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ABSTRACT
The ancmalous magnetic moment of the electron, %(g-Q), is camputed using

dispersion theory. The analytic continuation is made in the mass of one of
the external electron lines and only the one electron one photon states are
retained in the absorptive amplitude. In this way we relate g-2 to the
Compton amplitude which has a known exact threshold behavior. Out approxi-
mation is an expansion in the low energy behavior rather than a perturbation
expansion in powers of 1/137 and ve are able to show that a major contribu-
tion to g-2 comes from the low mass region of the electron photon system
near the threshold of the absorptive amplitude. First in a purely non-
relativistic calculation we find that a major part of the O/En correction
is accounted for by the Thomson limit. Further refining our calculation by
including the exact residue of the pole terms in the Compton amplitude in
accord with the low energy theorem on Compton scattering we find that electron-
photon states below 2.5 me® in the absorptive amplitude reproduce 90% of the
-0.328 Q?/na contribution and prediect a value of ~ + 0.15 053/7t3 for the
sixth order term. We also give a simple physical interpretation of the
difference of muon and electron g-2 values. Finally we calculate with this
approach the anomalous magnetic moments of the proton and neutron, with the
Kroll-Ruderman theorem on meson photoproduction providing the low-energy
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"anchor" in this case. Again retaining only the low mass regim of the
absorptive amplitude we obtain fair agreement with the magnitude and the

igsovector character of the moments, finding ApP = 0.7 (A ) and

A =0.9 (Bn__ )
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I. INTRODUCTION

Feynman, in his report to the 12th Solvay Congress on "The Present
Status of Quantum Electrodynamics" (QED) called for more insight and physi-
cal intuition in QED calculations. To quote from a particularly relevant
passage:’ "It seems that very little physical intuition has yet been de-
veloped in this subject. In nearly every case we are reduced to camputing
exactly the coefficient of same specific term. We have no way to get a
general idea of the result to bevexpected. To make my view clearer, con~
sider, for example, the anomalous electron moment... [Eég = é% -0.328 O?/nZ] .
We have no physical plcture by which we can easily see that the correction |
is roughly G/Eﬂ, in fact, we do not even know why the sign is positive
(other than by camputing it). In another field we would not be content
with the calculation of the second order term to three significant figures
without enough understanding to get a rational estimate of the order of
magnitude of the third. We have been computing terms like a blind man ex-
ploring a new rocm, but soon we must develop some concept of this room as
a whole, and to have some general idea of what is contained in it. As a
specific challenge, is there any method of camputing the anamalous mcment
of the electron which, on first rough approximation, gives a fair approxi-
mation to the O term and a crude one to OF ; and when improved, increases
the accuracy of the o term, ylelding a rough estimate to o  and
beyond?"

This paper is our answer to this challenge. We will show that the
Schwinger correction,® @f2n, of the electron (or muon) magnetic moment

can be calculated approximately and very simply in terms of the exact

Thomson limit to Compton scattering of photons by electrons.” All that is

-3 -



needed by way of formalism are the non-relativistic Pauli two-camponent
theory of the electron and the analytic property of Feymman graphs in per-
turbation theory that allows us to write a dispersion relation for the
electromagnetic interaction vertex.*

We can do better than this by keeping relativistic kinematics and by
using the full content of the exact low energy theorem on Compton scattering
including the magnetic mament contributions which are linear in the energy.5
If we include the mament to order O/Eﬂ in the Compton amplitude, the correct
sign and approximately correct magnitude are obtained for the o correction
of -0.328 O?/ne as camputed in fourth-order perturbation theory by Scmerfield
and Petermann.® Including the O° mament term in the Canpton amplitude leads
to the prediction of = + 0.15 OP/ﬂ3 to sixth order. We also give a simple
physical interpretation and calculation of the difference between the muon
and electron maments.

Finally, with this approach we calculate the ancmalous magnetic moments
of nucleons. In this case the Kroll-Ruderman theorem provides the low-energy
"anchor," and fair agreement is obtained both with the magnitude and the iso-

vector character of the moments.

IT. NON-RELATIVISTIC CALCULATION AND THE SCHWINGER CORRECTION

The Schwinger correction, Eég = é%- is found in lowest-order perturba-
tion theory by evaluating the radiative correction to the electromagnetic
vertex, Fig. 1. Instead of following this procedure we shall appeal to the
familiar result that the Feynman amplitude for Fig. 1 studied as a function

of the (mass)® of one of the external lines, with the other two on theilr

mass shells, satisfies a dispersion relation in this variable. This property
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is valid to all finite orders in perturbation theory. In order to compute
the anomslous mament %(g-E) from the dispersion integral we must assume that
the dispersion relation for the magnetic moment part of the amplitude re-
quires no subtractions; otherwise g-2, like the charge e, would be another
parameter in the theory.

