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ABSTRACT 

The cross section e+ + e- +W+ + W- -+p+ +v +e'+T in which e- 
I-1 e 

and pc are detected in coincidence in the colliding beam experiment is 

computed with the mass, magnetic moment and leptonic mode branching ratio 

of W boson as parameters. The kinematical correlations necessary for the 

identification and mass determination of the W meson are discussed. Numer- 

ical examples show that the energy-angle correlations of the final e and 1-1 

are very sinsitive to the W mass. The analytical expression for the cross 
--- 

section was obtained by an electronic computer. The characteristics of 

dynamical correlations was investigated by numerical examples of angular 

distributions of e- and pi for different values of magnetic moment of W. 

It was found that the rate of increase of cross section with respect to the 

relative angle between the final electron and muon is the most sensitive 

dynamical correlation needed for the determination of the W magnetic 

moment. We ignore the possibility that W may have form factors and an 

anomalous quadrupole moment. Symmetries in the differential cross section 

are discussed. Due to one photon exchange, the differential cross section 
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of e- and p + must be symmetric with respect to the plane perpendicu- 

lar to the incident beam. Due to time reversal invariance the differ- 

ential cross section for + p must be symmetric with respect to the 

plane formed by the incidert beam and the final electron. Similarly the 

differentiai cross section fee e- zest be sytietric with respect to the 

plane formed by the incident beam and the CL+. It is also shown that the 

charge conjugate decay mode e+ + e- +W+ + W- +p- + +Tp+e tv can e 

be obtained from our result by simply cl' +p- and e--+e+ in the ,final 

state if one considers only the lowest order process. It is pointed out 

that the techniques used in this paper can be employed to calculate many 

other processes in which two unstable prticles are produced. 
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I. INTRODUCTION 

With the success of the Stanford electron-electron colliding beam 

project and the building of electron-positron colliding beam machines2 at 

various places in the world. it may bz uszfui Lo ccnsider again the pro- 

duction of weak vector bosons which have so far escaped detection.' The 
t cross section e + e- *W+ + W- via the one photon intermediate state 

has been calculated by Cabibbo and Gatto.4 In this paper we would like to 

consider the particular decay modes 

ye ‘+7 
+ e t e- -+w++ w- (1.1) 

I >2+v , 
in which e- and p+ are detected in coincidence. The particular W decay -_ 

modes given above have the minimum background problem. Other decay modes of 

W, such as m-r, pfl,cUfl(, etc., are extremely interesting from general weak in- 

teraction theory'and can be incorporated into our calculation easily. How- 

ever, there are so many ways W can decay into pions that even if z's are 

detected, it would be much harder to interpret the result, aside from the fact 

that many more pions are produced directly via et + e- +y + multiple fits. 

Since e- and p+ are to be detected in cuincidcnce, they are correlated 

both kinematically and dynamically. The kinematical correlations are given by 

Eqs. (2.20-2.28) which give the constraints among the final electron energy, the 

muon energy and their relative angle. These kinematical constraints are sensi- 

tive functions of mass of W, and hence they must be used to determine the mass 

of w. There are two other unknown prameters= besides mass in our calculation, 
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namely the branching ratio R = !?(W +e + v)/rtot and the magnetic moment 

(1 + k) g . The expression for our differential cross section is propor- 

tional to R2 and hence the relative angular distribution depends only upon 

k, after the W mass is determined from the kinematics. Once the magnetic 

moment Is delermined from thn an6;nl;lr dist*ibLticn, the branc%.ng ratio R 

can be determined by the magnitude of the cross section, without even measur- 

ing other decay modes of W directly. The angular distribution depends upon 

the dynamical correlation. This correlation arises from the fact that the 

two W's produced are polarized and the polarization cf each is correlated 

to the other, and that the angular distribution of izptons from the polarized 

W is different from that of an unpolarized W. The polarization state of 

two correlated vector particles can be described in general by a 9 X 9 

hermitian density matrix. In a covariant description this density matrix is 

represented by a rank 4 tensor, each vector index satisfying the usual sub- 

sidiary condition for the relativistic polarization vector of a particle. 

The possibility of such a representation comes from the requirement that the 

4th component of the polarization vector vanishes in the rest frame of the 

particle. This covariant density matrix is obtained in Section 2 and its 

properties are given there. The analytical expression for the matrix element 

squared (C) as given in Table I was obtained by a computer.7 

1n Section III we discuss symmetries in the cross sections. In Section IV 

the differential cross section e+ + e- +Wt t W- is discussed. In Section V 

the energies of the electron and muon are integrated and the characteristics 

of their angular distributions are investigated for an arbitrary set of param- 

eters with the mass of the boson W = 2 BeV, incident electron energy E = 3 BeV, 
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magnetic moment k = -2,0,2, branching ratio R = 0.25. We found that the 

cross section increases rapidly as we increase the relative angle 8 
57 

between the final electron and muon. The rate of increase from 30' to 150' 

is approximately 1 to 10 fo- k = -2, 1 to ?U Yor k = 0, and 1 to 15 for 

k = 2. Thus the different rates of increase in the differential cross 

section with respect to the relative angle between the final e- and pt 

is the most sensitive dynamical correlation for determining k. Of course 

the over-all rate is also a very sensitive function of k, but we think it 

should be reserved to determine the brznching ratio R unless R can be 

found by some other means. In Section VI we discuss some general aspects 

of our calculation and make some additional remarks relevant to the planning 

of the experiment. 

We have tried to write this paper in such a way that all the results can : 

be used readily by the experimenters. Thus many trivial details are also in- 

cluded whenever we think they are useful. 

