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- I. INTRODUCTION

In these notes we describe some fundamental properties of the irreduc-
ible representations of SUn’ the special unitary group in n-dimensions. We
use, as basis for these representations, tensors which satisfy certain sym-
metry rroperties witl. resiect *¢ rer.utiticus of their indices, and discuss
briefly in this connection the symmetric group. We also relate this global
analysis of the representations to the method based on the infinitesmial
transformations of continuous groups: the Lie algebra of SUn-

The unitary groups are very important In physics. The best-known ex-
ample is SU2 which describes tne spin and isospin of particles. Recently
unitary groups in higher dimensions have been applied with success to study
the properties of elementary particles. Although the mathematical theory
of these groups and their representations has been developed for a long
time, useful results are somewhat scattered in the literature. We therefo,<
have attempted to collect here some formulas and tricks, and have computed
several tables that are useful in the application of unitary groups to
particle physics.

Throughout the text we have tried to give some idea of how one derives
the more important results; this should help the reader to remenber the@
and also serve to egplain our notation. Some topics which we have left out
of our discussion include the construction of explicit basis in each repre-
sentation space in terms of which to express the analogs of Clebsch-Gordan
coefficients, and formulas for the elements of the representation matrices.
There is no special reason for such omissions which are useful in practical

applications. However, for low dimensional representations the tensor
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methods which are described here can be successfully used; The discussion
of SUn can be extended with minor modifications to the special linear
groups SL(n,R) and SL(n,C), the groups of n X n matrices of determinant
one with real and complex entries respectively.

We have included a short list of books to which we refer for omitted

oroofs, and some recent articles ou the sudjeci.

II. REVIEW OF UNITARY GROUPS

When dealing with symmetries in particle physics, one is led to study
the representations of some simple groups. Here we are concerned mainly
with the special unitary groups in n Jimensions,denoted by SUn. To be
precise, our group is the set of n X n matrices with complex entries
which are unitary and of determinant equal to one. A typical such matrix
will be denoted by g. By a unitary transformation (which can be chosen to
be of determinant one) such & matrix can be diagonalized; hence, for a given

g there always exists a g' in the group, such that

glgg' = " (1)

where the el are just the eigenvalues of g of modulus cne, and

S 1. Any unitary matrix can be written

g =e (2)

where h ig a hermitian matrix. This is an immediate consequence of Eq. (l).
Moreover, for g to have determinant one, it is sufficient that h be trace- -
less. Now an arbitrary hermitian matrix is given in terms of the n diag-

onal elements which are negessarily real,and the Eﬁﬁ_é_ll complex elements



above the main diagonal; hence, this matrix depends on n® real-parameters.
If we Impose the condition that the trace be zero, we are left with n® -1
independent parameters.

The group SUn has three fundamental properties:

(l) It is compact. The precise meaning of this word in this context is

the following: If we are givep sa ir.finit- sequence of elements gl e By ceey
we can always extract a subsequence which converges to an element of the
group.

We shall not investigate further the topological properties, but mainly
remark that the compactness property has the important consequence that the
irreducible representations to be introduced below enjoy the following
properties: (1) They are all finite dimensional.

(ii) They are all equivalent to unitary representations.
(11i) Any representation can be split in a direct sum of
irreducible represenﬁations.

(2) SUn is a Lie group. This means that certain differentiability
conditions (cbvious in this case) are satisfied. This reduces the study of
such a group to the study of the so-called infinitesimal elements, i.e.,
those close to unity. We discuss briefly this approach in Section IV; how-

ever, we shall not emphasize this point of view.

(3) Finally, SUn is a simply connected group. Connected means that,

given an arbitrary element g, one can find a continuous set of elements in
the group g(t), where O <t <1 such that g(o) is the identity e, and
g(l) = g. In a simply connected group two such "paths" leading from e to

g can be continuously transformed in one another. In summary:

2

SUn is & simply connected compact Lie group depending on n“ - 1 real

parameters.




In view of what has been said we need only define representations in
finite dimensional spaces. This is always understood here. By represen-
tation of a group G one means a correspondence which assigns to every
element g a linear operator A(g) (i.e., a matrix once a basis has been
chosen) in some vector space, the carrier of representation, such that the

image of e dis the Identuty opersteor 7T, and the group law is preserved; i.e.,
A(g) A(g") = Aeg")

The carrier space is assumed to be a complex vector space, i.e., the matrices
A(g) have complex entries.

Two representations are equivalent if the carrier spsces can be put in a
one-to-one linear correspondence X «—Xx' with the property that
Alg)x < A'(g)x'. In the following we shall be concerned with representa-

tions up to equivalence; i.e., we shall identify equivalent representations.

If a basis has been chosen in the two equivalent carrier spaces, and if A
and A' denote the mastrices of the representations, the statement of equiva-
lence can be rephrased by saying that there exists a non-singular matrix B

such that for every g in the group
A'(g) =B A(g)B™

A subspace of the carrier space is said to be invariant if it is left un-
changed by all operators -A(g). The representation is said to be reducible
if such a proper invariant subspace exists; otherwise, it is called irreduc-
ible. In our case, G = SUn] reducibility implies, in fact, a little more,
nemely, if there exists a proper invariant subspace, then one can find a
complementary subspace which is also invariant. In other words, the repre-

sentation splits. In pictures, if all the matrices Alg)



have the form

there exists & basis in which

we say that the representation is completely reducible. Given a represen=~
tation we can thus split it again and again until we reach irreducible parts.

Given an irreducible representation A(g), the only linear operators C
which commute with every A(g). i.e., CA(g) = A(g)C for all g, are multiples
of the identity C = AI (Schur's Lemma). The converse is also true.

Our first task will be to describe all the irreducible representations
of SUn up to equivalence. This construction is entirely algebraic in
nature, and is carried out in the next section. However, since the results _
are often given an interesting meaning using some analytic tools, we say a
word on characters and integration on the group.

Given a representation A(g), we can compute the trace w(g) = % Aii(g)
which is basis independent. The (complex valued) function g — x(g) is the

character of the representation. Immediate properties are™

%(g'gg' ) =2(g) ‘
(3)

2(g™ ) =z(g)

The second property stems from the fact that every representation of the
compact group SUn is equivalent to a unitary representation. The importance

of the characters lies in the fact that it determines the representation up

A bar over a number means complex conjugation
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to equivalence: i.e., two representations with the same characters are equiva-

lent. Using Egs. (1) and (3), one obtains the result that x(g) is in fact

a symmetric function of €. - € where €1° - - €, are the eigenvalues

of g. GStated in an equivalent manner, x(g) is a function of the coefficients

(a -~ « - an) of the characteri (tic ~olyncddsl of g:
1

il
l__l

det(l - ag) = =" (-1)P a WP a
P=l p Y

(In fact a, is also equal to one, since det g = 1.) Now it is possible to

introduce an invariant integration on G = SUn. By this we mean the following:
parameterize in some way the group (in our case with n® - 1l real parameters);
then there exists a measure du(g) on the group, such that if g' is a fixed

element in the group,

du(g'eg) = du(g)

and
du(ge') = au(e)

Finally, du is essentially unique up to scale factor. We use this freedom

and the compactness of SU ~ to normalize u(e),

J[\ du(g) =1

G

In the case of SUn it turns out that a particular choice of parameters is

ion®l

indicated. Let us go back to Eq. (1) and put e, = e . Then it is
possible to make the parametrization in such a way that
") ) )
d = — €. -€.)14d9 d . . . 49 do
u(e) - gy (e; - €,) | dav a9, 9,00,
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where ‘dwé depends essentially on the matrix which diagonalizes g and need
not be considered further here, and § is a normalization constant.

Note that

1t l(ei - ej)]= Ale)n(e)
ifJ !
with

A = €, - €,
(e) izj(l eJ)

We shall denote the invariant measure du(e)
du(e) == 8(z9,) @ ... a9 (5)

with § determined by the condition

JF du(e) =1

< -
o_@lSJ_ g

o] <1
<

The following important orthogonality relations hold. If Qf(e) is the

character of an irreducible representation of SUn’ then

f x(e)x (e)au(e) = 1

1f x(e) and X () correspond to inequivalent irreducible representations

[ e - o

Applications of these formulas will be found in Section IIT.



IIT.. DESCRIPTION OF THE IRREDUCIBLE REPRESENTATIONS OF SUn

We consider the set of tensors, T. |, . , where the indices 1_, 1i_,
i 1_... 1 T2
172 f
run from 1 to n. To each unitary matrix g, we assoclate a linear trans-

.

formation A(g) in the space of tensors

T Lo = 2(g) Lo T (1)
SHERRE ERRE N i s 11 ip 11. .1%
where a sum over repeated indices is implied, and
Alg), 5 i s T8y g8 oo
ll'.'lf,ll...lf 111l .
In a more compact notation,
Alg) =g XgX...Xg (2)

which defines A(g) as the Kronecker or direct product of matrices g.
The matrices A(g) build a unitary, but in general reducible represen-

tation of SUn' They satisfy the important property that they are

bisymmetric, that is, invariant under a permutation of the indices il...i

and the same permutation on the indices ii...i' . A permutation p on

£
lE...f\

pl p2 pf/

f integers is denoted by

J
1]

where plpz...pf is a rearrangement of the ordered f integers, and the

p permutation of the indices is indicated by



or more briefly p(i) = (ip) . The property of bisymmetry of A(g) is

then expressed by the relation

A(g)(i .

ll
p’’p

) = A(g)(i’il) (3)
It can be readily seon that if we tale a linear combination of tensors
satisfying some symmetry condition with respect to the permutation of their
indices, this property is preserved under the transformations generated by
A(g). In general, these symmetrized tensors span a subspace of the tensor
space which is then invariant under SUﬁ, and therefore gives a representa-

tion of the group. The fundamental theor=m on representations of unitary

groups states that there exists maximal symmetry conditions which can be

imposed on the tensors, such that the resulting invariant subspaces generate
all the irreducible representations of SUn-*
We begin by giving a description of these maximal symmetry conditions
by means of Young tableaux. A Young tableau consists of an array of f
boxes with fl boxes in the first row, f2 boxes in the second row, and
fn-l boxes in the n-1-th row, where the integers fl,fa...fn_l satisfy

the relations

and

f:fl+f2+..._f (14)

For convenience of notation we include in some formulas fn = Q.

