ky »1l1-

1

Ruderman theorem which implies that at threshold only the charged mesons

contribute to photoproduction.5 With these approximations Eq. (7) © comes
2 2 2
W=-M -
K (W) = (e -e ) (ﬁ‘—) (8)
12 12 7 Lp2
and from the dispersion relation
2
ATk (W2)aw=
K == \/p 12
12 T W - M3

one finds

2

L= (e (E) (1_15#) (9)

=
il

for the threshold contribution of one intermediate state to the baryon

moment. Summing over all possible intermediate B-PS states and taking
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into account the correct isotopic spin factors we obtain for the ancmalous

moments of the baryons and the ZQ*IP+7 transistion moment.

K(p) = c(2gdy, + iy + g5)
K(n) = c(-268; + 2e5;)
K(A) = c(-ghy + hi)

K(27) = c(-g5, - 2e5¢ - &x.)

K(z%) = c(-g5, + &) (10)
K(Z¥) = cled, + e},)

K(=") = c(-nd - ny - 2eZ)

K(=°) = c(-2n5, + 2¢Z )

K(258) = c(-eppepy + Boglig)

where c¢ = log A/hn. From the expressions for the coupling constants in

terms of the F/D ratic® follow the predictions of SU(3) symmetry

K(z¥) = K(p), K(A) = 3K(n)
K(=°) =K(n)  K(=) k(@) = - (K(») + K@) (1)
K(z°) = -K(n)  K(2°,4) = -3/3 K(n)

and as a consequence of our model

k(p) = 22 (20 - 8r + 16¢2) j)

21
K(n) = -l—nn—é 2f (f-1) (-%-;) %.; ~ 15



which for f = F/D = 2/3 yeilds K(p)/K(n) = - 2.2. This disagreement
with the observed K(p)/K(n) = -0.94% is here attributed to the assumed
mass degeneracy. If we assume a non-degenerate spectrum the nN state has
a much lower threshold than AK or XK and in the threshold approxima-
tion it is the only contributing state, so K(p)/K(n) = - 1.0, independent

of ¥/D.

III. CAILCULATION OF THE MAGNETIC MOMENTS

Next we take in account the nondegeneracy of the mass spectrum of the
baryons and mesons neglecting the electromagnetic splittings. From the

dispersion integral we campute the moments

f M (]_2)

where 1 ranges fram 1 to 9 corresponding to the 8 baryon moments and the
°>A +transition moment and S; is the lowest threshold of the photo-
meson production amplitude contributing to the ith moment. For a given
intermediate state

Ik _(W%) = (%;i—) p (W%) F__(Wo=ip)

and we evaluate the contribution from the pole terms Flg(wz) at threshold
W2 = W; so as not to emphasize the high energy region. This term depends
cn the masses Ml, M2 and p, the charges e, and e, and the ancmalous
moments Kl and K2 of the contributing states. If we include the energy
dependence given by the pole terms we obtain results for the nucleon moments

which are in disagreement with experiments. This is to be expected since
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away from threshold the pole terms need not approximate the exact amplitude.
The major contribution to symmetry breaking arises as a consequence of the
nondegeneracy of the thresholds of the competing processes. Since F12

is a constant we may perform the integral over the phase space factor

plz(we) and obtain from Eq. (12) the equation for the moments in broken

su(3)

2
K, = F, + Z A4 5K, (13)
J=1

where Fi arises fram the electric interactions and Aij from the anomalous
moment interactions in the photomeson production amplitude. For the B-PS
coupling constants we assume the SU(3) symmetric values which give all the
coupling constants in terms of (gﬂN/hx) ~ 15.0 and f. There are two
adjustable input parameters A , the cutoff, chosen so as to approximately
reproduce the observed nucleonmoments and f. In the degenefate case with

all baryon masses equal and all meson masses equal the solutions K: of

i
Eg. (13) recover the camplete symmetry (Eg. (10)). With the baryon and meson
masses set to their experimental values’ we obtain the solutions shown in
Fig. 4 given as a function of f.