II. CALCULATIONS 

All the desired information including kinematical and dynamical correla- 

tions of the problem under consideration can be obtained by computing the 

Feynman diagram shown in Fig. 1, provided one r-' ,$laces the square of each 

denominator of the W boson propagator which occur in the square of the 

matrix element by a 6 function 

e-1) 
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where W, I' and pw are the mass, the total width and four momentum 

of the vector boson. This replacement is allowed if W >> i? , Denoting 

the branching ratio of the mode W- +e- t 7 as R and the Fermi constant 

as G, we have' 

r _ r (W- +e- + 3 = g2w = GW3 
R 63~~ 6,/&m 

1.02 x 1o-5 w3 
= 6&m$ ' 

where Fe is the mass of proton and g is the coupling constant between 

W and the leptonic current. From the last relation one can obtain criteria 

under which the replacement (2.1) is allowed. For example, for W = 2% and 

R = 0.25 we have 

which is much less 

w= 100 Mp and R 

I 

r = 1.14 x iom2 MeV (corresponding to mean life 5 X 10m2' set) _ 

than W and thus (2.1) is justified. On the other hand, if 

= 0.01, we can no longer use (2.1), but under such circum- 

stances the experiment is unfeasible, at least for the foreseeable future. 

We shall try to formulate our presentation in such a way that those who 

intend to design the experiment can make maximum use of it. The kinematical 

correlations which are important for the mass determination are presented in 

detail. We shall see that for each choice of final electron and muon momenta, 

there correspond two production angles of W's. 

The notations used in this paper are as follows; The four momenta of 

particles are denoted by: p = initial electron, p = initial positron, 
1 2 

-6- 



-- - 

P3 = 

P7 = 

and 

W- boson, p 
4 

= W'boson, p 
5 

= finial electron, p = 
6 

mu meson, and p = vp neutrino. The masses of the 
8 

W boson are denoted by m, ~1 and W respectively. 

Tje neutrino, 

electron, muon 

Ei and P i 
reTresent the energy and mc~eztum of the it? part!zle, the exception is 

E =E =E =E = E. 6.. 1J is the angle between P. and P 
3 

l 
1 2 3 4 1 Q6Y cp 

6 

and cp 
17 

are defined in Figs. 2a and 2b. The coupling constants are de- 

fined as e2/4fi = cx and g'/W' = G/F where G = 1.02 X lo-'/M'?-. The 
P 

metric used is such that p l p = EE - P P cos 9 
c ) 

. 
3 7 7 37 37 

We adopt the quantum electrodynam5es cf vector bosons8 by Lee and Yang 

in which W has an arbitrary magnetic moment wL= (1 + k) 
3 , the quadra- 

pole moment is not arbitrary but is given by Q = - $ . 

For convenience of discussion and computation we write the differential 

cross section in the following ws.~.~ 

' da = (zfl)4 
d3P d3P d3P d3P 1 1 x2 e4g4 

5 - 6 7 - - - - - 
4,/v 

- 
' 2E 2E 2E 4 ?+W;" 5 6 7 88 (231)'~ (2E)4 

S4(P1 + P - P - P -.P - 
2 5 6 7 

Ps) S((PS + P6)2 - +) (2.2) 

128C=ABC, 

A is a numerical factor and is given by 

A= a2g4 16 9 a2 R2 
(21.4~ I? W2 (2E)= = 4 (231)~ W4 E= 

(2.3) 
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R is the branching ratio 

R f r (w- +e- +v) _ ew - 
r r 6~ 

(2.4) 

C is essentially the matrix element squared with propagators and coupling 

constants taken out and -rillbe defined in Eq (?.29), Its analytical ex- 

pression, obtained by a computer is given in Table I. 

Kinematical Correlations 

B represents the phase space and contains all the informations about 

kinematical correlations which are important in the verification of the 

existence of W, and the determinatitin nf its ;F.ZSS. 

B f [ ;? ,[ 2~ [ 2 1 2 s4 (pl + P2 - P5 - P6 ‘- p7 - p8) 
5 7 6 8 

(2.5) 

= +j P dB P dE dR da 
5577 5 7 J' 

dq6 6 (pi +p2 -p5 -p6 -P,)~ 

-P -P )2 dP cos 8 2 5 6 6 (P5 +P6)2 

Using the coordinate system shown in Fig. 2, the integrations can be per- 

formed by using the 6 functions. 

d(P6 cos e6) 6 
( 
(P 

5 
t P6)2 = 1 

F 
5 

if cos 8 
6 

< 1’ (2.6) 

- 
I 

= 0 otherwise, 
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where 
w2 - 

cos 8 = 2E5 
(E - ES) 

= cos (x - 8 ) 
6 2E (E - E ) 56 

5 5 

M 9 ,\ 1 

dE6 6 + * p 2 - p 5 - p 6 )" - -= if E>E 
5 

(2.7) 

(2.8) 

=o otherwise. 

the integration with respect to cp is slightly more complicated because 
6 

the argument of the 6 function vanishe s at two points in the range.of in- 

tegration. The matrix element squared C depends upon cp as well as other 
6 

variables. For the moment we will write C = eP6) and evaluate 

2fl 

i' 
d, 

drp6 Cb6) 6 (Pi + p2 - P - p6 - P?)~ 
5 

271 

3 
L 

6 

C(cpoW - b ~0s cpg ) Q6 

= 
CbP6) + c(-ws) 

dn if lcos cp,J = I;1 5 IL ' 

where 

and 

= 0 otherwise, 

a = W2 f p2 - 2EE7 + p7 E;l (W" - 2EE5) COS es7 

4 
b (E -E ) -w2 sin 8 l 

5 5 57 

(2.9) 

(2.10) 

(2.11) 
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-- - -. 
I 

For convenience of discussion let us write 

cos 6 
35 

= (EEL - F )/E P 
54 

and 

cos 6 
47 

= (EEL - y )/P7P 
4 

(2.12) _ 

(2.13) 

(2.14) 

These two equations can be obtained trivially from 

(P3 - PSI2 =p:=o and (p4 - P?)~ = p,' = o. 