First we consider the analytic properties of the Feynman amplitude cor-
responding to Fig. 1 as a function of the invariant mass W2 = (p + )2 or
the incoming electron’ with the photon and outgoing electron set on their
respective mass shells: 22 = 0, p% = m®. The scalar functions multiplying
the spinor factors, considered as functions of W2 , are analytic functions

in the cut W% plane with a branch cut from m®

to + . The absorptive
parts of these amplitudes are given by the discontinuity across this cut
and are obtained by setting the internal photon and electron lines on their

pogitive energy mass shells. This is done by replacement of the propagators

of these internal particles according £0°

1 1

q% + 1€ k% - m® + ie

—~2n® 5 (k% - n®) 6(k ) 8(a®) 6(q.) (1)

The absorptive amplitude will be given by

Abs f = f 8K (on)*6*(qk-p-t)i(p)N(q,k,p) —= .
(2x)* ¥ (an)* o + ie k% -n” +ic

1
2 _ .2 _ (2)
= Kg—:§§— jf ax u(p)N(W2,x)
27
1

2o

_ 2
where x =gq * / ,ﬁ1 in the center-of-mass system with p + 1= (W,O)

and E = —E . N is a numerator factor appearing in the amplitude, and is
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a polynomial which does not influence the analytic properties according to
the Feynman rules which tie together the two ends of the internal photon
line with’ A The "cut" graphs corresponding to the absorptive amplitude
(2) are shown in Fig. 2 where we have indicated both the vertex and self-
energy parts. These graphs illustrate how the absorptive part is obtained
by multiplying the electramagnetic current by the Campton amplitude followed
by an integration over the scattering angle x according to (2). This
direct dependence of the absorptive amplitude on the Compton amplitude and
on the current is the input that introduces physics via the factor N in
the numersator.

Using the established analytic properties of the Feymman amplitude we
can now exploit the known exact low energy behavior of the Compton amplitude
to estimate the anamalous moment. Before presenting a more formal discussion
that provides a basis for a systematic iteration scheme we shall give a "first
rough approximation"” to g-2 using only the non-relativistic Pauli two com-

ponent theory of the electron. The transition current for a Paull electron

with the gyramagnetic ratic g to emit a photon of momentum ﬁ:—+0 is

X:, -[ei—%’- ie%g]xi (3)

where )(f and )(i denote the final and initial two camponent spinors of
the electron at rest and (3) is accurate to lowest order in v/c. In a
relativistic dispersion study of the vertex as a function of electron mass
Wz, the charge e and the normal moment g = 2 associated with it in the
Dirac theory are given by a subtraction constant as required by the Ward

identity.lo It is only the change in the g value, g-2 , arising from
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the radiative corrections contributing to the sbsorptive amplitude in (2)

that we calculate from the dispersion relation

-]

g2 = 1 f Img(W2)aw= (1)

2 2
mzW-m

For Img(W2) in the Pauli approximation we return to (2), multiply on the
right by X 5 for the incident electron, insert non-relativistic expressions

for N , and project out the spin dependent amplitude from

W2 - n® faf&( W2, ) X,
seni® Y £ P P (Wom)

165W2 n

1 3
W2 - 2 ~ * N~ X% .
'i—ﬂ'ﬂz fdx 7(f Zel"jx'sxm‘[X Js xl]
r,s=1

spins -1
3.
xS ) e g | [, 7] (5)
r=1

* s
In (5), Xf grs Xm is a non-relativistic approximation to the Compton
amplitude. By the low energy theorem the perturbation result in terms of
the physical charge e 1is also the exact Thomson amplitude as B —0 and

(W-m) —0:
1; Trs zm — - (e%/m) S l; Xm (6)
{W— m)

For the time component :jro we invoke current conservation

Z JI‘SqS N jI‘Oq‘ =0 (7)
S=1
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go that

I X _h e o

f Yro 'm (womp) @ m “f 'm

The camponents of the transition current in the Pauli theory are given by

describing the Schroedinger plus the spin currents created when the initial
electron of momentum p accelerates to the intermediate one with momentum k .
Introducing (6), (7), (8) and (9) into (5), performing the angular

integral, and picking off the coefficient of ¢ gives simply

= 2
- - [0
Tmg(w2) = =B 2 o & (y2 _42) (10)

baw® W=
Near threshold, as W —m, Eq. (10) may be compared with the absorptive
amplitude obtained from a relativistic perturbation approcach. As we shall

see later it not only reproduces the absorptive amplitude in the or

&
2
Schwinger, approximation but is, in fact, exact in this limit.*' From the
low energy theorem we know that the perturbation calculation of the Compton
amplitude, expressed in terms of the exact renormalized charge, reproduces
the exact Thomson limit as € =W - m —0. However, the dispersion integral

in (4) extends over the entire physical range of Compton scattering energies

m < W= < © and, for large W, (10) will fail for purely kinematic reasons.