*
See Reference 1, Chapters III and IV for the full development of this
duality between the linear groups and the symmetric groups.



———— T - =

In pictures, a tableau is usually drawn as follows:

f 1 2 3 e e e . . f
1 1
£ f 41 |f +2 e » | 4

2 1 1 12

£+ +]

3 e

f f

n-1

To this tableau corresponds the following symmetry operation on a

tensor Ti

(1)

(i1)

Symmetrize completely with respect to the first fl indices i ...1
1

the following f2 indices i

..ILf

f +1

R , and so cn, thus getting
N T+,

a tensor

T: . . .

I, +e1 1 es el
1 s +£’
fl fl 1 fl g

Then antisymmetrize the tensor T' with respect to the indices

i,i i ..., the indices 1 i i .

177 4’ Tf +f ? 2’ Tf 42’ Tf 4f
1 1L 2. " 1 1 =2

The resulting set of tensors T form the basis of an invariant

subspace which generates an irreducible representation of SUn-

We can write in compact notation

where

Zﬁqqp (5)

<
il

is the Young symmetry operator associated with the Young tableau. The

- 10 -
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.., and so on.
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sum in Y [Bq. (5)], is carried over all permutations p of integers in the

same row, and all permutations q of integers in the same column of the Young

tableau; whilé Sq is the signature of the permutation q; 6q = +l(-l) for

q even (odd). The tableau has no more than n-1 rows. This is a result of

two facts: first, that it is impossible to antisymmetrize more than n indices

each running from 1 to n, and, second, that we restrict our attention to trans-
; *

formations of deterrminart I. To differen’ 1a! Jeaux correspond ineguivalent

representations.

There is a one-to-one correspondence between the Young tgbleaux of no more

than n-1 rows and the irreducible representations of the group SUn.

The tableau with zero box corresponds to the identity representation, i.e.,
to the representation which assigns to every element of the group the unit
operator in a one dimensional space, and will be denoted by a dot. The tab-
leau with one box corresponds to the representation by the group itself.
Among other interesting representation, let us point out the following:

(i) Representations with one row only, f:L = f. They correspond, accord-
ing to what we have seen, to a carrier space of totally symmetric tensors.
The dimension of this representation is easily computed as the number of ways
one can choose f objects among n obJjects allowing repetitions, namely

n+f -1

N = = (If1!+(£ - B' ) (6)

f

(the familiar counting problem for an Einstein-Bose gas) .

There is an infinite number of such representations.

It is convenient to use the following convention. In some cases we add
to a Young tableau of no more than n~l rows, columns of n boxes on the left.
These new tableaux will be considered as equivalent to those where these extra

columns are dropped. The dimension formula (see Eq. 10) is invariant under
that transformation.
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(ii) Representations corresponding to rows of length 1 or O. In other
words, the. tebleau is reduced to its first column. Excluding the identity

representation, there are n-1 such representations

They correspond to carrier spaces built up of totally antisymmetric tensors.
If A is the length of the column, the representation is of dimension

n .
n!

N = M CEENH (7)
A
(the counting problem for a Fermi-Dirac gas) -
We shall give below a formula which gives the dimension of a general
representation.

(iii) The representation with £ = 2, ,=1, f3 =1, ...f =1
This is called the adjoint representation and is very important, because its
basis transforms like the generators of the group. Let us briefly outline
how one gets this representation. Let h be an arbitrary, traceless, n X n
hermitian matrix. The set of these matrices is closed with respect to ad-
dition and multiplication by real numbers; hence, they build up a vector
space whose dimension we have already computed to be n® - 1. The trans-
formation

h »h' = ghg_l

where g is an element of SUn, ig obviously a linear transformation of our
set of hermitian matrices. We thus get a representation of SUn in this

space which can be shown to be irreducible. This is the adjoint representation.

- 12 -



Its dimension is

N=n1n%-1 (8)

and with our choice of basis the representation consists of real matrices
only.
(iv) Finally, let us d”scurs cont.ag-adiznt representations. Given

any representaticon of a group by the correspondence

g - Aleg)

one can define the contragradient representation ¥

T, =1+ -
g »A (g™ =42 (g)

One verifies that it is a representation, and also that it is reducible or
nct according to whether A 1is reducible or not. If the representation
A is unitary, so is the contragradient representation which in fact is

simply the complex conjugate of A, i.e., g - A(g) in that case. Note in -

this connection that Ei ...if, the complex conjugate of a tensor Ti ...if,
1 b

transforms according to the rule T'= (g x éﬂ.>{§)§ which is used to define
i ...1

1
contravariant tensors by setting the indices as superscripts, T £ .

The relation to covariant tensors is obtained through the Levi-Civita symbol

€ 5 , which is totally antisymmetric in its n Iindices, and equals +1
127 "n ) :
of -1 according to whether iliz"'in is an even ¢r oad permutation of the

integers 1,2...n. It can readily be seen that it is invariant under any uni-
modular transformations. For each contravariant index 1, we multiply the

contravariant tensor by € 3 5 i and sum over 1 giving rise to n-1
1ize-eiy

*
The superscript T on A denotes the transpose of A.

- 13 -



. o as . i .
covariant indices. For example, if 7T 1is a contravariant tensor, of rank 1,

then

is a covariant antisymmetric tensor of rank n-l. Naturally, we can equally

well construct contravariant indices from any covariant tensor which contains

n-1 antisymmetric indices. Fo- example. ir A, N is totally anti-
i
symuetric in i ...1
1 n-1 ’
1
= €, . A
y ii ...1 i i
1 n-i 1 n-1

is a contravariant tensor. The raising and lowering of tensor indices by

1 .. 1
1 n

is an invariant.

€. . makes it possible to contract these indices, e.g., the sum 2 xiyl
i

I1f a representation is equivalent to a representation by real matrices,
then it follows that it is equivalent to its contragradient. For a given
tableau of SUh corresponding to a representation A, one cobtains the
contragradient representation by the following process:

(i) Draw the initial Young tableau

(ii) Complete the drawing to obtain a rectangle of horizontal‘dimension
f and vertical dimension n.

(iii) The complementary part is the desired Young tableau if one rotates
it by =n. It is seen that the procedure is equivalent to saying that if

P> .0 > f! are the rows of the Young tsbleau corresponding to the

!
1 - n-1

contragradient representation, then

' = - =
] = f f f

1 n 1
£40=F - foo
I, = 1, n-p+1



In particular, representations equivalent to their contragradient are such

that

or

+
o * Fnpn = L

As an example we see that the adjoint representation has this property.
Obviously, a representation and its contragradient have the same dimensions;
thence, the dimension formula has to be invariant with respect to the trans-
formation fp —>f£
Digressing, We note that all ihe finite dimensional irreducible repre-

sentations of the special linear group on real numbsrs SL(n,R) can similarly
be described in terms of the tensor spaces used for SUn. The matrix elements
of these representations are polynomials in the matrix elements of the element
geSL(n,R). If we extend these polynomials to complex values, we get a repre-
sentation of the special linear group on complex numbers SL(n,C). The mosfw
general finite dimensional irreducible representations of this group are
obtained by forming Kronecker products D' X D" where D' and D" are
representations of the type just discussed, and D" is the complex conjugate
of D".

As an example, the finite dimensional representations of SL(2,C) which
is in two-to-one correspondence with the Il.orentz group, can be labeled by
two Young tableaux consisting of one row of 2jl and 2j2 boxes respectively.

It must be emphasized that SL(nR) and SL(nC) are not compact and tha*
the finite dimensional representations are not unitary. In order to find
unitary representations one has to introduce infinite dimensicnal Hilbert

spaces, which we shall not discuss here.

-15 -



We return to SUn and discuss the characters and dimensions of the
representgtions;

We have already quoted the fact that a representation is completely
determined by its character. The following formula® gives the character for
the representation belonging to the Young tableau fl,fa...,fn(=0) as a
oymmetric frmetion of the eige:valr=2s € ... € of the general element g

4

in SU_ (Weyl's character formula)

f 4+n-1 f 4n-2 o
et € P

1 1 1

f +n-1 f 4n-2

1 c 2
€, T, e

+ri- .

fl n-i o
€ €

n n

Xg A (9)
1 n n-i n-2 ©

N 1 RN

n-4 n-2 @]
eg €, 7 eees €,

n-1 n-2 o
€ e T ... €

n n n

From thisformula one gets the dimension N by letting el,...,en go to

one, i.e., N is the character of the identity. The calculation must be

made carefully because the denominator and the numerator vanish in this limit.

We set 4 =f +n - l,‘% =f +n-2, .... . In order to take a
1 1 2 2
proper limit we first relax the condition €1 cee €% 1 and choose
_ _n-=1 _ _n-2 - °
el =€ €, =€ . € =€

*
See for instance Reference 1, page 201.



id

With € —» e, and ¢ — O, we have

N = 1lim

- 0
(e

We now use the classical result that

A(xl,...,

Hence, taking into account that (e - € "

% ) n-2

I
~

....... (e°
()

n-1

X, e

n-z

%5

Note that A(n - 1, n - 2,.

