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THE MAGmTIC MOMENTS OF THE BARYONS: .... 

Heinz Pagels 
Stanford Linear Accelerator Center, Stanford University, Stanford, California 

The anomalous magnetic moments of the baryon oc te t  a re  calculated 

i n  broken SU(3) symmetry using low energy pole dominance as-a dynmical  

model and keeping only the  lowest lying intermediate s t a t e s ,  the  pseudo- 

sca l a r  meson, baryon s t a t e s .  Using dispersion theory the  anomalous moments 

a re  r e l a t ed  t o  an energy in t eg ra l  over the  

amplitudes which a t  low energy and f o r  vanishing meson mass a re  exact ly  

SL and P_I. photomeson production 
2 2 

given by the pole terms. From t h i s  exact information we calculate  the  

low energy contribution t o  the  anomalous moments keeping a l l  orders i n  

baryon and meson mass s p l i t t i n g s  and using the  SU( 3)  symmetric strong 

coupling constants.  We are  able t o  account f o r  the dominant contribution 

t o  the  proton and neutron magnetic moment and f i n d  i n  addi t ion f o r  F/D 

r a t i o  0.6 t h a t  K(A) 0.4 K(n) i n  agreement with the  observed value.  

The SU(3) predict ions for the  other moments and the  Co + A  + y t r ans i t i on  

moment are  found t o  be more badly v io la ted .  

( T h i s  paper t o  be submitted t o  Physical Review) 
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I. IPTRODUCTION 

Our purpose here i s  t o  present a dynmica l  ca lcu la t ion  of t he  magnetic 

moments of the  baryon oc te t  i n  broken SU(3)  symmetry by applying the  method 

of low energy pole dominance.’ 

t h e  SU(3)  symmetric s t rong couplings and t o  f i rs t  order i n  the  e l ec t ro -  

magnetic coupling t h a t  a i l  the  s t a t i c  magnetic moments of the baryons, 

including the  CO+AO + y 

t he  proton 8nd neutron magnetic moments. 

address ourselves i s  how are  these predict ions i n  the l i m i t  of exact SU(3) 

symmetry a l t e r e d  by taking i n t o  account t he  observed s p l i t t i n g  of t he  

baryon and meson masses? To answer t h i s  we must appeal.. t o  a spec i f i c  

dynamical model which we s h a l l  now describe.  

It has been shown2j3 t h a t  t o  a l l  orders i n  

t r a n s i t i o n  mment, can be expressed i n  terms of 

The question t o  which we now 

We assume t h a t  t he  charged baryons have an i n t r i n s i c  Dirac moment 

pD = e/2MB 

of the  t o t a l  moment, @ , given by 

f o r  i n  terms s t rong in t e rac t ion  correct ions t o  the  baryon electromagnetic 

current .  W e  estimate these correct ions by applying the  iwthGd of low 

energy pole dominance already successful ly  applied t o  the  ca lcu la t ion  of 

t he  e lec t ron  anomalous moment, ge-2, and the  anomalous moments of t he  

nucleons, Kp and K n . l  The fundamental assumption of t h i s  method i s  t h a t  

t he  s t a t i c  electromagnetic proper t ies  of a p a r t i c l e  emerge predominantly 

as a consequence of  the  physics of the low energy region. For the  baryons 

t h i s  implies it i s  the  l i g h t e r  charged mesons i n  the  cloud surrounding the  

baryon whose coupling with the  electromagnetic f i e l d  transforms l i k e  

Q = e (F3 + F /fi) 

while f o r  t he  uncharged bapyons pD = 0 .  

KB e/2MB = h - p D  

The anmalous part ,  KB, 

i s  t o  be accounted 

t h a t  a r e  responsible f o r  contr ibut ing the  major p a r t  
8 
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of t he  anomalous moment. In  Ref. 1 the  hypothesis of low energy dominance 

was applied t o  nucleon moments with the  r e s u l t  K N - K which followed 

from the  pure isovector  character  of the  electromagnetic coupling t o  the  

nucleon current  i n  the  l i m i t  of low momentum t r ans fe r .  