In fact the dispersion integral (L) for g-2 diverges logaritimically if we

use (10). Introducing a cutoff we find

A2
2
g2, .2 f.__dW‘ie_ A2
2 H= 3 5 W2 Qﬂ&qmz (11)
m

which shows that the major part of the Schwinger correction arises near
threshold when m < W < 1.7m.

This result provides an interpretation of the Schwinger correction in
terms of the Pauli current and the exact classical low energy Thomson
dmplitude, which determines, moreover, the sign of the moment correction.
Beyond this it suggests a program for computing the electron magnetic moment
to higher accuracy by making full use of all the information in the low-energy
theorem for scattering of light by a spin 1/2 particle. In addition to the

exact Thomson limit at zero energy, Gell-Mann, Goldberger, and Low®

proved
that the terms in the Compton amplitude linear in photon energy can be ex-
pressed exactly in terms of the experimental magnetic mcment of the electron
(fermion). We may include these along with the Thomson limit in (6) and (5),
obtaining in this way an algebraic relation between the mcoment we wish to com-
pute on the left-hand side of (4) and a quadratic form in u on the right-
hand side. In the spirit of a perturbation expansion in & ; an input on
the right of the anomalous moment accurate to order o gives an output to
order Ot' since the terms in Img(W®) are proportional to Q, Oy, and ou®
depending on whether the charge or moment currents appear at the vertices of the
Compton amplitude.

This expansion is not equivalent to the straight perturbation expansion

in powers of <. In a complete calculation to order a? for instance, it is

necessary to include radiative corrections both to the vertex and to the
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Compton scattering parts as in Fig. 3; this means three-body intermediate
states, containing an electron plus two photons in the absorptive amplitude.
However, the success of (10) and (11) in approximately reproducing the Schwinger
correction motivates us to retain nothing more than the full contents of the
low-energy theorem as. the major contributer to the absorptive amplitude.

We do this now with the full relativistic kinematics in order to avoid an
impfoper and exaggerated emphasis on the large W region and sensitivity

to the cutoff. This means keeping the pole diagrams with physical charge

plus magnetic moment vertices as in Fig. 4 in the Compton calculation. We

want to see how well this approach reproduces the computed and measured oZ

contribution to the moment:®?12
- o 2
<Eég) =55 " 0.328 &
theory n=
(12)
(5—;3) - % - [0.327 + o.005] o
experiment nZ

In that we find that both the sign and approximate magnitude of -0.3 92 are
s
obtained with this approach, we are encouraged to draw the conclusion that
3

the @ result which emerges, = + 0.15 9; , does indeed have samething to
do with the full accurate result that awgits a very major calculation at
this time.

The basic assumption is that the major contribution of the higher radia-
tive corrections are contained in the pole terms of the Compton amplitude
that are responsible for the low-energy theorem. We thereby relegate to a

minor role the additional radiative corrections to the vertex and scattering

amplitudes, due both to their virtual internal photons as well as the real
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ones exchanged between the vertex and scattering amplitudes.l3 With this
approach a close agreement to the known o moment is found, again with
emphasis on the low-energy scattering region and with a logarithmic cutoff
dependence for the dispersion integral. It is upon this result that we
base our confidence in the o° prediction.

Before turning to the formal calculation we may review Feynman's remarks
and ask what we have accomplished. A physical picture of the O/2ﬂ contri—
bution has been given based formally on the existence of a dispersion réla—
tion but with the simple elementary physical input of the Pauli current and
Thomson amplitude. Correcting this calculation by making the kinematics
relativistic and including the entire low energy Compton scattering amplitude
via the pole terms with physical vertices we obtain a good approximation to
the OF result and offer an estimate of the O term. Moreover, we can
systematically improve our calculations by keeping higher terms in the dis-

persion theory expansion over real intermediate states.

ITI. RELATIVISTIC CALCULATION

We return now to a covariant formulation in order both to give a system-
atic reduction to the Paulil two-component result of the last section and to
initiate an iteration procedure for achieving higher accuracy in the calcula-
tion of g-2.

The most general expression for the electromagnetic current with the

emerging electron and photon on their mass shells p2 =m® ang 42 =0
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takes the form’

ig {y
eﬁ(p)l““(p,p%) = eu(p) F*l'(Wz)%JL - FZ(WZ) -—2%——- + F:(Wz)/ﬂ“ * £

o 2 |
10
- 2 . _ - o v - - - 4+ m
+ F1<W )7“ Fz(w ) B + F3(w2),&u _u___.

