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It has been strongly suggested by M. Gell-Mann® that, "the integrals
of the time components of the vector and the axial-vector current octets
... generate, under equal ‘time commutation, the algebra of SU(3) ® SU(3),"
and that these algébraic relations are preserved even though the axial-
vector and the strangeness changing vector currents are not conserved.
These non-linear comwutation relations fix tle r2lstive scale of the vector

and axial-vector matrix elements measured in the weak interactions.

§

In this letter these idéas are camnbined with that of a partially con~- —
served AY = O axial-vector current to obtain an expression in terms of
n-proton total cross sections, (24), for lGa/le ,» the absolute ratio of re-
normalized axial-vector and vectcr coupling constants of ordinary B-decay.

A numerical evaluatién using experimental data for struing interaction

n-nucleon scattering yields

lGa/qvl = 1.16 | | (1)
The present experimental value?® is
G, /G, = - 1.18 + 0.02 .

a

We consider the charges defined by

Ii=fd3xV1
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where Vo’ Ao are the time-coamponents of the isovector members of the vec--

i=1,2,3 (2)

tor. and axial-vector current octets. ?p is; in fact; the conserved iso-

topic spin current® so that f is the total isotoplc spin operator. aa is



the isotopic chirality. The effective interaction for AY = 0 leptonic

decays of the hadrons is taken as

(V + A ) + h.a.,

. - = -.—
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+ (3)
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For matrix elements between physical proton and neutron states of

equal momentum it follows that
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which defines Ga s the renormalized axial-vector coupling constant.
By partial comservation of the axial-vector current, (P.C.A.C.)*’5, we

mean
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where @ﬂ(x) is the renormalized Heisenberg field of the n-mesons;
M = nucleon mass, W = pion mass, gin/hn = 14.6 , and Kﬂnn(o) is the in-
variant n-nucleon vertex function evaluated at zero pion mess.

The cammutation rule which we use 1is
+ o
T =
2r_=[af, o] - (6)

Adapting the method of Fubini and Furlan,6 we take matrix elements of (6)

between physical one-proton states which gives
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We introduce a camplete set of physical intermediate states in the right hand

side of (7) and isolate the contribution of one-neutron states
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We then obtain for the second term on the right side of (8)
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The multiplicative factor, 5(3)<p2-pl) , appears in all terms of (9)
and will be dropped. We put ;2 = 51 = ; . The matrix elements ocecuring
in (10) can be classified into two types of Feymman diagrams: (a) connected
graphs which correépond to scattering from an initial state of the proton
and the off-mass-shell pion, in the rest frame of the pion, to the final |
state, <out a‘
the proton without interaction. For graphs of type (a)

;5 (b) disconnected graihs cerresponding to propagation of

(11)
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where

2= O+ o (x) .

For graphs of type (b) we write

(3)(

<out al Q;(o)le(p) ” | =9 5 - ;’)<out a"@; (O) lO >

disc.

>
where p'!

is the momentum of the free proton in the state <out a' .

When taking the absolute square of the matrix elements in (10) there
will be contributions from squares of connected graphs, squares of dis-
connected graphs, and cross-terms. All terms fram squared disconnected
graphs can be neglected since they will be exactly cancelled by correspond-
ing contributions fram the other term of the commutator in (8). The cross-
terms should be daminated by [Cﬁ > = 'ﬁ > , & physical one-pion state. -
Other states have higher thresholds in ko ; and their contribution should

be damped strongly in the k, - integration of (10). This assumption is

in the basic spirit of the P.C.A.C. hypothesis. One then obtains

._5_.
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The frightening looking singularities in the abuve expression will be
cancelled by unitarity. Since the T-matrix elements in (13) are multiplied

by S(ko ~ u), they can be continued in the pion-mass from #u to ko .

That is, . . )
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T(ﬁ;(y) j;(o)) denotes the time-ordered product of the prion currents.