P n 

To estima.te the  magnitude of t he  low energy contr ibut ion t o  the  

anoma.lous moments we use sidewise dispersion r e l a t ions  first used by 

Bincer i n  an examination of the  electromagnetic proper t ies  of the  nucleons. 4 

Bincer was able  t o  r e l a t e ,  a.s we s h a l l  s p e l l  out i n  more d e t a i l  below, 

the  anomalous s t a t i c  moment of a fermion t o  an energy integra.1 over the  

SL and PL photomeson production amplitudes. 

meson production amplitude for vanishing meson mass correspond a t  t h re s -  

The pole terms of t he  photo- 
2 2 

hold t o  the  exact amplitude. By including only the  pole terms i n  the  

photomeson production amplitude and extending the  energy in t eg ra l  only 

over t he  low energy region t h i s  exact threshold behavior i s  incorporated 

i n t o  the  ca lcu la t ion  of the  s t a t i c  moments. In  agreement with the  hypothesis 

of threshold dominance it i s  found i n  the  case of the  nucleons t h a t  the  

major contr ibut ion t o  K and Kn can be accounted f o r  from the  low 

energy region M < - -  E < 1.7 M 

the  r e s u l t  K(p) 1.5, K(n) - 1 .6  where K(p )  = 1.79, K(n) = -1.91. 

P 
of the  photopion production amplitude with 

expt expt 

Purely on the  bas i s  of t h i s  successful  estimation of the  nucleon moments 

assuming threshold dominance do we now a t t ack  the  problem of computing 

the  moments of the  remaining members of the  baryon oc te t .  
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11. CALCULATION OF THE ABSORPTIVE AMPLITUDE 

Here we s h a l l  show how t h e  s t a t i c  mment i s  r e l a t e d  t o  the  photo- 

meson production amplitude. 

v i r t u a l  fermion of mmentum p f 4 and invar ian t  mass W, W2 = (pd) ' ,  

t o  produce a real fermion of momentum p, p2 = M2 

momentum 4, -e2 = 0, 

Consider t h e  t r a n s i t i o n  amplitude f o r  a 

and a r e a l  photon of 
1 

(Figure 1.). Bincer4 has shown t h a t  the  most general 

form f o r  t h i s  ver tex  consis tent  with Lorentz inva.riance, p a r i t y  invariance, 

time reversal ,  and the  genemlized Wa.rd and i d e n t i t y  i s  

where the  invar ian t  funct ions 

i n  the  cut W2 

t h e  l i g h t e s t  intermediate s t a t e  with the  quantum numbers of the  fermion 

t o  + m. 

anomalous moment of the  fermion. 

and the  assumption K(W2) + O  as  IW2(+m we may wr i te  an unsubtracted 

dispers ion r e l a t i o n  f o r  K( w2) 

K(W2), K-( W2), F'(W2) a re  ana ly t i c  functions 
3 

plane with t h e  branch cut  extending from the  threshold of 

We recognize from Eq. (1) i n  the  l i m i t  W +Ml,K(M2) a s  t he  
1 

From t h e  ana ly t i c  proper t ies  of K(W2> 

m 

where W; = ( M  + P ) ~ ,  t he  threshold f o r  photomeson production, corresponds 

t o  the  l i g h t e s t  intermedia.te s t a t e  contr ibut ing t o  t h e  absorptive amplitude 
2 
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M ( W 2 ) .  Here M and p are  the  masses of t he  intermediate baryon and 

meson. The low energy contribution t o  the  s t a t i c  moment may be gotten 

2 

f rm (2)  by extending the  range of t he  energy in tegra t ion  only over the  

threshold region and evaluating Eq. (2) a.t W2 = M2 
1' 

where A >  1 is  the  cu tof f .  