In terms of 8 and 8 
35 

we may write a 
47 

and b in Eqs.(2.10) and (2.11) 

as 

a = - 2 P P (cos 8 + cos 8 cos 8 
47 47 

) 
35 57 

b = 2 P P sin 8 sin 0 
47 35 57 * 

(2.15) 

(2.16) 

The two values of cp allowed for each choice of P and P 
6 5 7 

correspond 

to two production angles for the W pair. To see this we write 

= 
- E5 cos e 

15 - (E - ES) Cos e:= , (2.17) 
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where 

cos e+. = - cos 0 cos 8 
3.6 15 6 

5 sin ,? sin 0 
15 E 

In summary the desired cross 

+ sin 8 sin 8 cos 
15 6 

cp cos 
6 

cp 
7 

sjr! g !,i_.fl Q 6 .C 

section can be written in the form 

(2.18) - 

da 9 7: m2 R2 
= 1 

dE dE dR dG! 
5 7 5 7 

512(2~r)~w*~~p [c0s(e47+e35) + 2 cos e35c0se47c0s 8 + cos 8 17 
4 57 57 

(2.19) 

where c(x+) and C(X ) correspond to C(cp ) and 
6 

C(-cp ) 
6 

respectively 

in Eq. (2.9). 

The allowed range of E E dR 
5’ 7’ 5 

and dR of the cross section can be 
7 -- 

obtained from the inequalities in Eqs. (2.6), (2.8) and (2.9). From Eqs. (2.6) 

and (2.8) we obtain 

and 

E+P E -P 
->E >- 

2 5 2 
(2.20) 

EcP -p J2 

2 
4. + $ (E - P4) > E7 > !!---.& + - 

2 2w2 
(2.21) 

These two inequalities give the energy ranges of the electrons and muons 

if they are not detected in coincidence. The kinematical constraints due to 

coincidence are imposed by Eq. (2.9) which can be written as 

cos (8 + eg5) + 2 cos ez5 ~0s 8 cos es7 + cos@ > 0 
47. 47 

(2.22) 
57 
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From Eqs. (2.13) and (2.14), we see that 8 and e are related 
35 47 

to energy of the electron E and of the muon E Thus 
5 7 

respectively. 

Eq. (2.22) gives the range of one of the variables (E-, E . 8 ) when the 
3 7. 57 

other 'IWO are fixed. Tne fkee sltu~tior.s are ~ieFzrib& be'Low. 

1. For a given E and E 
5 7’ 

which necessarily must satisfy Eqs. (2.20) 

and (2.21), the range of 8 
57 

is given by 

(cos 8 > = - - cos 8 cos 8 2 sin F) 57 sSn 47 8 35 
47 35 

min 

or 

fl - (es5 + e47)1 <es7 -0 - Is 
47 

-6 ( 
35 

2. For given E and 8 the of 8 
5 

, range 
57 47 

is given by 

( cos 8 47 1 = - max cos 8 cos 8 35 57 2 sin 8 35 sin 8 57 
min 

(2.23) 

(2.24) 

(2.25) 

E 
7 max 

can be obtained by letting 
min 

ing expression 

= cos e in the follow- 
47 

E(W2 + p2) + P cos 8 W2 - p2)2 - 
E = 4 47 i’ 

7 2 (E2 - Ps cos2 8 ) 
4 47 

3. Similarly, for a given E and 8 
7 57’ 

the range of 8 is given by 
35 

cos 8 = - 
- 

cos 8 cos 8 + sin 8 sin 8 
l 35 min 47 57 47 57 

(2.27) 
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-1 

E 5 msx can be obtained by letting (COS e35)max = cos 6 in the 
min min 35 

following expression: 

E = 
$ 

. 
5 2(h, - P C'>S tl L, 

4 35’ 

The relations (2.23-2.28) can also be obtained by drawing pictures, Suppose 

the electron with energy E is moving along the -2 direction. 
5 

From 

Eq. (2.13), the W- meson (P ) must be cn a. cone around P 
3 5 

with angle 

8 35 given by (2.13). Let us invert this cone and call it cone C as 
-3 

shown in Fig. 3. Let the muon momentum P 
7 

be on the xz plane and draw 

a similar cone for W+ meson from Eq. (2.14) and call it C as shown in 
4 

Fig. 3. In order that P and P 
5 7 

be detected in coincidence, P and P 
3 4 

must come back to back, which means that the two cones C and C must 
-3 4 

intersect. In general there are two lines of intersection between the two 

cones C and C 
-3 4’ 

which correspond to two angles of production for W+ 

for each set of P and P 
5 7’ 

as mentioned previously. From the picture it 

is obvious that the condition for the intersection of the two cones is given 

by Eq. (2.24) and two other relations obtained by permutations 8 ++8 
57 35 

and 6 -8 
57 47 

respectively. 

To illustrate how sensitive these kinematical correlations are to the 

W mass, we give the following example. 

Numerical Example (Determination of W &ss) 

Suppose E = 3 BeV, W = 1 ls5 BeV E =lBeV,and 8 12.0 BeV ' 5 =fl- 
57 
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From Eq. (2.25), 

cos 8 max 0.96 
47 an = 0.24 for W = 1.5 BeV, 

and 

cos 8 
IIBX 0.834 

47 en = 0.060 for W = 2.0 BeV , 

Therefore, 

E IIBX 2.96 BeV 
7min = 0.49 BeV for v = 1.5 BeV, 

and 

E max 1.76 BeV 
7 min = 0.552 BeV for W = 2.0 BeV , 

From this example we can see that the mass of W can be determined 

easily from kinematics alone. 

Dynamical Correlations 

The function C represents the matrix elements squared and can be con- 

veniently written as 

(2.29) 

t 
I-1V 

is the tensor obtained by taking the trace of the initial electron 

positron system, 

t 
PV 

= - Tr (- i2 + m) yP (16 1 + m) Y, = 4 (P1PP2v + pIvp2u - 2E2gPV) 

(2.30) 

= - 8 E2gpV + QpQv I 1 , 
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where 

-- -- 

Q = (Pl - P2)/2 . 