- 17 -

(%, - xg)(xl - x,) ....(xl - xn)(x2 - xj).,_

< 3%y g o)
y/ )2
) o iQ({i - {3) we cbtain
INCARE A , 4. =0)
N=—21_2 2 (10)
AMn-1,n-2, ..., 0)
L0)=(n-n-2) . ... .1



We illustrate, as an example, the calculation of the dimension of the

regular representation of SU6 which we know already to be of dimension

6% - 1 = 35.

r 4 n

21 71 5

15|k g2 §2:3.55.79(1235)(1.2.4)(1.3) (2)
1{ul3 (12345)(1235H(1.2.3)(1.2)(1)
Y1212 wew

122

ololo

It is sometimes convenient to label differently the representation.
Let Al be the number of columns of length one, %2 of length two, etc.,

of a Young tableau. Then

=N + AN + ... +A +n -1
1 2 n-y

4
1

£ =N + ... + A + n-2
2 2

n-1
L = +1
n-1 n=1
£ =0
n.
and
L -2 =x +1,2 -2 =n +r +2,4 -4 =A +...+A  +n-1
1 2 1 1 3 1 n-i
2 -2 =2 +1,2 -4 =n +AN +2 .0,
2 5 2 2 4 3
Hence
ceee cene +2)... +A .o FA 4n-
. () (D) e Oy AN A 2) (A N 42) (4Dt 4
1. 2., (n-1)!



Pinally, if n is much larger than the number of rows r of a Young

tableau, we write

AV, vV, ...V v - 1)l (v -r) ... -r)!
( Yy ) ( L +n-1r)! ( . +n -71) (Vr +n-r)

N = X
vIiveoooovt (n-1'(m-2)) ... (n~1)

Vv, = + -1 i runs fr e . i
where 5 fi r i and 1 runs from 1 to r only. Asymptotically

which gives a quick estimate of N.

IV. THE GENERATORS OF SUn

We have already noted that any g Dbelonging to SUn can be written

in the form

g = e (1)

where h 1is a rermitian traceless n X n matrix. It will be convenient,
in order to get a parametrization of the group, to choose a basis of n® -1
linearly independent such matrices called the generators of the group. For
SUZ these are the famous Pauli matrices corresponding to spin. Of funda-
mental importance are the commutation relations satisfied by the generators;
a matrix representation of the generators which satisfies these relations
yields a representation of the unitary group.

A convenient choice of basis introduces n® traceless hermitian matrices
with one constraint. We define first n dJdiagonal matrices Hl,Hg...,H

n

except for the i-th element which

S

such that Hi has diagonal elements -

-19 -



. n-
is equal to el

1
- = 0
n 1 ‘0
n . .
_ n-1 - ' _1
H, - \ L =1 (2)
2 \
- n// \= 0
with
n
Z H, =0
i:a_ 1 (3)

Next we introduce matrices Egl) and E<2) for all 3 < x, which

are generalizations of the Pauli matrices o = (b i) and o_ = Q-i 5
1 10 2 io

Egi) (ﬁgi}) has zero entries except at the intersection of the j-th row

and the k-th column where it is 1(-i), and the k-th row and the j-th column

where it is 1(+1i)

The set of matrices Hi’ Egi) and Egi) together with the constraint
(3), form a basis in terms of which we can expand an arbitrary traceless
hermitian matrix h.

Let us compute the commutation relations of these matrices. For that
purpose, we introduce column vectors e(l)... e(n)such that the only non-

(i)

vanishing component of e is the i-th component equal to 1.



Then one obtains

[

(H,,H.] =0
7
(1)y 2 ) _ )y gl@) g )
[Hi,EJ; ] = 1(e(J ) Bl = 1(631 - 5ki)E§§
[Hi,E§§>] - -1l e(k))i (2) 1(8,; - 8y, (1)

4 _ = (5)
[Egi ? éﬁ = i(angéz)* 6JnE;;l * ann gz Sijéi))
[Egi),Eéi)] = - i(akmEg;) -8 (2) 6knE(; 5JmE§;>)

L (2 (2 Coi(e ) v, B s w0) g 500y

km ™ jn Jn Tkm kn jm Jm kn

where for convenience of notation e have 22t

=) = = o, Egi) - Eég) and E(Z) Eij) for j >k (6)

JJ

This set of commutation rules constitutes the "Lie algebra’ of the
group SUn' The elements of this algebra are the generators of the group.

Actually the relations (5) can be written in a simpler form due to Cartan.

Introduce the non-hermitian mstrices Ejk for j # k with zeroes every-
where except at the intersection of the j-th and the k-th column,
k
i
B =l 7777 . ()

In terms of E ., we have
Jk

Eg;) =Byt By
G (8)
Ejk = —1(Ejk - Ekj)

Note that Ejk is no longer hermitian.

- 21 -



Then the commutation relations take the canonical form

[Hi,Hj] =0
(J3) (k)
H,,E. ] = - B, =(8,, -85,
[ 1,EJk] le e ]l EJk (61J Bk )Ejk 9)
~
-] z A - - 3 -~
[t:jk,Emn_ Ejn - Emktjn <he re E,; = H

The vectors [e(i) - e(j)] are the roots of the algebra. If we denote
in n dimensionai space the components of a vector by xl, C e X, the
roots are seen to satisfy the equation x; + x2 e eo. + xn = 0. Hence the
roots are n® - n vectors in an n - 1 dime.cional space. For n =3 we
get the following six roots i(e(l) - e(2)), 'i(e(z) - e(3>), i(e(3) - e(l%.
These are all of length \[5- and they subtend among themselves angles which

are multiples of /3 since the cosine of this angle is *1 or *1/2. The

overall scale factor is irrelevant. The resulting diagram

SRR
AN

/

is well known from the eight-fold way of Gell-Mann and Ne'eman. Generally
cosines of the angles between roots will take only the values =1, il/2, 0. '
This is illustrated in the root diagram for SU  which is drawn in the

4

3-dimensional hyperplane xl + x2 +x 4+ x =0 (the roots join the center
3 4
of a cube to the midpoints of its 12 edges in agreement with the fact that

there are n° - n = (4)% - 4 = 12 roots).
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It is straightforward to show that the representations of the unitary
group obtained from transformations in the tensor space can also be expressed
in terms of generators satisfying the commutation relations (5) and (9). We

note simply that the reducible Kronecker product is given by

where ~.

H=hXx1X..X1@1XhX1IX..X1®...M1lXx1x..xh

An important point is that the representations of H obtained from the
irreducible representations of the group are clearly irreducible representa-
tions of the Lie algebra, and that the converse is true. This is the basis,
for example, of the well-known method in quantum mechanics to obtain the irre-
ducible representation of .SUE by constructing the representations of the

spin operators satisfying the "angular momentum commutation relations."

The Hi commute among themselves; hence they can be simultaneously diagon-

alized. The set of n eigenvalues Hiu = miu (with vanishing sum) is called

a weight of the representation. The irreducible representations are uniquely

characterized by their highest weight. The adjective highest refers to an
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ordering of the weights in which (ml mn) is said to be higher than

(mi ceen ﬁﬁ) if the first nen-vanishing difference m, - mi is greater

than zero. To each weight we can associate a vector me + ... + mne in
11 n

the n-1 dimensional space which already was used for the roots. One can

show that in our case, spart from the condition m, = 0, we must also have

o M

m; - m_ = integer. Ir fac:, th- ml's ar. et mca rections with denominstor

;-
n which differ by integers. The highest weight appears &s a linear combin-

ation with non-negative integral coefficients of n - 1 fundamental ones*

u(2) =(;l,%,......... lﬂ)

(n-l) (

First we recognize in the weight M(l) the set of eigenvalues of the operators

1
H , .« ., Hh corresponding to the eigenvector yl = 8) in the defining

B
A
S
-
1
)
jn
1
Z
S~

L

n-dimensional representation of the group. (We define anaiogously the co-
ordinate vectors yz. . yn.) It is clearly the highest possible weight and
corresponds to the Young fableau [:] . We shall use the compact notations’
of exterior calculus to denote antisymmetric tensors. Then consider the
second rank antisymmetric tensors and examine the result of Hi acting on

. If cts as
¥ v, g acts a

g(yl-’\vz) = (gyl )A(gyz)

*
‘See Reference 5.
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then with g =1 + ieH (e small) H acts as
= (H + y AH
B(y av,) = (By )Av, + v Al(y)

Using the explicit form of Hi given above, one finds

H = Asr 2 :./) <r roo=

J.(yz./\yz) - Vs ( n ;Mg n ylAyZ
Y n-1 n-2

Hz(ylAyé) T n ylAyE n ylAya n lAya
-1 21 - -2

H(y &) =Sy, -syi, =2y, i>2

The weight just obtained is in fact the highest weight of the representation.

(2)

Hence the second weight M corresponds to the representation previocusly
described in terms of antisymmetric second rank tensors or lE} . There is
obviously no difficulty in using the previous technique to prove that M(p)

corresponds to the representation in terms of antisymmetric tensors of

rank ©p: p boxes.

Accordingly, the n-1 representations of SUn obtained in terms cf
antisymmetric tensors of rank 1, 2, 3, . . . n-1 are the h-l fundamental
representations of the group. Once these representations are known it is
possible to form direct products of representations (see below) in such a
way that at each step one gets only one nev representation.

We recall that to each Young tableazu (that is, to each representation)
we attached two series of n-1 numbers, (i) £, f . . . f (£ is

1 2 n-i n

always identically zero), giving the number of boxes in each row

f >f .. .>f ,and (ii) AN, A. . . A___, A Deing the number of
L 2% Z ‘n-y ) 1 2 n-1 1
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columns of length one, and so on ..... . This second set is in direct
relation to the highest weight of the representation which is equal to
M = )\M<l)‘+ ?\M(Z) + oeene + A M(n'l).
1 2 n-1

Before leaving the subject of infinitesimal transformations, it is inter-
esting to notice that among the special unitary groups, SU2 .and SU4, turn
out to be "isomorphic in the small" to the rotation groups in 3 and 6 dimen-
sions. This means they have the same Tie algepra. ‘the first fact is of
constant use in the study of the 3-dimensional rotation group. Iﬁ terms
of group theory, the second homomorphism SU4 —aRs can be understood as
follows: both SU4 and R6 depend on 15 (real) parameters. If we look
at the representation of SU4 in terms of antisymmetric tensors of rank
two, we find the representation to be cf dimension 6, equivalent to its
complex conjugate (see above). A little algebra shows that indeed in that
case one can find a basis in terms of which the representative matrices are
real so that they correspond to rotations. It is then a simple matter to
show that one gets all six dimensional rotations in that manner.