Physics en ters  our ca lcu la t ion  via. the  a.bsorptive amplitudes ImK( W") 

i n  the  threshold region. In  the  case of the baryons the  only i n t e r -  

mediate s t a t e s  contr ibut ing t o  M ( W 2 )  i n  t h i s  region are  pseudoscalar 

meson-baryon s t a t e s  (Fig.  2 ) .  The thresholds f o r  t h e  vec tor  meson-baryon 

s t a t e s  l i e  higher i n  the mass spectrum and ase a. correct ion t o  the  con- 

t r i bu t ions  from the  lower ly ing  s ta . tes .  Including only the  contr ibut ion 

from the  PS-B intermediate s t a t e  we have a.s an exact expression f o r  the 

absorptive pa r t  i n  the  region near threshold, 

corresponding t o  t h e  graph of Fig.  2. The f a c t o r  P ( W 2 )  a r i s e s  from 

purely kinematical considera,tions and is  proportional t o  the  avai lable  

phase spa.ce f o r  t he  intermedia.te sta. te 

P 2 (w2> = ((W2 + M2 2 - p2)' - 4 W 2 M : ) y  W2 ( 5 )  

The project ion operator V 2  
cI 

K(W2) 

serves t o  pro jec t  out the  anomalous moment 

from t he  ver tex  (Eq.  (1)) and i s  e x p l i c i t l y  given i n  Ref. (1). 
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The f a c t o r  c(k,sr)r(W2), corresponding t o  the  ver tex  f o r  a v i r t u a l  ba.ryon 

t o  c rea te  a real baryon and ps-meson,we approximate with i t s  threshold 

value g u(k , s ' )  i 7  where g is  the  coupling constant.  The photomeson 

production amplitude, 

ka and 

pa and $a (p2 = M2 

5 - 
u(p ,s )J  u(k,s ' )  for a. baryon and meson of momentum P 

%(k2 = M2, q2 = p2) t o  produce a baryon and photon of momentum 

is approximated by the  pole terms (Fig.  3 )  : 
2 

= 0 )  
lY 

where e is  the  sign of t he  charge on the  f i n a l  and intermediate baryon 
1,2 

are  the  anomalous mments of the  f i n a l  and intermedia.te baryons. 
1 9 2  

and K 

In  making t h i s  approxima.tion we are  assured t h a t  f o r  vanishing meson ma.ss 

Eq. (6)  reproduces t h e  exact amplitudes a t  threshold and thus provides a 

low energy "anchor" f o r  our ca lcu la t ion .  The angular in tegra t ion  i n  Eq. 

( 4 )  extends over the  range of s ca t t e r ing  a.ngles 

center  of mass f o r  s ca t t e r ing  process f o r  which W = po + to = ko + qoy 

q = - k , p = -  x, 
B-PS s t a t e s .  

x = t / l z [  1x1 i n  the  

+ + +  
and the  sum is understood t o  include a l l  contr ibut ing 

Inser t ing  Eq. (6 )  i n t o  Eq. ( 4 )  we obtain f o r  t he  contr ibut ion of a 

s ing le  B-PS intermedia,te s ta . te  t o  the  absorptive p a r t  
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F (w2> = e E (w2) + e E (w2) + K K (w2) +- K K (w2) 
12 1 1  2 2  1 1  2 2  

where E and K a r i s ing  from charge and anomalous magnetic moment 
1 7 2  1) 2 

in te rac t ion  i n  the  photomeson production amplitude a re  given i n  Appendix I. 

Equation ( 7 )  f o r  t he  absorptive amplitude along with the SU( 3) predict ions 

of the B-PS coupling constants i n  terms of the F/D r a t i o  form the  bas i s  of 

our calculat ion i n  the  next sect ion.  

The SU(3)  symmetry i s  broken through the  introduction of nondegenerate 

baryon and meson masses i n  Eq. ( 7 ) .  

symmetric case and set  a l l  the  meson masses equal t o  zero and assume the  

baryon masses degenerate 

For s impl ic i ty  l e t  us examine the  

M, = M, = M. Moreover, w e  s h a l l  evaluate the  

dynamica.1 fa.ctor F12(W2) a t  threshold W2 = 

e -e = charge on intermediate meson, simply 
1 2  

M2 ( p  = 0) where F (14') = 

a r e f l ec t ion  of the  Kr I l l -  

12 

Ruderman theorem which implies t h a t  a t  threshold only the  charged UI? ;oris 

contribute t o  p h ~ t o p r o d u c t i o n . ~  With these approximations Eq. (7 )  * . mes 

