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The following co???ctions sLou:ld be :::ad? 03 pxr co?y of the above 

publication: 

1. Equation 5, Page 3 should read: 

2. Equation 9, Page 4 should read: 
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3. Equation 13, Page 6 should read: 
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It has been strongly suggested by M. Gell-Mann' that, "the integrals 

of the time components of the vector and the axial-vector current octets 

. . . generate, under equal time commutation, the a.lgebra of m(3) @ m(3)," 

and that these algebraic relations are preserved even though the axial- 

vector and the strangeness changing vector currents are not conserved. 

These non-linear cmdtation relations I"ix tl:e r-Cstive scale of the vector 

and axial-vector matrix elements measured in the weak interactions. 
. 

In this letter these ideas are combined with that of a partially con- --- 

served aY = 0 axial-vector current to obtain an expression in terms of 

x-proton total cross sections, (24), for G, Gv I ' ! , the absolute ratio of re- 

normalized axial-vector and vectcr coupiing constants of ordinary p-decay.' 

A numerical evaluation using experimental data for strjng interaction 

n-nucleon scattering yields 

I ’ Ga Gv I = 1.16 

The present experimental value2 is 

G,/G, = - 1.18 + 0.02 . 

We consider the charges defined by 

(1) 

. , 
where Vi A' o" 0 are the time-components of the isovector members of the vec- 

tor and axial-vector current octets. v' 
P 

is, in fact, the conserved iso- 

topic spin current3 so that 3 is the total isotopic spin operator. $ is 
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the isotopic chirality. The effective interaction for AY = 0 leptonic 

decays of the hadrons is taken as 

G 
I - Leff = V j' 

fi lept 
(Vc 2 At) + h.a., 

(3) 

For matrix elements between physical proton and neutron states of 

equal mcmentum it follows that 

(M/E > G 
< P(P) IA;(x)1 N(P) ' = --& c G(P) Y~Y~ u(p) (4) 

which defines Ga , the renormalized axial-vector coupling constant. 

By partial conservation of the axial-vector.current, (P.C.A.C.)4j5, we 

mean 

a' A;(x) = .+& q;(x) 
5[n Znn 

(5) --- 

where cp,(x) is the renormalized Heisenberg field of the n-mesons; 

M = nucleon mass, fl = pion mass, ggy+g = 14.6 , and Kfinn(0) is the in- 

variant n-nucleon vertex function evaluated at zero pion mass. 

The commutation rule which we use is 

Adapting the method of Fubini and Furlan, we take matrix elements of (6) 

between physical one-proton states which gives 

&3) + + (P2-PI) = < P(P,) 1 [Q;, Q;] UP ' 
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We introduce a complete set of physicaL intermediate states in the right hand 

side of (7) and isolate the contribution of one-neutron~states 

0 -z < P(p2) Q;, Bo& coutB 
I I I I &a' P(P,) > 0 

B 

Fra (5) 

< P(P,) Q;t a ou' = 
I I E 

P 
-E, 

, 

We then obtain for the second term on the right side of (8) 

c <p(P 2 
4N 

) IQl; I~ou~<ou~[ Q;I p(P,) ' = (2# s(3)(;2-;I) [T"K" (o,]2 
finfinn. 

(Ga/Gv)2 j 
k 
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(M + cl>2 f CL 2 I I 1 
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The multiplicative factor, appears in all terms of (9) 

and will be dropped. We put % 
2 

= s1 = is . The matrix elements occuring 

in (10) can be classified into two types of Feynman diagrams: (a) connected 

~~ graphs which correspond to scattering from an initial state of the proton 

and the off-mass-shell pion, in the rest‘ frame of the pion, to the final 

state, < out a ; I ( b) disconnected gra,hs cr"'"r~ .-,..pozdicg to propagation of 

the proton without interaction. For graphs of type (a) 

< 
< = ” 

out aI JJlb) P(P)' >: 
out q q+(P) ’ con. 

k: - p2 C ie 
0-0 

where 

For graphs of type (b) we write 

< out CyI ~~(0) UP 'disc = '(3)(~ - ~)'out arll~~ (0) 10 ' . 

-+ll where p is the momentum of the free proton in the state < out cx I e 

When taking the absolute square of the matrix elements in (10) there 

will be contributions fram squares of connected graphs, squares of dis- 

connected graphs, and cross-terms. All terms from squared disconnected 

graphs can be neglected since they will be exactly cancelled by correspond- 

ing contributions from the other term of the commutator in (8). The cross- 

terms should be dcxninated by IC? > = 1 fi > 9 a physical one-pion state. 

Other sta.tes have higher thresholds in k. p and their contribution should 

be damped strongly in the k, - integration of (10). This assumption is 

in the basic spirit of the P.C.A.C. hypothesis. One then obta.ins 
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‘i 

. 
kz - p2 - ie 

i 

(13) 

The frightening looking singularities in the above expression will be 

cancelled by unitarity. Since the T-ma.trix elements in (13) are multiplied 

by 6(k - 0 cl), they can be continued in the pion-mass from p to k. . 

That is, 

. 
1 

- tout P(P) n-(C=O) lj,(o,I P(p) >- 1 
(2d3'2 vz$ p+ko (2*)'(2ko) 

Ta-p(ko,Ep'. 