- I 

v 
Pw 

is the YW-W' vertex, 

v 
l-m = q@ '", - P3)I-l + (1 + k) P3~gcLa: - (1 + k) P4-jpa . (2.31) - 

. YP8, is the trace of the p' I Y bysteo: ax thz sqlTare of the numerator 

of the W+ boson propagator; 

= (w2 - ~2)(P,,p,,,w-2 - grpp) - 4 
i 
P*(P;P,) w-2 - P 

78 1 x 

(‘ip7 lww2 - p7p - 2 i Eapbp, p7ap4b l 

(2.32) 

X CEX’ is the corresponding expression for the e- + j system, 

X Qf-Jt = - ; Tr - $ (1 + y5) yy(j5 + d Yyr (1 - 7 > T 
5 d 

(p3ap3y w-2 - gol&p~,p3y, iv2 - s,,,) 

= (w2 - m2)(P&s, Wm2 - b, > 

- 4 Pz (P3*P5) w-2 - P 
i 52 32’ 

H 
P (P3*P5) w-2 - P 

) 5a’ 

+2is 
CC&la' 

P P 
5c 3d l 

(2.33) 
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The analytical expression for C was obtained by a computer. We 

set the mass of the electron m = 0 for simplicity. C is first written 

as a function of invariants 1-L2, w2, (pl * p2j2, pps, yp, pep5, p-q, 

p5'p7 and PI-P . 
3 

It w&3 fol!nd that the expression simpiifies greatly 

(and also exhibits the symmetries OL the praJbld Gore clearly if one uses 

the variables E, Es, E7, x, y, z and u defined by 

(P1+P2)2=S2=4E2 , 

p1.p5 = E(E5 - P5 cos Q15) - E(Es - y) ,, 

p1*p7 
= E(E7 - P7 COS if&) = E(E, - ‘) ’ 

P2*P5 - E(Es + y) , (2.34) 

P2*P7 = E(E, + z) , 

Pi-P3 = E(E3 + x) , 

P5.P7 = Es(E, - PT cos 8,) = E&E, - u) . 

All the quantities except x in the above are directly measurable ex- 

perimentally. As shown in (2.17) x is not an independent variable but 

takes two values xf which are expressible in terms of observable quantities. 

The final expression for C is shown in Table I. 

It should be noted that if other decay modes of W's are to be considered 

we need to change only the expressions for Xam, and YSS, . The expression 
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for t pv vpQ$ vwfg' is still usable. By explicit calculation we obtain 

= - %ga,B, b'(P* - P3)" + 4(a.p,)'] 

- 2(1 + k) 
[ 
E2k,$a'qB, + q-4&P3,) + ~(Q*P,)(pp,Qa, - p,,Q& 

+ ga,B,(Q+4)(P3;BQu - '&a,;1 
i 

+ (1 + k12 [ E2(qSP4a,~p, + p4J3p!go1’p - ppp3pqJf-y - p*p~'g~p') 

-. 

- <P3@Qa - PaQB)(P3B,Qa, - Pa,-$ > / 

(2.35) --- 

The density matrix of the W pair produced is actually defined as 

D yy'66' = %wpp (p&3yw-2 - ~yHp,(z.rp3Y,w-2 - g,,,) 

(2.36) 

(p,pp*$J-’ - gB&(P@‘P4~F2 - E$,8, > 

We have merely incorporated the last four factors into the definitions of 

X and Y to make the writing more compact. The rank 4 tensor D has the 

following properties: 

1. It is symmetric under simultaneous exchange of two indices y *y' and 

6h,6'. 

2. It is invariant under exchange P, csP2 . 
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3. It is symmetric under simultaneous exchange P3 tip4 , 6 c)y 

and 6' c,y' . 

4. It satisfies the subsidiary condition P3yz!Yy,66, = 0. 

III. SYMMETRIES IN THE CROSS SECTION 

(a) The parity violating effect of the weak interaction does not 

show up in the differential cross section. Since only Pi, P2, P5 and P7 

are measured experimentally the only psuedoscalar quantity one can construct 

is 

(3.1) 

But this quantity is not time reversal invariant, hence will not appear in 

the cross section. The absence of such a term in the cross section implies 

that the differential cross section for P7 must be symmetric with respect 

to the Pi - P5 plane and the differential cross section for P must be 
5 

symmetric with respect to the P1 - P7 plane. 

(b) The cross section must be symmetric with respect to the plane per- 

pendicular to the incident beam, This is the consequence of the one photon 

exchange model. This must be so by the fact that "; 
I-IV 

is symmetric respect 

to the interchange p, tip, and hence C must also be invariant under this 

exchange. The only other places where p, and p, occur are in the flux 

factor and the 6 function, both of which are invariant under the exchange 

P, * P, * Thus the differential cross section should not be able to tell 

the sense of the current of the incident beam. 
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(c) The differential cross section for the process 

+ ‘+ e + e- +w+w- (3.2) 

is identical to Lhe one we are co;;sidelvlng [Eq. (l.l)]. This can be proved 

by the following steps. 

1. The mass of p inside the trace of (2.32) does not contribute. 

2. The expression of matrix element squared C for (1.1) can be 

written as 

C=+D yylEg1 (p, + P,7 p7 + p,) x 

Tr $=(1+y5 
L 

- Y,)Y~ j7yg, 1 (3.3) 

'- where D (p3, p,) is the density matrix defined by Eq. (2.36). Since D is 

symmetric under Y ++Y' and 6 06' , C is syrmnetric under y, ++ - y5 . 

3. Let us denote e+ by ps , i-t- by Pi , Ve by Pe and TK bY P8 

for the process in (3.2). 

Then the matrix element squared can be written as 

C'=+D yy'66' (P7 + p,7 P, + P,) 

Tr 
C 

fi8(1 + Y,)Y~ fi7Yy, 
I ' 

Tr; fi6(1 - Y5)yg i5Ysl 
L 1 

Now 

(3.4) 

D y7,66' 'P, + Pg7 P5 + PJ = D861yyl (P5 + P67 P7 + P*) 
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from the symmetry property no. 3 of D. Rearranging the dummy tensor 

indices and remembering the symmetry under y5 cs - y 7 we arrive at the 
5 

desired result 

C = -I’ , (3.5) 

The processes (3.2) and (1.1) are related by the charge conjugation. 