Similarly,
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Tﬁ'P+ has a representation similar to that for T XD above, except

in terms of an anti-time-ordered product. 'p(ko Ep) is the =« proton

forward elastic scattering amplitude in reference system where the off-mass-

shell pion is at Test and the proton has momentum p. If we now use

«
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B ) = =2 [ -1 - = ,
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and substitute these results into (13), it can be seen that the coefficient
of the dangerous double pole pinch vanishes due to the unitarity condition.”

—

Performing the same manipulations for the 2; term in'(9), one arrives

at the result ' P
2 2 d.k
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To evaluate the integral above, we return to the expression (1ka) for
Tﬁ-p<ko’Ep) y» insert a complete set of intermediate states in the time
ordered product and obtain a Low equation for T
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All the ko ‘dependence of Tn'p is in the denominators. For fixed

physical EP,TJT P(ko,gﬁ) is analytic in the complex ko-plane with branch

cuts fram k t0o + © and fram - k t0 - o . The one-nucleon

o min o min

intermediate state does not contribute a pole term at ko = 0 since the
residue is zero for a pseudoscalar picn. Letny'(z,Ep) denote the analytic
%) ic the limit of I (z,B) on

continuation of T . (k E ) o -k,

. l:d

iy

the top of the right hand cut and the bottom of the left hand cut. It

can be shown in the same manner that Tﬁ-;(ko’Ep)' is the limit of ;f(z,Ep)
on the other sides of the cuts. Using crossing symmetry thevintegrale

in (15) can then be evaluated as

(Z, '

az 1 4
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2ﬂl (z _uz)z 22 ud dko "p " O P

where C is the contour indicated in Fig. 1.

Crossing symmetry further implies that
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where T  is the coefficient of the anti-symmetric isospin function in
the conventional decomposition for sn-nucleon sca.ttering.9

We seek to reduce our answer to an expression involving on-the-mass-
shell quantities only. The forward scattering amplitudes satisfy disper-
sion relations® in the variable v , the pion energy in the "laboratory
system" where the nucleon is at rest, and these dispersion relations

can be continued in the pion mass to k% = O. Since kOEP =My,
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From the dispersion relations
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where 1{ is the invariant forward scattering amplitude. The energy depen=-
dent term contribution comes from the Born term. We now write for (15)

TN L )]Z L/ gﬁ I11177[‘(110 = 0,v) (21)

puZ/2M

1/(6,/6,) = 1 + (1/x) [(2M)/g

‘The contribution of the Born term from the dispersion relations has

completely cancelled the original (M/Ep)z factor from the one-neutron

intermediate state, and we are left with a covariant answer. To put the

ansver in a final useful form, first let v =V - (uB/2M). In the region

. . 10
of integrationt©’t?l

7 [k, = 0 vy, + (uP-d)/au| = K2 (o) T (1,vy) (22)

Im 7L (w,vy) = a0y (vp) (23)

where ¢q 1is the magnitude of the 3-momentum of the pion in the laboratory

system. We obtain finally an answer in terms of experimentally measured

total cross-sections

| ~ qdv
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‘Evaluation of (24) using experimental cross-sections'® gives the result
quoted in (1).*°

The author is indebted to his colleagues in the theoretical group at
SLAC for their friendly and stimulating interest in this calculation. For
helpful discussions, he is particularly grateful to Professors J. D. Bjorken
and S. U. Drell and Lrs. A. C. Finn apra J- D. Svilivan. In addition he
wishes to thank Professor Drell for a critical reading of this manuscript.

After completing this wofk, the author was informed-that similsr results

have been independently obtained by S. L. Adler.t?
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According to (24) it is the effect of the (3,3) resonance which makes[Gal>[Gv

In fact the (3,3) resonance contribution alone giveslGa/Gv|= 1.3, and the

higher energy T = 1/2 resonances reduce this value. The convergence of the

Ttot” B
fit to the data above 5 GeV with @ = 0.5 to 0.7 gave a -0.02 contribution

integral depends on the validity of the Pomeranchuk Theorem, but a

which has been included in the result.



FIGURE CAPTION

Figure 1 The contour of integration, C, for the integral in (17).
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