We see that the nucleon moments K(p) = - K(n) ~ 1.6 are reproduced
within 15% of the observed values largly independent of f since it is
the nN state which dominates. If we use f = 0.6 and A = 2.8 then K(4A) =
(e)

0.% K(n) in agreement with the experimental value, K(A) = - 0.5 + 0.3.

Our calculation of the other moments indicates a larger violation of the

SU(3) symmetric predictions: K(p) = 1.5, K(n) = -1.6, K(A) = -0.66,
K(z") = -0.7, K(2°) = 0.2, K(z*) = 1.2, K(=7) = -0.1, K(=°) = -0.8,
K(zA) = 0.75.
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The magnitude of the moments depends approximately logarithmically on
A, the cutoff. The sensitivity of these results on f 1is indicated in
Fig. 4. One can see that the SU(3) predictions (Eq. (11)) are not well

obeyed with the exception of those for K(A) and K(=%) with £ ~ 0.6.
1
2
is, of course, preserved while the Okubo relation® u(ECA) =-J§/6 (u(ZO) +

The relation K(2O) = (K(Z*) + K(Z')) which follows from SU(2) symmetry,9
3u(p) - 2u(=°) - 2u(n.> obtained by including octet transformation
properties to the current operator, Si + Si; » 1s not preserved in our
calculation since we have included all orders in the baryon and meson
mass splittings.

In conclusion, we remark that this calculation represents a first
approximation to a more realistic calculation that includes the effects of
symnetry breakings on the B-PS coupling constants presumably determined
through a bootstrap mechanism.*® An improved calculation would include
the energy dependence of the full photomeson production amplitudes and
higher mass baryon meson states. The primary success of the present cal-
culation rests on the correct estimation of the nucleon moments on a
dynamical basis and agreement with the measured A moment.

The author would like to thank Prof. S. D. Drell for reading the
manuscript and for helpful suggestions and Prof. R. J. Oakes for several

discussions.
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APPENDIX I

The contributions from the pole terms are given by

M M

E (W8) = —% |u3M - B - 2 (p2ATowBA2.A A7)
1 A'2 1 2W2 1 1 2

1

-M o 2A~
E (Wa) = l- SATA™M + m 1 <M P~2 (3W2-M2) _ L|-W2A
2 2W2A 2 121 A '“2 1 2

1 2

+MA™2 + w3 Q (z))
1l 2 2 1

K (W2) = - —2— |A"A" & owBa2 - 2%
1l
. M + -
K (W8) = - l+ [pe(lLWaM M - M3AY) + MPAT2
2 2W2M (A _HZ) 1 2 1l 2 1l 2
2 2
- bw3M AB + bwiMB g (z)]
2 2 1
where
A=M -M
1 2
AT - i MR
1,2 1,2
B=We-MM
1 2

1
(Mz-p2+w2) ((M;-uz-i-wg)z - 4W2M2) 2

N
]

_Z Z+1
Q,l(z) 5log =T -1 .
For the case “2 = 0, Ml = M2 =M, W=M the above expressions imply
E =-E =1, K =K =0 .



9.

10.

REFERENCES

S. D. Drell and H. R. Pagels, Bys. Rev., (to be published).

S. Coleman and S. L. Glashow, Phys. Rev. Letters, 6, 423 (1961).
S. Okubo, Phys. Letters, &4, 1L, (1963).

A. M. Bincer, Phys. Rev., 118 3, 855, (1960).

N. M. Kroll, and M. A. Ruderman, Phys. Rev., 93, 1, 233, (1954).
A. W. Martin and K. C. Wali, Phys. Rev., 130, 2455 (1963). Appendix I,
We set the mass of any member of an isomultiplet equal to the average
mass and in any diagram involving the £° — A transistion mament we
set MZ = Mp .

W. M. Gibson, et. al.; Reported at High Energy Physics Conference
Dubna, (1964).

R. Marshak, S. Okubo, and G. Sudershan, Phys. Rev. ;Qég 599 (1957).

R. Dashen and S. Frautschi, Phys. Rev. Letters, 13, 497 (196k4).



FIGURE CAPTIONS

Fermion-photon vertex.
PS-B intermediate state contribution to the absorptive part.
Pole terms for photomeson production.

Anomalous magnetic maments as a function of F/D.
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