The theorem we have just proved combined with the invariance under p, h)p2 

of C shows that the charge conjugation violating effect of the weak in- 

teraction does not show up in the diff-rential cross section. Experimentally 

this theorem implies that if the detectors can distinguish between e and ~1 

but cannot distinguish the sign of their charges, one will get exactly twice 

the coincident counting rate we have given in this paper. (See Footnote 11.) 

(d) If E-W>> p then the mass of the muon can be ignored from our 

consideration. Under these conditions the four leptonic decay modes of W 

pair will all have the same differential cross sections. 

IV. CROSS SECTION FOR e+ + e- +W+ + W- 

For completeness we give the differential cross section for this process 

summed over the polarization of the W's. 

e4 1 
da=- - 

(2~)~ 32E" 

ap cm’&3 (p32g1 Jr2 - ~,)(P@P4B, W-2 - ges,) 

(4.1) 
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From the above we obtain the differential cross section 

da $p3 - 
-=. I 

32pw2 L 
by4 k-' sin2 8 + 

dR4 

(4.2) 

where y = E/W and p = (1 - r-2)$ , Notice that this cross section has a 

maximum at e = 90' and is symmetric with respect to 90'. 

The total cross section is 

7a2p3 
a =- 

3Y2W2 
k2 + (k2 + 3k + 1) y -t 2 1 (4.3) 

Equation (4.2) agrees with the result obtained by Cabibbo and Gatto4 

if one lets their form factors be equal to unity, identifies their v with 

our k and puts their anomalous quadrupole moment E = 0. The numerical 

examples of (4.2) and (4.3) are given in Table III. 

As pointed out by Gabibbo and Gatto, the expression for the total cross 

section (4.3) cannot possibly be right at high energies because it violates 

unitarity. The unitarity relation says that the sum of total cross sections 

of all channels from electron positron annihilation via a single time like 

photon intermediate state can not exceed 3fi/4E2;?, because the initial total 

angular momentum of the electron positron system must be unity. The cross 

section (4.3) increases with energy as y2 at high energies of k f 0 and 

stays constant if k = 0 in the asymptotic limit. The cross section reaches 
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its unitarity limit at energy equal to 

and 

E = g x 137 if k=O . 

The energies at which these limits are reached are considerably 

higher than those of the various colliding beam machines proposed. Never- 

theless, it is still a serious defect of the theory. It is not immediately 

obvious that by considering the higher order electromagnetic effects this 

difficulty can be circumvented.6 
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V. NUMERICAL EXAMPLES OF THE DIFFERENTIAL CROSS SECTION 

+ e + e- 3 e- + Te + $ -I- v 
P 

In order to facilitate the design of the experiment it is useful to know 

approximately how the electrons and muons are distributed and what their 

energy and angular correlations are. We were told by David Ritson that a - 

spark chamber with nearly &-r solid ang:.e can be used, and that the muon energy 

canbe measurtd with a Xgh accuracy irG;m ,$a rarge and the electron energy 

can be measured from its shower production. We have integrated the expression 

(2.19) with respect to the energies of the muon and electron, and have obtained 

da/&l &l 
5 7 

numerically by a computer. 

da 9 rz maR2 
= 

da dQ 
5 7 

(2~)~ 512 E7W4P4 

j7 3yudE7f5 maxm5 

E 7min E 5min 

The limits of integrations are: 

c+ + c 

[ COS(~ 47 +e cos 8 35 )+2 8 35 cos 8 47 cos 57 +c0s2e 57 2 
I' 

- 
-- 

E 
7 min 

= *+- 
2 2w2 

(E 7 P4) 

max W' 
E = 

5 min 

where (~0s e35)x = -cm e47 co6 e57 + sin e47 sin e57 

The result of the computation is shown in Table IV. The unit ofthe cross 

section is. 1O'34 cm2 per (steradian)2. 
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We make the following comments and observations on Table IV. 

(a) Due to the symmetry with respect to cp, ++ -(p7 we computed the cross 

section only from cp = 0 to lr. This symmetry is due to the time reversal 
7 

invariance 3s discussed in Sect'on (?a). 

(b) The cross section is symmetric with respect to a simultaneous exchange: 

8 e-a - 0 
15 I.5 

cp c+fl - qJ 
7 7 

This is due to the symmetry with respco-t to tLc interchange 

as discussed in Section (jb). Because of this symmetry we took 

0 to R/2. 

(c) The values of the differential cross section at 8 = 
57 

P ++P 
1 2 

8 from 
I.5 

O0 and 180' 

were not given in Table IV, because of the limits of the E integration 
5 

pinch (i.e., Ey = Eyn) amd at the same time the denominator of the inte- 

gral vanishes at these two points. However, by taking the limit, the integrals 

at t.hese two points give finite numbers as shown in Table V. In general the 

-- 

cross section increases rapidly with 63 from O" to 180'. The rate of 
57 

increase depends critical-ly upon k. For k = -2 the ratio of the cross 

sect.ion. at 8 z 3o" to 8 = 150° is approximately l/10 or l/l5 depend- 
57 57 

iw upon whether 8 = 30' or 8 
I.5 

= 90; for k = 0 i'ne corresponding 
15 

ratio is l/33 or l/13; and for k = 2 the corresponding ratio is l/l8 or 

i/28. In the absence of d7ynamical correlations all these ratios should 

be identical for all k. Thus we conclude that the effect of dynamical car 

relations is strong and shouid be utilized advantageously to determine k 

(and the anomalous quadrupole moment if it is there). 
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VI. DISCUSSIONS 

(a) All of our considerations will be only of academic interest if there 

is no W meson, or if its mass is so large that it can not be produced in 

the foreseeable future. Sowever we bolleve va~-i~z considerations made in 
- 

this paper can be applied to,many other similar problems which involve creation 

+ of unstable particles by e + e- collisions. For example 

, >n-+P 
-I- e +e -+A -i- 7i 

I---+ 2 -k p 

This reaction gives the electric and magnetic form factors of A for a time 

like momentum transfer. 