Tz-,(ko,Ep) = i s d*y eikoyo< P(p) IT(jz(y) j,(o)) (P(p) > (144 

+ (equal time ccxmnutators independent of k,) . 

T (j:(y) j;(d) denotes the time-ordered profluct of the pion currents. 

Similarly, 

1 
(2fl)3(2ko) 

T n-pt (ko,Ep) (l&b) 
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T + 
X-P 

ha.s a representation similar to that for T 
*-P 

above, except 

in terms of an anti-time-ordered product. T r-p(ko'Ep 1 is the fl-proton 

forwa.rd elastic scattering amplitude in reference system where the off-mass- 

shell pion is at 'rest and the proton has mcmentum p. If we now use 

and substitute these results into (13), it can be seen that the coefficient 
. 

of the dangerous double pole pinch va.nishes due to the unitarity condition.7 

Performing the same manipulations for the 
z 

term in'(g), one arrives 

at the result B 

1/(Ga/Gv)2 = 1 - (e)'+ (2Jc)3 [*]2(T&J s 
k 0 min 

i 

Tx-p(ko,Ep) Tn-; ho,%) T,+p(ko>$) Tfi+:, (koJp) 
(kz-i.t2+ie)2 - (kz-p2-ie)2 - (kE-p2+is)2 + (kz-p2-ie)2 1 

To evaluate the integral above, we return to the expression (14a) for 

Tfl,,(kotEp’ 9 insert a complete set of intermediate states in the time 

ordered product and obtain a Low equation for T 

- 
Ta-P(ko,E) = (2~)~ 

i 
), 
a 

ko+E -Ea'ie 
P 

'- 

-z 
I< P(p)[ j;; 1 8 >I2 Sc3) (p'-p',, 

kO - Ep + E, - ie 
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II 
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All the k. dependence of T 
fi'P 

is in the denominators. For fixed 

PhysicaJ- Ep,Tfi-,(ko,EJ;) ' is analytic in the complex ko-plane with branch 

cuts from k, min to + m and frcm - k. min to - m . The one-nucleon 

intermediate sta$e does not contribute a pole term at k. = 0 since the 

residue is zero for a pseudoscalar pion. IA az,Ep, denote the analytic 

continuation of T ,-p(ko,Ep) . 2.',-,\kf,ES~ in the ii&t of f(z,Ep) on 

the top of the right hand cut and the bottom of the left hand cut. It 

can be shown in the same manner that T Jko,Ep), is the limit of y( z,Ep) 

on the other sides of the cuts. Using crossing symmetry the integral' 

in (12) can then be evaluated as 

n-p (ko,Ep) 
k. = 0 

where C is the contour indicated in Fig. 1. 

Crossing symmetry further implies that 

d - Tx-p(ko,Ep) 
a0 I ko=O 

= &- T-(ko,Ep) 
0 ko=O 

(17) 

where T- is the coefficient of the anti-symmetric isospin function in 

the conventional deccmposition for n-nucleon scattering.g 

We seek to reduce our answer to an expression involving on-the-mass- 

shell quantities only. The forward scattering amplitudes satisfy disper- 

sion relations ' in the variable V p the pion energy,in the "laboratory 

system" where the nucleon is at rest, and these dispersion relations 

can be continued in the pion mass to k2 = 0, Since k E = MV o 
oP 
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$y T-(ko,V> 

From the dispersion relations 
, 

koqk(), ; = ; 
. (19) 

where fl is the invariant forwa.rd scattering amplitude. The energy depen- 

dent term contribution ccmes frcnn the Born term. We now write for (13) 

1/(Ga/G,)2 = 1 + (l/x) [(~)/g,n&,(dj” :’ 
p+p2k34 

; Imn-(k. = 0,v) (2i) 

I 

The contribution of the Born term from the dispersion relations has 

completely cancel-led the original M E )2 factor from the one-neutron 
'1, 

intermediate state, and we are left with a covariant answer. To put the " 

answer in a final useful form, first let VL = V - (p2/2M). In the region 

of integrationl"ll 

ST- [kb = 0, vL + b2-kE)/m] = K$,,(o)~-(P,v~) (22) 

(23) 

where q is the magnitude of the 3-momentum of the pion in the laboratory 

system. We obtain finally an answer in terms of experimentally measured 

total cross-sections 

1’1 [ 
O" qdV 

Ga. Gv = 1 + (2/d (M/gan,2 f + (u;,; (vL) - ux,‘,; -‘a (24) 

I-I vL 
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Evaluation of (24) using experimental cross-sectionsI gives the result 

quoted in (l).13 

The author is indebted to his colleagues in the theoretical group at 4 

SLAC for their friendly and stimulating interest in this calculation. For _ 

helpful discussions, he is particularly gra.teful to Professors J. D. Bjorken 

and S. D. Drell and Lrs. A. C. Finn a.ri J. D, Suilivan. In addition he 

wishes to thank Professor Drell for a critical reading of this manuscript. 
. 

After completing this work, the author was informed that similar results 

have been independently obtained by S. L. Adler.'" 

-- 
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FIGURE CAPIYION 

Figure 1 The contour of integration, C, for the integral in (17). 
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