More generally, it can be shown that all groups having the same Lie
algebra as SUh are isomorphic to SUn divided by a subgroup of its center.
The center of SUn is the discrete abelian group which consists of multiples

v r
of the identity with determinant one, u : U, = g2t I where r = 3,2...n.

V. DECOMPOSITICON OF THE PRODUCT OF TWO REPRESENTATIONS OF SUh

In many applications one faces the followinz problem. ILet io(l) and
% (2)

be the carrier spaces of two irreducible‘represenations of a group G,
A(l)(g) and A(a)(g)- Then the Kronecker productclﬂ(l)ﬁb 2}(2) is the
carrier space of the product A(l)(g)cg)A(z)(g) which is generally a reduc-

ible representation of the group. Then the question arises to decompose
A(l)®A(2) in its irreducible parts.
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There exist various ways to solve this problem. We will concentrate here
on the description of a particularly simple method adapted to the case of SUh-
In this case the carrier spaces'lf(l) and’ﬂr(z) are ccomposed of tensors with

certain symmetry properties. Consider a typical element of the product

It may be considered as a tensor with fl + fa indices. As such we have a
universal procedure to decompose it into parts of meximal symmetry (see Section II).
If S and T were not satisfying certain symmctry conditions already, we would
thus get each representation with a Young tacleau of fl + f2 boxes a certain
number of times (in fact, a number of times equal to the dimension of the re-
presentation of the symmetric group in fl + f2 objects which corresponds

also to the same tableau). However, we must take into account the conditions
imposed on S and T. It is clear that the following statement will be true
in any case. The only representations of SUn which appear in the deccmpo-
sition of the product of two representations corresponding tc Young tableaux
with fl and f2 boxes are those corresponding to tableaux with fl + f2,

fl + f2 -n, fl + f2 - 2n, .... boxes.

The possibility of subtracting the columns of n boxes explains the state-
ment of the previous proﬁosition. We now give the recipe for solving the de-
composition problem. (The reader might find it useful before using the
general method to solve the problem for the simple case of the product of an

arbitrary representation with [:] and then compare.)
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General Recipe

(1) TLet

Be the two

1]

al--.lal

o jo'le
o’

-
]

o
two representations. Choose one of those as the trunk on which the repre-
sentations contained in che product will be builc. Then iabel the boxes in
the first row of the second tableau a, the boxes in the second line b, the
boxes in the third line ¢, and sc on.

(ii) Add one box labeled a to the first tableau in all possible ways
so that it remains a tableau, i.e., the first row of length greater than or
equal to the second row, etc. Then 2dd a second box labeled a (if any)
always requiring that the resultant object be a tableau. When the "a's"
are exhausted, use the "b's", then the "c's", and so on.

(iii) In the process described in (ii) never let two boxes with the
same label stand in the same column.

(iv) At the end of the process keep only those tableaux with no more
than n rows.(Later on the columns of n boxes will be dropped; as we
have already mentioned, for SUn the columns of n boxes are irrelevant
and can be added or omitted without destroying the meaning of the tableau. )

(v) Among the tableau with no more than n rows, some will be dropped
and some others will be kept. In order to decide which are the relevant
cnes (which correspond to irreducible representaiions contained in the de-
composition of the product), the following device is used. Take some re-
sultant tableau. Reading from right to left and from the upper end to the
lower, collect the labels of the boxes. In the process of recollecting, one

1A t !

should always find a number of "a's" greater or equal to the number of "b's",
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a number of "b's" greater or equal to the number of "c s", and so on. Hence,
only cértain‘tableaux satisfying the previous criteria survive — they give
the desired decompositicn.

It is worthwhile to note that at the end some of the tableaux obtained
might be identical (i.e., the corresponding representation appears several

times); hwever, with abtach=2d lrbeis come idintical tableaux must differ by

the disposition of the letters. For instance,

Oe 11 - [LHIle ]

and not

O® [1T1 = OIde®@=2[1]

as one could at first have thought. For following the process described

above, we label the tableau with two boxes
BE]
then attach an "a" to [:] , thus obtaining
[]:] or E]

then a second "a"

| lalal] - a] or a | , while is forbidden by the rules.
8 a

However, the two tableaux a| differ neither by the tableau nor by the labels
a
and therefore must be treated as a single tableau. This illustrates a second
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point: that a check on the dimensions is generally useful. If Nl and N2

(N

are the dimensions of A(l) and A(E), and if N denotes the dimension

of the irreducible constituents of A(l) X A(Z), we must have
N = EN(A)
E0)

A last comment before turning to an example — it concerns the case when
a diagram contains two rows of the same length, then one must label the two
rows differently and proceed as before As an example, consider the problem

of decomposing the product of two adjoint represeutations of SU6.

—— ——
el S

- |

We follow the rules, and label the boxes of one tableau,

b—d

ala|

D |
u B
n d |
n e ]

First Stage

II11 H

L111
Ll

@
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Second Stage

BE a]

LLL]
l

lof | |

Third Stage

It is impossible to put a "b" before all "a's" or "c" before "b" (see (v))

and we do not want columns longer than 6, sc the only possibilities are

alal ala) ] a a
b b aib alb
c c c T
d a; di i d
e - e
£ — =
B T
aj b a
b le b
c a ci
a e a,
& L8 ale:

This is the desired decomposition. The final seven representations (with their
attached labels) satisfy all the desired criteria. Writing for the symbol of

a representation DN(kl, %2, %3, A, XS), we have dbtained the result:
4

p35(1,0,0,0,1) x D*3(1,0,0,0,1) = D*(0,0,0,0,0) + 20°%(1,0,0,0,1)
+ D*8%(0,1,0,1,0) + D?8°(2,0,0,1,0)

+ D289(0,1,0,0,2) + D*°5(2,0,0,0,2)
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Indeed, one verifies that

35 X 35 =1+ 35 + 35 + 189 + 280 + 280 + 405

The bar recalls the fact that the two representations (2,0,0,1,0) and

(0,1,0,0,2) are contragradient ho cach other

It is clear that in some sense one could have kept the tableaux with more
than 6 rows if, instead of dealing with SU6 one were dealing with some
SUn,n > 6. Part of the result previously obtained would still be valid.
Hence, it seems desirable to tabulate once and for all the result of the
operation relaxing the condition on the number of rows. When applying the
result to a given SUn one should only keep the tableaux with no more than
n rows. This corresponds in fact to solving a related problem for the sym-
metric group on fl + f2 cbjects: namely, the decomposition of the product
of two tensors with given symmetries (described by Young tableaux of fl and
£, boxes) into tensors (of rank I":L + f2) of given symmetry (in terms of
Young tableaux with fl + f2 boxes). This is the so-called decomposition of
the "outer product" of two representations of the permutation groups on fl

and f2 objects. Some tebles are given in Section VII.
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- VI. THE (SUm,SUn) CONTENT OF IRREDUCIBLE REPRESENTATIONS

OF SUmn AND SU(m+n)

The direct product (sum,sun) of two unitary groups SU and SU  is a
subgroup of Suﬁr(SU(m+n))' Thie can be seen by relating (SUm,SUn) to the
correspending lincar trancs.ormacicn : tne Kronecker product'(direct sum) of
two vector spaces of dimension m and n. It is clear that an irreducible
representation of any group is also a representation, in general reducible,
of its subgroups. In this section we consider the problem of finding the
irreducible representations of (SUm,SUn) which are contained in an irreducitle
representation of SU = of SU ., that is, its (SUm,SUn) content. This has
become an important question in applications of groups to the study of elemen-
tary particles; for example, we are interested in the (SUZ,SUi) or isospin
content of SU3 =SU_, end in the (SUZ’SU3) or spin-unitary spin content
of SU6 = SU2X3' We shall discuss these two decompositions separately. -

To cobtain the (SUm,SUn) content of an irreducible representation of 5U
we consider two vector spaces V(m> and V(n) of dimensions m and n
respectively, in which SUm and SUn operate. The group (SUm,SUn) corres-

ponds to unitary transformations in the tensor product space V(m) X V(n),

with the scalar product defined by

) @) )y ) )y () )y

which leave (w,v") and v invariaht, where w(l) and V(l) are
vectors in V(i), i =m,n, and (w(l), v(l)) is the scalar product of
w(l) and v(i). It is then clear that (SUm,SUn) is a subgroup of SUmn

which operates in V(m) X V(n).
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The components of a vector in V(m) X V(n) can be written in the form
V(i )’ where 1 runs from 1l to m and & from 1 to n. Hence a tensor
b4

of rank f has the form

T(ilal)’(iaaa)""(ifaf)

To obtain the carrier space -of an irreduczible represcntation éf SUmn we
Lave to impose & 'maxima. symuetr, conultion” <. the indices of T (see Sec.III).
In applying this symmetry condition to T we have to permute pairs of indices
(ij,aj) at the same time. On the other hand, the carrier space for the irre-
ducible representations of (SUﬁ,SUn) ls obtained by imposing a maximal symmetry
condition on the indices i and Q separately. Hence to get the (SUm,SUn)
content of an irreducible representation of SUmn we have to decompose the
tensors which satisfy symmetry conditions with respect to the permutation of
pairs of indices (i,a) into the sum of tensor which satisfy such conditions
for separate permutation of the indices i and «.