(b) We have completely ignored the fact that some extra photons are always 

emitted either from initial or final charged particles (the so-called radiative - 

corrections). If a photon is emitted from the initial system, the virtual 

photon in our problem will no longer be a pure time like vector (2E, 0), but 

will acquire a certain energy and momentum distribution. As a result the kine- 

matical correlations we have discussed will no longer have a sharp edge at the 

boundary, but will be smeared by some radiative tail. In general the radiative 

tail smears the particle energy on the low energy side. Thus it will change, 

fGi- example, Ep to a lower value but will not affect Emax in the numerical 
7 

example given in Section 2. Since Emax 
7 

depends very critically upon W for 

fixed E and 8 
5 57’ 

we conclude that the mass determination via kinematical 

correlation will not be affected by the radiative corrections. If the radiative 

corrections are included then the symmetry under P1 t,P will also be 
2 

violated by a few percent.l' 
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(c) The major background to the process considered is expected to be 

due to the accidental coincidence from two reactions 

+ + 
e + e- 3e + e- 

and 

+ c + e- -, 9+ + 

Neglecting the radiative corrections and 

CL 

possibilities of form factors,their 

cross section can be written respectively" as 

do r 2 m2 1 + cos4 e/2 2 cos4 d/2 1 f ~0s~ 8 
0 =-- + 

ti (e-) 8 E2 sin4 e/2 sin2 e/2 1 63J 
2 

m2 
+ - sin2 8 

2E2 1 

At e=g(jO and E = 3 BeV, we have 

& = 12.5 X lO-34 cm2 per steradian 

and 

do 
zki--(g= 1.4 x 1o-34 cm2 per steradian. 

Compare these with the result of our Table IV at 8 
15 

= po', 8 
57 

= 150°, 

with K=-2 and W=2: 

da 

m5m 

= 0.1435 x 10-34 cm2 per (steradian)2. 
7 

(6.2) 

The accidental coincidence is proportional to the product of (6.1) and 

(6.2) if one detects e- + and P or e + and P- and therefore it is com- 

pletely negligible. However if W really exists, then one would expect the 
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(e%, (I&J-), (e-6? and (&-) d eta modes of the W pair to have almost Y 

identical probability. Turning the argument around, the near identity of all 

these four decay modes will serve as an additional proof that W's were 

actually produced. The radiative corrections to processess (6.1) and (6.2) 

will. then be the major background for the (e+e-) +iid (s+p-) decay modes 

respectively of the W pair. The main effects of radiative corrections to 

processes (6.1) and (6.2) are: (1) the final particles will no longer all come 

out exactly back-to-back, and (2) their energies will be smeared. These effects 

are all rather easy to calculatel' and in general the cross sections drop down 

very quickly as one deviates from the elastic kinematics. Thus in principle 

there is no major difficulty in distinguishing the 

from the (e+e-) and (P'P-) decay modes of the 
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of mass system, there w-i.11 be more A- coming out along the direction 

e- than A+. This -phenomenon is very similar to the difference between 

e+p and e-p scatterings where e+p in general has a larger cross 

section at a fixed angle than e-p if higher order terms are included. 

- 
I 
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FIGURE CAPTIONS 

1. Feynman diagram for the process e+ + e- +W+ + W- +-CL' +vp+e'+T. e 
2. The coordinate system chosen to define es7, e6, cp,, Q15 and q+, . 

3. Kinematical correlatiorx. T;TO lines or? intersection between cone C4 

and cone i -3 give the Lwo r~ssi~le diLeec::,iond of the W+ boson 

produced for each choice of final electron and muon momenta. 
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TABLF: I 

COMMENT THIS IS THE C(X) DEFINED IN EQUATIONS (2.19) AND (2.29). THG 
FOLLOWING S&STITUTIUNS MUST BE FIADEI EE+Er Xl~X#YY+YrZZ+Z~UU+Ur 
MW+~rMUt((GREEK MU>:, SScSEt*2: 

Ct 
I- rjxEE~4 t 4x <E*2 xX112 t 4xL:*2xdws2 ) I 

(MU*4x (-16.0xEE*3xE5xMW*(-4)+Et*2x (16,OxE5+2xMW+(-4>t4rOxMW,(12) )-8. 
OxEExE5xMW+(-2) )+MU*2x (-4R,OxEE*3xE5xMw*(-2)tEE*2x (48,OxE5*2xMw+(-2)t 
48,0xE5XE7xMW+(-2)-16,0xE5xUUxMW*(12)+12,0 >tEEx (-32,OxE5+2xE7xMW*(-2)t 
32.OxE5*2xUUxMW*(-2)-24,OxE5-8.OxE7 )tB,OxE5xE7-8,Ox~5xUUt4,OxMW*2 )+64, 
OxEE*2xE5xEItEEx (-32~OxE5*2xE7+32,0xE5+2xUU132,OxE5x~7*2t32,OxE5xE7xUU- 
16.0X~5xMW*2-16~0xE?xMW*2 )+16,0xE5*2xE7*2=32,0xE5*2xE7xUUt16~0xE5*2xUU* 
2tl~i~~~5~E7xMW*2-16,~xE5xUUxMW*2t4,0xMW*4 ) 
t 