12 1 

and from t he  dispersion r e l a t ion  

one f inds  

f o r  t he  threshold contribution of one intermediate state t o  the  baryon 

mment. Summing over a l l  possible intermediate B-PS states and taking 
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i n t o  account t he  cor rec t  i so topic  spin fa.ctors we obtain f o r  the  anomalous 

moments of t he  baryons and the  Co+Ao+y t r a n s i s t i o n  moment. 

where 

terms of the  F/D ra t io6  follow t he  predict ions of 

c = log 4431. From t he  expressions for t he  coupling constants i n  

SU(3) symmetry 

K@+> = K ( P ) ,  

K(Eo)  = K(n) 

K(Co) = --$K(n) 

K(A) = *K(n) 

K ( E - )  = K(C-) = - (K(p) + K(n)) 

K(Co,A) = --$ 6 K( n )  

(11) 

and as a consequence of our model 

K(p) = (10 - 8f + 16f2) (e) fl 

K(n) = - 
3f 
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which for f = F/D = 2/3 yei lds  K(p)/K(n) = - 2.2. T h i s  disagreement 

with the  observed 

mass degeneracy. 

a much lower threshold than AK or CK and i n  the  threshold approxima- 

t i o n  it i s  the  only contr ibut ing s t a t e ,  s o  

K(p)/K(n) = -0.94 i s  here a t t r i b u t e d  t o  the  assumed 

If we assume a non-degenerate spectrum the  f l N  s t a t e  has 

K(p)/K(n) = - 1.0, independent 

of F/D. 

111. CALCULATION OF THE MAGNETIC MOMENTS 

Next we take i n  account the nondegeneracy of t he  mass spectrum of the  

baryons andmesons neglecting the  electromagnetic s p l i t t i n g s .  

dispers ion i n t e g m l  we cmpute the  moments 

From the  

where 

C 0 + h  t r a n s i t i o n  moment and si 

meson production amplitude contr ibut ing t o  the  ith moment. For a given 

i ranges f rm 1 t o  9 corresponding t o  the 8 ba.ryon moments and the 

is  the  lowest threshold of the  photo- 

i n t e  med ia t e  s t a t e  

and we evaluate the  contr ibut ion from t he  pole terms F (W2) a t  threshold 
12 

W2 = W2 T so  as not  t o  empha.size the  high energy region. This term depends 

on the  masses MI, M2 and p, the  charges el and e and the  anomalous 

moments 

2 

K1 and K2 of the  contr ibut ing s t a t e s .  If we include the energy 

dependence given by the pole terms we obtain r e s u l t s  for the  nucleon moments 

which a re  i n  disagreement w i t h  experiments. This is t o  be expected since 
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away from threshold the  pole terms need not  approximate the  exact amplitude. 

The major contr ibut ion t o  symmetry breaking a r i s e s  as a consequence of t he  

nondegeneracy of t he  thresholds  of the  competing processes. Since F 
12 

i s  a constant we may perform the  

p,,(W2) and obtain from Eq. (12) 

W 3 )  

K .  = 
1 

i n t e g r a l  over the  phase space f ac to r  

the  equation f o r  t he  moments i n  broken 

9 - , 
Fi + L AijKj 

j=i 

where 

moment in t emc t ions  i n  the  photomeson production amplitude. For the  B-PS 

Fi a r i s e s  frm the  e l e c t r i c  in te rac t ions  and Aij  from the  a.noma.lous 

coupling constants we a.ssme t h e  SU(3)  symmetric values which give a l l  the  

coupling constants i n  terms of (&$4~r) 15.0 and f .  There a.re two 

adjustable  input parameters A , the  cutoff,  chosen s o  as  t o  approximately 

reproduce the  observed nucleonmoments and f .  In  the  degenerate case with 

a l l  baryon masses equal and a l l  meson masses equal t h e  so lu t ions  

Eq. (13) recover the  ccanplete symmetry (Eq. (10)). 

masses s e t  t o  t h e i r  experimental values7 we obtain the  so lu t ions  shown i n  

Fig.  4 given a s  a funct ion of 

Ki of 

With the  baryon and meson 

f. 