Consider as an example the representation of SUmn, corresponding to the

Young tableau:

1]

It is described in terms of tensors

: . = T, .
TlOé,:LO! io ,ia
11 22 22 1 1

One can obviously write

T, . =
ia,ia
117722

-

. . + T, .
(Tla,la 104,104)
11722 217712

(Ticz,ia 'Tia,ia>
11 22 21 1 2
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The first parenthesis is symmetric in the interchange of il and 12; it is
also invariant with respect to the interchange of oi,aé. The second is anti-
symmetric in the interchange of il’iz’ and separately in the interchange of

oi,az. The symbolic notation for the decomposition is

H
,
]

& ]

O

We cen make a check on the dimensions. On the left we have a representation

t
[

of £J (and hence of (SU ,SU )) of dimension
mn m’" n

mn + 1
_fmn+ 1) mn )
- 2
2

On the right we have a representation of dimension

(/m + i\ n+1 _ (m + o ,in + 1)n .
. ) 2

\ 2

2

and another one of dimension

m ‘n

_m(m - 1) nn - 1)
2 2
2/ \ 2,

Hence we should have

! | |

+
o/ 2 2 / 2/2/

m 4+ 1\ /m o+ 1\ /m+ 1\ /m} n\\

which is indeed satisfied. Now it is apparent that the following general

statement is true: “Given an irreducible representation of SU_ = whose
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Young tableau contains fv boxes, the only irreducible representations of
(SUm,SUn) it contains are those with f - Mn and f - A'n boxes respec-
tively, where A and A' are integers." Again this stems from the irrele-
vance of columns with p boxes added to the Young tableaux of an irreducible
representative of SU?.

The decomposition of teasors of high rank involves a considerable amount
of labor. If we are mainly inteiestea “a l.nuving the (SUm,SUn) content of
SUmn we can use g simpler method based on the observation that this decom-
position is directly related to the reduction of the Kronecker product of
two representations of the symmetric group }jf' We note that for fixed

values of the indices i and &, the teuscrs T(. . with maximal

ia ia )"’
L)1)
symmetry conditions for permutations on i and « separately, are also

basgis for the Kronecker product of two representations of }Z The decompo-

e
sition of these tensors into tensors with maximal symmetry conditions under

simultaneous permutations of 1 and & leads to the reduction of the cor-

responding Kronecker product inte irreducible parts according to E:f” This
leads to the following procedure:

Suppose we want to know whether a given representation (Dm_x Dn) is contained
in a given representation Dmn of SU'mn symbolized by a Young tableau with
f boxes. First, as explained above, one can add to the Young tableau of
Dm (Dn) a certain number” of columns of length m_(n) on the left in order
to bring them to a form where it contains f boxes. The Young tableaux
obtained in that fashion describe also two irreducible representations of the
symmetric group Z{jf. Then the given representation Dmn of SU’mn contains

the representation (Dm,Dn) of (SUm,SUn) as many times as the corresponding

representation of }:f, appears in the decomposition of the product

¥
This number can of course be zero.
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cf the representations of }:f‘ corresponding to the Young tableaux of Dm

and Dn. In other words, what one has to do is to obtain the Clebsch-Gordan

gseries of the corresponding representations of E:f . An important advantage
of this method is that it allows us to forget essentially the subscripts m
and n. The tabulation of the Clebsch-Gordan series can in fact be made only
Jith reference to the synaecriz group. To ise ‘he tahles for specific m, n,
one only has to disregard Young tableaux of more than m (n) rows, and columns
of length m (n) (see Section VII).

We now turn our attention to the problem of finding the (SUm,SUn) content
of a representation of SUm+n' For this purpocse we fprm the vector space sum

o)

+ V(n) in which the scalar product is aow defined by

L R e I CO N € N ¢ S CO N O R OO

The transformations (SUm,SUn> in this space form a subgroup of SUﬁ+n which
leaves (w(m), v(m)) and (w(n>, v(n)) separately invariant. The components -
of a vector in V(m) + V(n) are now written in the form Vi, where 1 runs
from 1 to m + n with the convention that for i =1 ... m(i = m+l ... mtn)
these components belong to V& (V7). Then for a tensor of rank f we write

'I'i ;o Now if we want to build irreducible representations of (SUﬁ,SUn)
PUREREE

we need to consider only tensors in which the index ij runs either from 1
tom or from m + 1 to~ m + n and impose maximal symmetry conditions among
indices of the same kind. These symmetrized tensors can also serve to induce
a representation of SU'm+n if we adopt the convention that they have zero
components for the absent values of the indices. The representation obtained
in this way is reducible and corresponds to the Kronecker product of the two

representations of SUm labeled by the two Young tableaux which previously

+n
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referred to SUm' and SUh. The decomposition problem has been solved in
Section V. This is the basis for the method of cbtaining the (SUm,SUn)

content of SU which we now describe.
m+n

Given a representation of (SUm,SUn) we can associate with it two Young

tableaux, one for SUﬁ and one for SUp’ for instance

.o

Then we know from Section V how to decompose the "outer" product of the

corresponding representations of the symmetric groups, namely

( 1,1\1)_, T |

We refer the tableaux of the right-hand side to representations of SU'm+n .

—
W

Then the given representation of (SUﬁ,SUn) appears in the decomposition of
the representations of SU'm+n which appear on the right-hand side as many
times as their multiplicity indicate (in our example O or 1).

Note that to the Young tableaux for the given representation of (SUﬁ,SUh)
we can add & columns of length m, and B columns of length n, respec-

tively. In our example we have

o , B
,_.___/\__.\ ,—N

( ] r ,”

T
. n < L
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Hence this representation of (SUm,SUn) will also appear in the decomposition
of representations of SUm+n with Oam + Bn extra boxes. In general s given

representation of SUﬁ+n with a Young tableau of f Dboxes contains only those
representations of (SUm,SUn) for which the number of boxes of the two Young

tableaux, call them fl and fg, are such that

f 4 f +Cm +Pfn =7
1 2

A special case of this decomposition is Weyl's branching law which gives
the SUn-l content of a representation of SUn. Indeed, it corresponds to
the (SUn—l’SUl) content of SU  where SU  is a trivial group reduced to
one element. Its representations are all the unity matrix, but may be repre-
sented by arbitrary Young tableaux with one row. BSuppose we are given a

tati £r.£', ... f! of SU . i ' i
representation ( NERDE R n-z) n-1 First we allow for an arbitrary

number of extra columns of length n - 1 by writing it

(£' +a, £f' +a, ... £' +a, Q)
1 2 n-2

Then consider a "representation” of SUl (B) and decompose the outer product

(fi + Q, f; Qe £ a,a) ()

according to the rules of Section V, @ and B are chosen in order to find

(fl, oo fn-l) in the decomposition. Clearly a necessary condition is that

'+ ...+ +an-1)+pP=f +Ff + ...+ ¢
1 n- 1 2

n-1’

Then we shall have in the process of decomposition tableaux with rows of length

a
"
| aaa fi + o+ Bl
- - a fé + ? + Be
a f'n_2'+ o+ Bn_2
& a + Bn_l

_39_



+ B

n-y =B and due

with B + ...
1

cannot be in the same column")

We also want

£2

So

il

This set of inequalities is the

tations (f' ...,f' ) of SU
1 n-z n-1

IA

to the

b3

1

IA

IA

f'
2

' +
1

IA

f' + o
2

IA

- <7t
Bl - 1

+ a0+ B <F' +
2 - 1

.....

IA

content of Weyl's branching law:

contained in a representation (fl...

The result reads:

process of construction ("two a's

the represen- -

fn'l)

of SUn are those for which there exists a positive integer (or zero) «
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such that the previous inequalities are satisfied. It appears as a special
case of the éeneral method ocutlined above.

In practice it is better to tabulate the decomposition of "outer" pro-
ducts of representations of the symmetric groups. We are thus able to use

these tables to solve two different problems pertaining to the unitary groups.

The details are di~cussaed ir the next «ac-icn.

VII. TABLES

We give below tables which are useful for the various decomposition prob-
lems of both the symmetric group zijf and the unitary group SUn (see
Sections V and VI). We shall unext discus:s their use.

A. Dimension of representations.

From SU3 to SU12 we give the value of the dimension of the represen-
tations up to Young tableaux with 8 boxes. The first column gives the di-
mension of the corresponding representation for the symmetric group }:f .-

1

B. Decomposition of the "outer product" of two representations of

;z and }: with respect to }; and Clebsch-Gordan series
£ £, fl+f
2
for the product of two representations of SUn .

The tables first refer to the decomposition of the "outer product" of

two representations of }:f. and }:f. or, what is equivalent, to the
1 2

decomposition of the product of two tensors with given "maximal" symmetries
in the fl and f2 indices respectively, intc tensors with "maximal" sym-
metries in the fl + fg indices. In other -words, they also solve the problem
of decomposing the product of two representations of SUn (see Section V).

As an example, the following representations of }:2 and Ez induce the
5
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following representations of }:7_ as read in the tables

(B 111>a [ o [ 11T 1e® o [T1T 11

Notice that reading from Table A the dimensions of the corresponding repre-

sentations of the symmetric groups, one finds,

1 X4 514 +15 435 + 2 =84

The dimensions on both sides are nct equal, buvt the left-hand side always
divides the right-hand side.*

When labeling the representations we have used fl > f2 > e 2 fn_l
"f1g" equal to zero ere omitted and when

n_n

instead of repeating s r times, we have written st
In using the tables to decompose the Kronecker product of two representa-
tions of SUn’ it is necessary
(i) +to ignore Young tableaux with more than n rows
(i1) to consider as equivalent two Young tableaux when they differ only

in the fact that one has extra columns of n boxes.

* » .
This is due to the following fact. The representation of (jz

L)

of dimension n n, induces a representation of }: of dimension equal

12
to n, n, times the nunber of cosets of (Zfl"'zf in Zf w0 Leee
1 2

(fl + fg)!/fl! fzf . In our example this is 1 x 4 x (7!/2! 5!) = 84.
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® [ 1] = 1 o 1T ® @2 1@

(The dot indicates the one-dimensional representation.) This also reads in

familiar language
(8) x (8) = (21) + (10) + (10) + 2(8) + (1)

The dimensions are equal on both sides.