(MU*4x (X1*2x (~~,OXEE*~XE~~MW*(-~)+EE*~X (-64.OxE5*2xMw*(-4)-~6,OxMw*( 
-2) )+16rOxEE*3xE5xMW*(-2) )tXlxYYx (-32.OxEE*6xMW+(-41t64,OxEE*5xE5xMW* 
(-4)-16rOxEL*4xMW*(-2) )-32,OxEE*5xE5xM\:+(-4)xSStEE*4x (32,OxE5*2xMW*(-4 
)xSSt8.OxMW*(-2)xSS )-8,OxEE*3xE5xMti*(-2)rSS )tMU*2x (X1*2x (288,OxEE*5x 
E5xMW+(-2)+EE*4x (-192,OxE5+2xMW*(-~)-l92,OxE5xE7xMW~(-2)t64,Ox~5xUUxMW~ 
(-21-48.0 )tEE*3x (64,OxE5*2xE7xMw*(-2)-64,OxE5*2xUUxMw~(-2~t48~OxE5tl6~ 
OxE7 1 )tXlx (YYx (-~~,OXEE*~XMW*(-~)+EE+~X (192,OxE5xMw*(-2)+~28,OxE7xtd 
W*(-2) )tEE*4x (-192,OxE5xE7xMW*(-2)t64,OxE5xUUxMW,(12)-48,0 )t32,OxEE*3 
xE7 )tZZx (-128rOxEE*5xE5xMri*(12)+EE*4x (128rOxE5*2xMWi(-2)t16,0 )-32,0x 
EE*3xE5 ) )-96rOxEE+5xE5xMW+(-2)xSStEE*4x (96,OxE5*2xMW*(-2)xSStl~2.OxE5 
~E~xMW*(-~)~SS-~~~O~E~XUU~MW,(~~~~SS+~~,O~SS )tEE*3x (-96,0xE5*2xE7xMw*( 
-2)xSSt32rOxE5*2xUUxMW*(-2~xSS-8,OxE5xSS-24.OxE7xSS )tEE*2x (-16,OxE5*2x 
SStl6rOxESxETxSS ) )tXl*2x (-256,OxEE*4xE5xE7tEE*3x (64rOxE5*2xE7-64rOxE 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ) ]tXlx (yYi( 

(128rOxEE*SxEItEEs4x (-192rOxE5xE7t64,0xE5xUU-~28,0x~7*2-32,0xMw~2 )t,E: 
*3x (128 0xE5xE7+2=128,0xE5xE7xUUt64~0xE7x~w~2 ) )+Zzx (-12fjcOxEE*5xE5+'- 
E*4x (128,0x~5*2t192.0xE5xE7-64rOxE5xUUt32,0x~w~2 )tEE*jx (-128,OxE5*2xL 
7t128,0xE5*2xUU-64,0xESxMW*2 ) ) )t128,OxEE*4xE5xE7xSS+EE*3x (-96,OxE5*2 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
32rOxE7xMW*2xSS )tEL*2x (64,OxE5*2xE7*2xSS=64,OxE5$2xE7xUUxSStl6,OxE5*2x 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
xss I I 
t (ltK)*2 x 

(MU*4x (X1*2x (-32,0xEli*5xE5xMW*(-4)tEEh4x (16rOxE5+2xMw+(-4)t4rOxMW+(I 
2) 1 )txlXYYX (32,0xEE+6xMW*(-4)-32,~xEE*5xf5xMW*(-~) )tl6,Oxyy*2xEE*6xM 
w*(-4)-4,OxEE*6xMW*(-2)tl6,~xEE*5xE5x~w*(-4)xSS+EE*4x (-16rOxE5*2xMw*(-4 
)XSS-2,0xMW*(-2)XSS )tB,OxEE*3xE5xMW*(-2)wSS+EE*2x (a4,OxE5+2xMW*(-2)xSS 
-ss ) )tMu*2r. (x1*2x (~Y~,OXEE*~XE~XMW+(-~)+EE*~~ (48,0xE5*2xMW*(-2)+32, 
OxETxE7xMW*(-2It12.0 ) )tXlx (yyx (~~,OXEE*~XMW*(-~)~EE*~X (-96,OxE5xMw* 
(-2)-96rOxE7xMW*(-2 

1 
)+bY.OxEE*4xE5xEfxMW*C-21 It2 x 

8 
(96,OxEE*SxE5xMW*C- 

2JtEE*4x (-64,OxE5+ xMW*(-2)-16.0 ) ) )+yy12x (48, xEE*6xMw*(-2)-64,OxEE 
*5xE7xMW*(-2)-16,OxEE*4 )tyyxZZx (-32,OxEE*6xMw*(- 
1.3-!2rOxEE*6tEE*5x (48rOxE5xMW*(-2IxSStl6 P 

)+64rOxEE*5xESxMW*(-2 
,r3rE7 l+,E*4x (-48rOxE5*2xMW*( 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ )tEE+ 
3x (~R~OXE~*~XE~XMW*(-~)XSS-~~ OXE~*~XUUXMW*(-~)XSS~~,O~E~~SS )tEE*2x (4 

OxE5+2xSS-8 OxE5xE7xSStMw+2xS$ ) )+X1*2x E*4x (32 OxE5xE7t32 OxE5xUU )t 
ilx (YYX (-1$8,0xEE*5xE7tEE*4x (64,OxE5xE +64,OxE7~2t32,OxM~*~ F ) )tzzx ( 
128,OxEE*5xE5tEE*4x (-64,OxE5+2-64,OxE5xE7-32,Ox~w*2 ) ) )tyy*2x (-64,0x 
EE*5xEItEE*4x C64,OxE7*2+16,OxMw*2 ) )tyyxzzx (EEe5x (64.OxE5+64,OxE7 )t 
EE*4x (-128,0xE5xE7=32~0xM~~2 ) )tZZ*2x (-64,OxEE*5xE5tEE*4x (64,OxE5c2+ 

16rOxMrl*2 1 )tEE*6x (-32,OxE5xE7-32~0xE5xUU )tEE+5r (32rOxE5xMW*2t32eOxE 
7xMW*2 )tEE*4x (-16 Ox 5s2xMw*2-48,OxE5xE7xSSt32.OxE5xUUxtdw*2+16~~xE5x U 
~SS-l6rOxE7*2xMW+2-i6, 5 x xMW*4 )+EE*3x (48rOxE5*2xE7xSS-16.OxE5+2xUUxSSt 8 
.0xE5xE7*2xSS=16,0xE5xE7xUUxSS )tEE+2x (-3210xE5*2xE7*2xSSt32,0xE5*2xE7x 
UUxSS-8.OxE5xE7xMW*2xSS-~,OxE5xUUxMW*2xSSt4,~x~w~4xSS ) )j 
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TABI;E II 