We see t h a t  the nucleon moments K(p) = - K(n) 1.6 a re  reproduced 

within 15% of the  observed values l a r g l y  independent of 

t he  J ~ N  s t a t e  which dominates. 

f s ince it i s  

f = 0.6 and A = 2.8 then K(A) = If we use 

0.4 K(n) i n  agreement with the  experimental value, K(A) = - 0.5 + 0.3. ( 8  1 - 
Our ca lcu la t ion  of the  other  moments ind ica tes  a l a r g e r  v io l a t ion  of the  

SU(3) symmetric predict ions:  

K(C-) = -0.7, K(Co) = 0.2, K(C+) = 1.2, K(=-)  = -0.1, K(Eo)  = -0.8, 

K ( M )  = 0.75. 

K(p) = 1.5, K(n) = -1.6, K(A) = -0.66, 
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The magnitude of the moments depends approximately logari thmical ly  on 

A, the  cutoff.  The s e n s i t i v i t y  of these r e s u l t s  on f is  indicated i n  

Fig. 4. One can see t h a t  t he  SU(3) predict ions (Eq. (11)) are  not wel l  

obeyed with the  exception of those f o r  K(A) and K(C+) with 

The r e l a t i o n  K(Co) = - @(E+) f K(C-)) which follows from SU(2) symmetry, 

is, of course, preserved while t he  Okubo r e l a t ion3  p(C0A) = &,/6 (p(Co) f 

3p(A) - 2p(Eo) - 2p(n)) obtained by including oc te t  transformation 

proper t ies  t o  the  current  operator, S1 + SI3 
ca lcu la t ion  s ince we have included a l l  orders i n  the baryon and meson 

f 0.6.  

1 9 
2 

is  not preserved i n  our 
1 13 ' 

mass s p l i t t i n g s  

In  conclusion, we remark t h a t  t h i s  ca lcu la t ion  represents  a first 

approximation t o  a more r e a l i s t i c  ca lcu la t ion  t h a t  includes the  e f f e c t s  of 

symmetry breakings on the  B-PS coupling constants presumably determined 

through a boots t rap mechanism. An improved ca lcu la t ion  would include 

the  energy dependence of t he  full photomeson production amplitudes and 

higher mass baryon meson s t a t e s .  

cu la t ion  r e s t s  on the  cor rec t  estimation of the  nucleon moments on a 

dynamical bas i s  and agreement with the  measured A moment. 

10 

The primary success of the  present ca l -  

The author would l i k e  t o  thank Pro f .  S. D. Ere11 f o r  reading the 

manuscript and f o r  he lpfu l  suggestions and Prof. R. J. Oakes f o r  severa l  

discussions.  
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APPENDIX I 

The contr ibut ions from t he  pole terms are  given by 

2M M 
E (w2) = 1 [p2Ml - - 1 ( p2A+-2W2A2-A' 1 A-) 

1 2  A-2 2w2 1 
1 

M p2 (3W2-M2) - 4w2,4 
2 

-M 
E (W2)  = 1 

2 2W2A'2 
1 

1 + M Am2 + 4W2M Q ( z ) )  
1 2  2 1  

[.;Ai + 2W2A2 - p A 1 + I  K (W2) = - - 
2W2A- 1 

1 

M 

2W'% (A -p ) 
1 4W2M M - M2A+) + M2A-2 

1 2  1 2  
K2(W2) = - - 

+ 2  
2 2  

1 - 4W2M nB + 4W4M2 Q ( z )  
2 2 1  

where 
A = M - M  

1 2  

A' = W2 M2 
1,2 192 

B = W2-M M 

z = (M2-p2+W2) ((M2-p2+W2)2 - 4W2M2)-" 

1 2  
1 

2 2 2 

Q ( z )  = z l o g - -  Z z + l  1 . 
1 z -1 

For the  ca.se p2 = 0, M1 = M = M, W = M the  above expressions imply 
2 

E = - E  =1, K = K  = O  . 
1 2 1 2 
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FIGURF: CA€TIONS 

1. Fermion-photon ver tex.  

2. PS-B intermediate s t a t e  contr ibut ion t o  the  absorptive p a r t .  

3 .  

4. 

Pole terms for photomeson production. 

Anmalous magnetic moments a s  a funct ion of F/D. 
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