If we turn to . SU6 the same decomposition problem now leads to

® = Do 0 111®
ok §

@ 2 1® ® 1]®

or in terms of the dimensions

(70) x (70) = (1134) + (840) + (490) + 2(896) + (175) + (280) + (189)

Finally, the tables are also used "vertically" to find the (SUm,SUn) con-
tent of an irreducible representation SUm&n (Section VI). In order to do
this, select the columﬂ of the given representation of SUm+n corresponding
to a Young tableau with f boxes in the table fl + fg = f.

Each entry in the column is equal to the number of times the representation
of (SUm,SUn) appearing on the left occurs in the given representation of SUm+n'
The two partitions corresponding to the Young tableaux appearing on the side

of the table correspond to representations of (SUm,SUn) in two ways: (i) the
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first partition refers to SUm and the second to SUn, and, (ii) the first

partition refers to SUn and the second partition refers to SU_.* The only
m

exception to this rule is when the two partitions are identical in which case

one reads them only once. The table for fl + f =f must be trivially com-
2

-~

pleted by extra rows ccrrespondirg to O + f = f, that is, the outer products
of the representations of }jf‘ by those »f a group.reduced to the identity
thus inducing the same representation of }jfﬂ** As customary we disregard
tableaux of more than m (n) rows for 8U_ (SUn) and columns of length

m (n). As an example, consider the representation [:I:]:] of SU6 and let

us find its (SUé,Sq;)content. Using the table for f + f = 3 we find®**
b 2

1T - T + (0. + (O, T + (3, 0D

(SUS) - (SUZ:SU4)
or

(56) = (1,20) + (4,1) + (2,10) + (3,4)

*Even if m = n.

**In the preceding problem of Clebsch-Gordan series for group SUn this
corresponds to the trivial decomposition of the product of an identity repre-
sentation (fl' = ...=f T 0) by a representation (f , ...,fn_l) thus re-
du01ng to (f s e, fn )X(O . = (f PEEREPE S l)

Note that the two flrst terms correspond precisely to the extra rows

to be added to the tables.

o bk -



C. Theseé give the Clebsch-Gordan series for the symmetric group, and the
content of an irreducible representation of SUmn in terms of its
(SUﬁ;SUn) subgroup (Section VI) up to Young tableaus with eight boxes.
Reading "horizontally" one finds the Clebsch-Gordan series of the pro-

A

gt AN - -
duct of two represencations or ZJf. xaspl: Ier 2_ :
4

0 x - [T + [

-1 L L

One can also read them "vertically" for a representation of SUmn, thus col-
lecting on the sides of the table its content in terms of (SUﬁ,SUn). To do
this, first select in the upper part of the table the Young tableau of a
given representation of SUmn- This same tableau reappears in the lower part
of the table. FEach entry is the number of times the representations of (SUn,SUm)
appearing on the left (right) of a corresponding row occurs in the representagz
tion of SU_ indicated in the top (bottom) of the colwm. The two partitions
corresponding to the Young tableaux appearing bn each side of the table,
correspond to representations of (SUm,SUn) in two ways: (i) the first parti-
tion refers to SUm and the second to SUn; (ii) +the first partition refers
to SUn’ the second to .SUm.* However, as usual, Young tableaux with more than
m (n) rows referring to SU_ (SUn) are disregarded as well as colums of
length m (n).

Example for SU6: Reading the table one obtains the (SUZ’SUs) content

of the following representation (interesting in the case of baryon number

¥
Except in the case when the two partitions are identical
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two states),

- (1171717, )+ G, IITTTT) + (T1 11, 1)
+ O [T + (17, D
—J B
« (1 ) + o1, )

+ G ) « (O, [T + ¢, o)

(su,) - (su,s0_)
or, in terms of dimensions

(490) - (7,10) +(1,28) + (5,27) +(3,35) +(5,8) + (3,10) + (3,10) + (1,27) +(3,8) + (1,1)

Of course the sum of the dimensions on the right adds up to the dimension on
the left.

In general, when the two representations have the same Young tableau they
should not be duplicated (as explained above). To illustrate this remark,

consider for instance the (SU3,5U4) content of the following representation

of ©SU s
12

- (T, D)+ (O3 L O + L T + 13@)% O, T

.

or

(572) - (10,20") + (8,20) + (1,20") + (8,4) + (8,20")
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Notice that the representation ( |,

once.

The tabulation of Teble C requires long calculations.”

- |

we have used a computer.

1) of (su,,su 4) appears only

For higher orders

We summarize the various ~pplications of the tables in the following diagram:

Symmetric Group Unitary Group
TABLE 13)
T n
A Dimension Dimension
Decomposition of outer product (SU ,SU ) content of SU
. m n m+n
B
Zf ’ Zf )“’ Zfl+f2
* 2 Clebsch-Gordan series for SUh‘
Clebsch-Gordan series of (8U ,SU ) content of SU -
c m n mn :
):
%

Some explicit formulas can be found, for instance, in Ref. 4. or can be
computed using Frobenius' formula for the characters of the symmetric group.
The most straightforward method uses the orthogonality of characters.
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‘TABLIE A

2 S0 s‘ﬁ:_sus 80 80 8U, 50, 80 S0 EUn
(1) 1 3 4 5 6 7 8 9 10 1 12
(2) 1 6 10 15 21 28 36 L5 55 66 78
(6% 1 3 6 10 15 21 28 36 U5 55 66
(3) 1 10 20 35 56 8k 120 165 220 286 364
f2,1) 2 A 20 Lo 70 itz ~o8 [ 36 Lho 572
(1*) 1 1 4+ 1c il 5 56 h 120 165 220
(4) 1 15 35 70 126 210 330 495 715 1000 1365
(3,1) 31 b5 105 210 378 6% 990 1485 2145 3003
(2®) 2 6 20 50 105 196 336 540 825 1210 176
(2,1%) 3 3 15 L5 105 210 378 630 990 1485 2145
(%) 1 * 1 5 15 35 0 126 210 330 495
(5) 1 21 56 126 252 L6z 92 1287 2002 3003 4368
(4,1) L ok 8y 22k S0k 1008 1348 3168 5148 8008 12012
(3,2) 5 15 60 175 k20 88 1680 Pty (o} 4950 7865 12012
(3,1%) 6 6 36 126 336 756 1512 2772 k52 TT22 12012
(2%1) 5 3 20 T 210 490 1008 1890 3300 5hhs 8580
(2,1%) 4 * L 24 8k 224 50k 1008 1848 3168 5148
(1%) 1 * * 1 6 21 56 126 252 u62 792
(6) 1 28 & 210 462 924 1716 3003 5005 8008 12376
(5,1) 5 35 140 keo 1050 2310 k620 8580 15015 25025 40040
(4,2) 9 27 126 k20 1134 2646 s5BE 10692 19305 33033 54054
(5,13 10 10 70 280 840 2100 4620 920 1760 30030 50050
(33 5 11 50 175 490 1176 2520 k950 9075 1573 26026
(3,2,1) 16 8 64 280 896 232 5376 11088 21120 37752 6064
(3,2*) 10 * 10 70 280 8k 2100 4620 92ko 17160 30030
(2%) 5 1 0 50 175 490 1176 2520 4950 9075 15730
(2212) 9 * 6 b5 189 588 1512 3402 6930 13068 23166
(2,1%) 5 » * 5 35 140 k20 1050 2310 k20 8580
{1%) 1 » * » 1 7 28 a8 210 Lé2 g2k
(7 1 36 120 330 192 176 3w 6435  114ko 19448 31824
(6,1) 6 k8 216 T20 1980 k752 10296 20592 38610 68640 116688
(5,2) 14 kg 224 8o 2520 6468 14784 30888 60060 110110 192192
(5,18) 15 15 120 Sho 1800 kgso 11880 257k 51530 96525 171600
(4,3) 1h 24 1o 560 1764 b7ok 11088 23760 47190 88088 156156
(4,2,1) 35 15 140 700 2520 7350 18480 41580 © 85800 165165 300300
(4,13) 20 * 20 160 120 2400 6600 15840 34320 68640 128700
(33,1) 21 6 60 315 1176 3528 9072 20790 43560 Bigh2 156156
(3,22) =21 3 36 210 840 2646 7056 16632 35640 70785 132132
(3,2,1*) 35 * 20 175 80 2940 8400 20790 L6200 94380 180180
(31) 15 * * 15 120 540 1800 4950 11880 25740 51480
(2%,1) 1% * booko 210 784 2352 6048 13860 29040 56628
(2513 1 * * 10 84 392 134k 3780 9240 20328 41384



TABLE - A (Continued!

Z Su_  sU_ SU su_ sU_ su_ su,  sU su sU_,
(2,1%) 6 * * * 6 48 216 720 1980 L752 10296
(17) 1 * * * * 1 8 36 120 330 792
(8) 1 b5 i65 W95 1287 3003 6435 12870 24310 k3758 75582
(7,1) 7 63 315 115 3u65 9009 21021 k5045 90090 170170 306306
(6,2) 20 80 360 1500 4250 1uo60 3h_eG 77220 160875 314600 583440
(6,1%) 21 21 19 9k W65 1039 22927 63063 13513 270270 510510
(5,3) 28 k2 280 1260 4410 12936 33264 77220 165165 330330 624624
(5,2,1) 64 24 256 1440 5760 18480 50688 123552 274560 566280 1098240
(5,2%) 33 * 3B 315 1575 5775 17325 45045 105105 225225 Ls0ks50
(42) 1k 15 105 490 176k 5292 13860 32670 70785 143143 273273
(4,3,1) 170 15 175 1050 10  1k700 41580 103950 235950 4oskgs 975975
(4,2%) 56 6 8k 560 2520 8820 25872 66528 15Luko 330330 660660
(4,2,1%) 90 * ks W50 2430 9450 23700 AC190 193050 ka2km0 868725
(1% 3» * * 3B 315 1575 ST75 17325 45045 105105 225225
(3%1%) ke 3 ks 35 70 5292 15676 L1580 98010 212355 k2gkag
(3%12) 56 * 20 210 1176 4704 15120 L1580 101640 226512 L68LE8
(3,221) 710 * 15 175 1050 410 14700 41580 103950 235950 k95495
(3,2,13) 64 * * ko 38k 2016 7680 23760 63360 151008 329472
(3°) a * L 2l 189 945 3465 10395 27027 63063
(2%) 14 * 1 15 105 490 176k 5292 13860 32670 70785
(231%) 28 * + 10 105 588 2352 7560 20790 50820 113256
(2%1%) 20 * * * 15 140 720 2700 8250 21780 51480
(2,1°) 7 * * * * 7 63 315 1155 3465 9009
(1%) 1 * * * * * 1 9 45 165 495
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TABLE B

\l

1).