DIFFERENTIAL CROSS SECTION FOR e+ f e- + W+ + W- 

AT E = 3 BeV, W = 2 BeV 

da/da 

k e 
(degrees) 

2 0 2.33 

30 2.77 

60 3.65 

90 4.10 

-1 0 0 

30 0.1 

60 0.307 

90 0.401 
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TABiX III 

TOTAI? CROSS SEf;TIOIV FCC E+ t F.--J W+ + W- 

a 

EbV) W(BeV) k (10 -32 cm2) 

3 2 2 4.41 

4 2 2 9.24 

10 2 2 54.7 

100 2 2 5240,O 

3 2 -1 0.343 

4 2 -1 1.08 

10 2 -1 13..8 

100 2 -1 1310.0 

3 2 0 0.289 

3 2.2 0 0.191 

3 2.4 0 0.116 

3 2.6 o 0.060 

3 2.8 0 0.020 
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TABLE IV 

DT.FFERENTiXL CROSS SECTION F'OR e+ + e- -+w+ + e- + Y + 7, 

AT E = 3 rev WITH w = 2 Bev, R = 0.25 m k = -2,0:2. 

e --IS 

30 

-%- 

0 

e 
-5-T 

a%/~ al,, in uF4 cd per stemdim= 

k = -2 k=O b=2 

30 .:=a9 .nooy!34 ( .02537 

60 .03203 .C.-Q^? .05245 

90 .07312 .co2514 .1166 

120 .1180 .01035 .24l2 

150 .1286 .03207 .4519 

30 30 30 .01289 .cQlO17 .02524 

60 .03244 .001658 .05153 

90 .07099 .002940 .1152 

120 .1138 .OllU7 .2394 

1550 -262 .03294 .4606 
__- - 

30 60 30 .01277 .001194 .0244O 

60 -03074 .002013 .04632 

90 .06501 .004616 .1084 

I.20 ~028 .01295 .2338 

150 .1185 a3576 .4632 

30 90 30 .01251 .001380 .02331 

60 .o2755 .002537 .04206 

90 .05438 .00573o .lOOO 

I20 .08622 .01503 2293 

150 .1119 .03796 .4722 

30 I.20 30 .01215 .001542 .02227 

60 .02335 .002919 .0375-f 

90 .041ea .006471 .08857 

I.20 .069l4 .01626 .2083 

150 JO49 .03947 .4715 

30 150 30 .Ol187 .001644 .02125 

60 .01967 .002867 .03492 

90 .03194 .006852 .076&J 

120 .05485 .01682 .1968 

1550 .1003 -04014 .46&9 

30 180 30 .on64 .001678 .02ogg 

60 .01813 .002931 .03260 

90 .02790 .006914 .07l21 

120 .04807 .01694 .1907 

150 .09963 .04018 .46.31 

60 0 30 .01165 .oQl510 .02018 

60 .02765 .002040 .04634 

90 .o7355 .002229 .1183 

120 .1401 .008009 .2642 

150 .I545 .02390 .4502 



--- .- I 

-%- “r 
60 30 

60 60 

TABLE Iv - (Co”tinued) 
d20/dnE a, in lo-" cm' per steredhn2 

-%L h = -2 k=O k=2 

30 .01035 .001583 .02051 

60 .02819 .002292 ~ .04713 

90 .omb .002870 .r169 

120 .Ub> ~~19516 .2645 

150 A505 .oz5gb .4529 

36 ,010)" .vo1773 .02039 

bo 92886 .002866 .04514 

9c .0703,3r .no5:0-, .11?7 

l20 A258 .0x36 .2630 

150 .i442 .o3w .4517 
60 90 30 .01033 .002008 .0193-l 

60 I.20 

60 150 

bo 180 

90 0 

60 .02669 .003421 .o4165 

90 .cb162 .006828 .X96 

120 .lOY5 .o1535 .2549 

150 .1337 .c32go .4607 

30 .0X&3 .002141 .01778 

bo .02133 .oo%>b .O3783 

90 .04725 .007305 .og436 

l20 .oySb .01590 .2378 

1550 .I295 .03371 .4574 

30 .009372 .CO2184 .01654 

60 .01565 .o03v5 .03101 

90 .03325 .ooi’o76 .08047 

120 .07827 .01524 .2141 

150 .1255 .03274 .4506 

30 .009078 .co2188 al;67 

60 .01027 .003630 .02756 

90 .02720 .0069q .o7099 

l20 so7256 .01474 .2100 

150 x265 .032lY .4528 

30 .oc8ggb .002078 .o1535 

60 .01791 .003087 .o3372 

90 .05041 .oo5153 .W572 

I20 .ubb .01024 .2477 

150 .157o .02387 .4409 

30 .ODY320 .002137 .o1575 

bo .01993 .003274 .03593 

90 A5411 .oQ5709 .1014 

l20 .I173 .01162 .2507 

150 .1535 .02571 .4442 

30 .c09a33 .oQ259 .Olb01 

60 a02390 SO3643 -03949 

90 .06151 .0067&3 .lU 

1x) .l.a7 .01421 .2617 

150 ~476 .02904 A513 

30 .OW237 .002318 .0174a 

60 .ozba .0033ll .04c94 

90 .ob544 .CO72ll .ll54 

120 .I220 .01533 .26-s 

150 .1435 .03x5 .4549 
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TABLE V 

AN EXAMPLE OF THE BEHAVIOR OF THE DIF'FERENTIAL CROSS SECTION NEAR 8 = 0 and 
57 

180°, 

for E = 3 BeV W = 2 BeV R = 0.25, K 7 -2, 8 = 3o", 0 = 
15 

3o" 
7 

8 in degrees do/a= a~ in 1O'34 
57 5 7 

cm2/steradians 2 

1 my584 

5 .009852 

30 .01289 

90 .07312 

150 ~286 

170 -1392 

179 .1422 