”~~

£ o+f, =3 (3) | (2,1) | (2)
(1) (2) 1 1
(1) (1) 1 1
£o4f, =k () 1(3,1) | (23) |(2,1®) ] (%)
«w | (1) (3) 1 1
3@ (2,1) 1 2 N
(1) (%) 1 1
(2) (2) 1 1 1
[\V]
+ (2) (13 1 1
“ (13) (13) 1 1 1
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TABLE B

(continued)
roer =2 | G| L e ] G2 | @) [ ) | 0%
(1) (&) - “"‘"l 1
(1) (3,1) 1 1 1
E (1) (&%) 1 1
(1) (2,1%) L 1 1
(1) (%) 1 1
(2) (3) 1 1 1
(2) (2,1) 1 1 1 1
(2) (1%) 1 L
MINEYE L 1
(12) (2,1) 1 1 1 1
(17) (27) 1 1 1
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TABIE B (continued)

£4f, =6 |(6) ] (5.1) | (%,2) | (5,2%)] (3°) 1(3,2,1] | (2%)}(3,2) (22,22)(2,14)[1°)
W& |1 oz B
(1)(k,1) 1 1 1

L | @3,2) 1 1 1

i (1)(3,1%) 1 1 1
(1)(2%,1) 1 1 | 1
(1)(2,1%) | 1 1 1
(1)(2®) 1 1
(2) (%) 1 1 1
(2)(3,1) 1 1 1 1 1
(2)(23) 1 1 1 ;
(2)(2,1%) 1 1 1 1 !

- @ L E |

o | (22)(4) 1 1 % ‘
(1%)(3,1) 1 1 1 1 }
(1%)(2%) 1 1 |1
(1%)(2,1%) I ‘1 1 )
(13 (1) 1 T 1
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TABLE B (continued)

£+f, =6 (6)] (5,1) | (4,2) | (5,1%) | (3%) [(3,2,1) | (%) [(3,1%) (22,12)(2,1*)k15)
(3)(3) 1 i 1 1
-~ | (3)(2,1) 1 1 X l ]t
- (3)(2?) 1 1
(2,1)(2,1) 1 1 1 2 1 1 1
(2,1)(2?) 1 1 1 1
(1*) (1) 1 1 1
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(sT)(T)

(51%e)(T)

(z122)(T)

(cTe)(T)

(2)(T)

(té2‘e) (1)

(2€)(T)

(zT4)(T)

(24)(T)

(Te)(T)

(9)(1)

(.1)

(s1°2)

(c122)

(5T°€)

(1c2)

(142°€)

(z2°€)

(1)

(T2€)

(17ey)

(€“4)

(21°¢)

(2%6)

(19)

(L)

2 T
L= F+3

+

(ponutquo)) g 1AV
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(sT)(T)

(cTe2)(51)

(1£2) (1)

(2T€)(cT)

(2€)(cT)

() (1)

(9)(cD)

(cT)(2)

(c12)(2)

(152)(2)

(zt€) (2)

(2€)(2)

(T0)(2)

(¢)(2)

(LT)(t'e)(cT2)

(51€)

(Tze)

Aimamzwmﬁjmi

(1:£)

(1°2%%)

(€)

(19)

(26)

(1°9)

(L)

z T
L= 3+ 3

+

(penutjuo)) g FIAYL
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(T)(cT)

(z1@)(cT)

(z2)(cT)

(TeX(cT)

(1)(cT)

(bT)(12)

2t‘e)(12)

.

(2)(1°2)

(Tée)(T°2)

(r)(te)

(1)(€)

(zT°2)(€)

(2)(€)

(T€)(€)

T

T T

(1)(€)

(L1)

(s1°2)

(cT22)

(41€) (Te2) (T2€)(23°€)

(cT0) (T5€) (T2%%)

(€n)

(21°9)

(2°6)

(t9) (L)

2 1
I+ J

L=

+

\'penuTIUeD) € FI4VL
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TABLE B (Continued)

S P ol 5 (1 Eo B o e ey KA O B e S o Y
ff_BAH(\Jr—i("\NHNf\'-Y:NC\J\n(\l;\r—l(\ln-\,—lmxr—lg\
e T 9.0,5@§5555;:““;%%“§N—;ﬁmﬁmC\TH

l A_Vf:“--vv\‘fvvvvvvvv
) b ] I

(17 Ll
(l)(6;l) 111141
(l)(5:2) 1 111
(1)(5,1%) 1 1] 1
(1)(%,3) 1 1 1
(1)(4,2,1) 1 1] 2

_

+ 2

o1 (13 (3=,1) 1 1{1
(1)(%,1°) 1 1 1
(1)(3,2%) 1 1 1
(1)(3,2,1%) 1| 1)1 1
(1)(2%) Ly L
(1)(3,1%) R
(1)(2%,17) 1l 1 1
(1)(2,23) 1l 1f 1
(1a" ) 1 1
(2)(8) 1] 1)1

o | (2)(5,1) 1)1l

+

ol (2)(5,2) 1 1| 1 i 12
(2)(%,1%) 1 1 1 1 1
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TABLE B (Continued)

(8)

2)
(6,1%)
(5,3)

21%)

(2,1°)

(18)

(22,1%)

(s,2,1)
(;,1%)
(3,2,1%)
(3,1°)
(2%,1*)

(4%)
| \"b3)]-)

(7,1)
| (4

(2*)

(4,1%)

(2) (3%)

| (v,2,12)
| 13%,2)

' (3,221

]

(k22

=
[
(=]

(2) (3,2,1)

l-_l
'._l
=
| ol

(2) (2%)

(2) (3,1°)

(2) (2%,1%)

(2) (2,1%)

(2) (1°)

(1®) (6)

12y (5,1)

2 +6

(13) (4,2)

(1) (,1%)

(1®) (3%)

(1%) (3,2,1)

(1%) (23)

(1%) (3,13)

(1®) (2%13)

(2%) (2,1%)

(1%) (1)




TABLE B (Continued)

+

~~T ] A et WS bt IR P v Y v
f +f =8 N TR TR TN IY) AR RN I BV R RS RS R D R T R RS 1 A T
1 2 ~—~ - - - - - wiQy - - iy 3] o< - LY Lal wf 0y - {0
[e0] [und Vo R (AN R BTN SNTaN BT u= Jy Q. Jy Jut_ 4y - o5 BRA 0¥ BRoAY BEan ¥ AYUN BN N BNaaY BaTRH BEanY SNQVE B eV -
S e et | S ] | v | e | S ] e et | et | St | S | N ] e | S | S | S | St et e | S
(3) (5) 1 (i1 1
S TS S S SV Q.
(3) (4,1) 1ty fry e
(3) (3,2) 1 1|1 141 1
(3) (3,1%) 1 11 1 1 1
(3) (2%,1) 1 11 1
(3) (2,17) 1 1 111
(3) (2°) 1 1
(2,1) (5) 111 1
(2,1) (&,1) 1|11 l2]1 1111
(2,1) (3,2) 141 {21141 |11
(2,1) (3,1%) 11 1jrlef1j1 2 1|1
(2,1) (2?1) I R I e R R -2 11
(2,1) (2,1%) 1 11 12l 1
(2,1) (1°) 1 1011
(1%) (5) 1 1
(*y  (%,1) 11 1 1
(13) (3,2) 1 1 1 1
(1%) (3,1%) 11 1 11 1
(1%) (2%1) 1{1]1 11 1
(%) (2,1%) 11 1irfz] 1l
(1) (2°) ; 1) 1] 1)1
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TABLE B (Continued)

R o P B DR P DR P
A P e I b e e E B T S B A e e B Bt e et e
A Il INCA NG TGO IRST ICH! B IRt Bl Rt INBY IS INS] OR Fal N1 RO NS IOA IOY R
() (W) 1|11 1 1
(4) (3,1) 11fa{1]n 1]
(&) (&%) 1 1 1 17
(3) (2,1%) 1 1|1 1
(4) (1*) 1 1
(3,1) (3,1) 1lrfalefafr]afr|ifr|a
L] (31 (%) 1)1 1{a(rlal!l |2
,: (3,1) (2,1%) 11 1{.]2 1,1 1|1
(3,1) (1%) 1 1|1 1
(2%) (27) 1141 111
(2%) (2,1%) 1 11| 11
(2%) (1%) 1 1 1
(2,1%) (2,17) itlilafrlelafr el o
(2,1%) (1*) 1 1fijilifa
| (1*) (1% 1 1 11 h
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TABIE C

Z 1 1
(@) | (1%)
(@) ® (2)i<12t: @ (1=t RN 17x(2)
| | (1)1 (&)
Z 1 2 1
3 (3)] (2,1) | (1)
B3 |1 (® | 1 3)@ (1)
(3@ (2,1) [ (®) ® (2,1) 1
(2,1) @ (2,1) 1 1 1
(3] (2,1) | (3)
_ il 32| 3 1
'y (] 3,1 (2,12 (1*)
(5).x (4) ()% (1%) 1 (1) x (14)
(1) x (3,1) (1*) x (2,13) 1 (1*) ®(3,1) (3)x (2,1%)
(1) 3y (2%) (%) (2%) 1
(3,1) x (3,1)(2,12) x.(2,2%) {1 | 1 |1 |1 (3,1) x(2,1%)
(3,1) x (253) (2,1%) x, (2%) 1 1
(2%) x:(2%) 1 1 1
(1*)[ (2,22)0(2®) |(3,1) | (B)
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(6) [ () () | Gre) | (122) | (c17@) | (ST)
il 1] e 1 2 T T (o16) @ (1)
T| 1] @ T T (zT€) @ (1:2) (1) ®(2¢)
(T°2) @ 12%) ] 1] 1 T 1 T (t2) @ (1.2) (2) @ (2)
2 A 8 B S O 2 (21°6) @ (cT°2) (1°€) @ (T%4)
(1)@ (1) (€)@ (,1°2) AR EEE (LT42) (26) @ (1)
(c12) ) (T7h) 1 T T | 1 | (T2 ® (%) (1) ©(1h)
T (o1€) (1) (1) D (<)
(T52) (B (S) (2°€) (% (gT) T (122) @ (1) (2€) (<)
(cT2)® () (1)) (1) T (cT2) @ (cT) (T0) @D (9)
(1)@ (C) T (<) @ (1) () D (9)
~ (1) ki) (Te)|(2T°E) [ (€D | (144) | (€) mmw
T | 1 < 9 ¢ L T

(penutquop) D FIAVI
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TABLE C g Continued }

Z 1 5 9 10 5 16 5 10 9 5 1
. © | 1 | 2y (1% ] (3B | (3,2,1) | (27) | (3,27) [(297)] (2,1%) | (1°)
(6) ® (6) (%) @ (0°) 1 (6) @ (1%)
6)® (5,1) (1%5) ® (2,1%) 1 (1%) ® (5,1) (6) @ (2,1%)
(6) @ (1,2) (1%) @ (2%,1%) 1 _(15) @ (4,2) (6) @ (2°1%)
(6) ® (¥,12) (1%) ® (3,1 1 J%) @ (4,13)(6) @ (3,1%)
&)@ () (1%) ® (2%) 1 (%)@ () (6) @ (2%)
6)® (3,2,1) | 0*)@® (3,2,1) 1
(5,1) ® (5,1) | (21*) @ (2,1*) 1 1 1 1 15,1) @ (2,1*)
(5,1)@ (5,2) | (2,2*) ® (2317) 1 1 1 1 (2,13 @ (6,2) (51) @ (2317)
(5,1)® (%,12) | (2,1*) ® (3,1%) 1 1 1 1 (2_,_1‘)@(h,12) 5,1)® (3,27
(5,1)@ (%) (2,1Y) ® (27) 1 1 (p,i;\ & (F) (5,1)@ (2%)
(5,1) ® (3,2,1) | (2,1*) ® (3,2,1) 1 1 1 2 1 1 1 ]
,2) ®(4,2) | (2% @ (23,1%) 1 1 2 1 2 1 1 (S @ (4,2)
(1,2) ®(4,1%) | (2%,1%) @ (3,17) 1 1 2 1 2 1 1 (L:?“?),@ (4,12) (4,2) ®(3,1%)
(4,2) ® (3°) (2%,1%; @ (2%) 1 1 1 1 1 (22 @ () (5,2) @ (2%)
(4,2) ®(3,2,1)[ (2°,1°) ®(3,2,1) 1 2 2 1 3 1 2 2 1
(4,190 (1,13 | (3,1°) @ (3,1°) 1 1 2 1 1 2 1 1 1 1 (3,12 ® (4,1%)
(4,22 @ (5°) | (3,12)@ (27) 1 1 1 1 1 (12 @ () (4,13) @ (27)
(5,1%) @ (3,21)] (3,1%) @ (3,2,1) 1 2 2 1 L 1 2 2 1 o
(F) = (F) [ @) @ (@) 1 1 1 1 2*) @ (3®
(F) & (3,2,1) | ()@ (3,2,1) 1 1 1 2 3 1 1
(3,2,1) @ (3,2,1) 1 2 3 b 2 5 2 i 3 2 1
(1%) | (21%) | (2523 (3,17 ] (23 | (3,2,0) | () | (%1%) [(4,2) [(5,1) | (6)
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TABLE C S Continued [

T
Z 11 6]14) 15 W |35[21)2021 |35 (14514 6] 1
— —
I R P DR et P P P el P P L P
o o~ Dl -l =N o~ - - NI e
cEEEBEREEESERER
(17 (7g") 1 (1)® (17)
(1)3(6,1) (17)32,15) 1 (TX&(2,15)  (1")X®(6,1)
(1@(5,2) (17)¥(2%,1%) 1 {(12(2%1%)  (1T1X(5,2)
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‘THE SYMMETRIC GROUP AND PROPERTIES OF THE YOUNG SYMMETRY OPERATORS

The theory of linear groups is intimately linked with the study of the
symmetric group E:f” the permutation group of f obJjects. We have given
in Section III rules f~r ob*taining the irredvzible representatiéns of SUn by
imposing certain maximal symmetry conditions on the indices of tensors. These
symmetry conditions are completely described by the Young tableau. We want
to discuss now the fundamental properties of the corresponding Young symmetry
operators of the symmetric group }:f'*

A useful technique for obtaining the irreducible representations of dis-
crete groups is based on the construction of a finite vector space in which
the group elements can be chosen as a basis. Such a vector space, in which
there exists a natural law of vector multiplication, has the properties of a
ring; it is called the group ring. The subspaces of the ring which are left-
invariant under this multiplication are called left ideals, and provide repre-
sentations of the group.

Let plpa ce. P be the elements of a discrete group of g elements.

g
The group ring R is defined by the set of vectors

= + + ..
X =X P +XD Xy (1)

where (xlx2 oo xg) is a g-uple of complex nunber, which satisfies the

following law of multiplication based on the group multiplication law:

xy = Z x;¥5 (pypy) = zh (xy), 2y (2)

1,3

¥
See References 1 to k4.
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where
(), = ) wy, ()

and the sum is carried over all 1i,j for which PiPs = Py A left (right)
ideal I 1is then defined by the condition that if x & I, then
yx &= 1 (xy'eEl I), for every y< R. Two trivia. examples of an ideal
are the ring R, and multiples of the identity.

Due to the associativity of the group multiplication law, it is clear

that a left ideal gives rise to a representation of the group. To obtain the

irreducible representations we require the minimal ideals, which are those

ideals which contain no proper invariuant subspaccs. A very important element

of an ideal I is its idempotent element e, which has the property that

e? = e, i.e., it is a projection of the ring on the ideal. Suppose that

x €& R; then xe & I, and if x &_ I, then xe = x. For the permutation
group, we want to show that the idempotents of its minimal ideals can be chosen
to be precisely the Young symmetry operators Y described earlier in Section IIT
(apart from normalization). The two crucial properties which we have 1o demon-

strate are:

(1) Y° = uY where p is a constant;

(2) If Y =u(e + e ), where e =e ,e“=e and e e =0, then either
1 2 1 1 2 2 12
e or e =0; in other words, the corresponding ideal is minimal.

1 2
First we show that if an element x of the permutation ring has the property

Xp = X and gx = qu

where p and q are elements of the Young symmetry operator Y (see Section ITT,

formula (5)),then x = cY, where ¢ 1is a constant. Any element YzY where
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z belongs to the ring R, naturally has this property. Hence Y® must be
a multiple of Y. To prove property (l) we also have to show that the propor-
ticnality constant does not vanish. Finally, the minimal property (2) follows

immediately since it also implies that

Ye.Y .
i i

N

1l
0]
|
[

]

Hence, by (1), either pel Y, e =0 or el = 0 and H62 =Y.

2
Expanding x = Zx(t)t,we find that the conditions xp—l =x and

q tx = qu imply that x(tp) = x(t) and x(qt)

qu(t), respectively. In

particular, substituting for +t +the identity +

1, we obtain x(p) = x(1)
and x(qp) = qu(l). These are precisely the expansion coefficients of Y
(apart from the constent x(1) ). It remains to demonstrate that x(t) = O
when t 1s not a permutation element contained in Y. A bit of reflection
will show that all permutations which do not belong to Y are characterized
by the property that,if they are applied to the integers 1 to £ occupyinék
the boxes of a Young tableau at least two integers in the same row, end up

in the same column. It follows that if u is the transposition of these

integers in the initial row and v 1is the corresponding transposition in

the final column,

vt = tu
But we have the property that
x(tu) = x(t) and “x(vt) = -x(t)
which implies
x(t) =0
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Finally, %e evaiuate the coefficient u, Eq. (1). For this purpose we intro-
duce s reducible representation for the group generated by the linesr trans-
formations induced by the group elements when they act on R, the so-called
regular representation. The only property of <The regular representation which
we reouire here is that the trace of all matrices ccrresponding to elements
other than the identity vanish, hence trace Y = f! (recall tﬁat f! 1is the
dimension of the regular representation, i.e., the order of the symmetric
group Ezf.). On the other hand if we introduce as basis a set of vectors
belonging to the ideal generated by Y of dimension {9 Y must be a multiple
of the £ x4 unit matrix in the corresponding representation. Hence ,
trace Y =, and - p =i/

We have shown that the Young symmetry operator Y i1is an idempotent or

projection in the ring of the symmetric group }: It generates a minimal

e
ideal, that is, an invariant subspace under group multiplication which doces
not contain any smaller invariant subspaces. Hence, it gives an irreducible
representation of EZf" In fact, all the irreducible representations of }:f
are given by the possible Young tableaux of f Dboxes. The proof is quite
simple and will not be given here. In conclusion, we note that the ideals

corresponding to different Young tableaux are carrier spaces for unequivalent

representations.
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