The F%(Wg) are invariant functions of the scalar W= = (p + 4)2 and are

2 as discussed

defined in the cut W2 plane with a branch point at W% =m
in the preceding section and illustrated in Fig. 5; for w2 > m2,

FE(w2) = lim + FX(W2 + ie). A further restriction on (13) comes from the
i e —0ot 71

Ward-Takahashi identity which fixest?

a(p)T (psp + L) = a(p)¥t

Hence in (13), F:(Wg) = F;(WE) =1, a constant independent of W? , and
evidently the normal Dirac moment g = 2 +together with the charge appear
entirely as a subtraction constant in the dispersion approach in the we

7510

plane. Equation (13) now simplifies to

-io AV
B (p,pd) = <ip) |7, + : —f— L) + %FBWE)} { & m;

(1k)

_iUBV{y “(4B) 4 A (w2 - -4 +m
+ - FZ(W ) + qu(W RS 5

S : ;
F' is recognized as the ancmalous magnetic moment as we go on to the mass
2

shellls) W2 = n?

. v
teg

()T (p,p+)ulpd) = (o) [eyM - (gf)] 2o+ (15)
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This is the quantity of interest to us and we project it out of (14) with

the operator7

v2(p,,6) - - —-—9‘-1—7 [(ﬁ sh+m) (10, A7) + B+ 7 - m>]_ u(p,s) (16)

2(We-m®

which gives

D/]

a(p,s) T(p,0 + 1) fo)(p,’&,S) = - 5= F“;(WZ)

The dispersion relation for F;(WE). is taken to be an unsubtracted one

-1 [ et (a7)

W2 m2

F (m2)

ﬁIH

V]

m

i.e., the charge e is the only coupling parameter introduced into quantum
electrodynamlcs The anomalous moment is calculated from the radiative
corrections.

We must now make a dynamical assumption in introducing ImF;(Wz) on
the right-hand side of (17) and this we do by retaining only the two-particle
intermediate state of one electron plus one photon as in Fig. 2. We can now

write this approximation using (2), and projection operator (16):

+/2 m= 2 N g - KY oy 2
wrt(e) = - B p(w) ) [ a(n)u(r,y2  (18)
spins -1
where p(W2) = (W2-m®)/W? is a purely kinematic phase space factor. Here
e“{/ ¥ Wp)T . uw(k) is the Compton amplitude for an initial photen of
(1) “(a) Y
. . A%

momentum ¢ and polarization e(q) and an electron of momentum k to

scatter to a final state of a photon of momentum 4 and polarization
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il

e?ﬁ) and an electron of momentum p =k + q - 2. In the center-of-mass

of the scattering process p = - ﬁ,’

L0

=-k o+t =W, x= q-{/[gllﬁ1 .
Equation (18) is the relativistic generalization of (5).
The exact Compton amplitude, and any satisfactory approximation to it,

will satisfy the requirement of current conservation, i.e.,

|
o

£ 5(p)Tu(x) =
(19)

1
(@)

qvﬁ'(p)T“Vu(k) =

The first of these relations in particular permits us to discard all terms
in (16) for vi that are proportional to {h when inserting into (18).
Together with the identity, valid when 42 = 0, 4 (—icrm’ﬁT) = %uli we can

simplify the projection operator to

(2) . _m m) (- u
Yo 2(W2-m?)? (B +m) (-0, u(p,s)
(20)
-mZ 0 = . . T
- ) et Wne) (ot uee)
+s'

and cast the absorptive amplitude (18) into a more transparent form

- 1
w - (22) T[]

3
s,s',s" -1

(21)
[E(k)sn)'yvu(P:s,)] [E<P)s") {‘iUHT'ET; U—(P:S)]

Equation (21) is the product of a kinematic factor, the Compton amplitude,

E(p)TuVu(k) , the electron transition current from a state of momentum p
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to k, E(k)yvu(p), and the spin projection operator. We can return to our
previous non-relativistic form by a systematic low-energy reduction from it
or we can proceed directly to higher order corrections by including the full
content of the low energy Compton theorems in Tuv .

First, however, we may remark that the Klein-Nishina formula of lowest

order perturbation theory

w(p)T""u(k) = - e u(p) [7“ ﬁ—i_-ﬁ A m 7“] u(k)  (22)

gives when introduced in (21)

V]

W—Z

ImFg(WZ) _a (W2n?) (Ef> (23)

which reproduces the Schwinger correction 5%2 = g% . Equation (23) differs
from our earlier two-component calculation (10) only by a relativistic
kinematic correction %g [recall ImFZ(Wz) =3 Img(wz)]. The ingredients
of thaf earlier approach are apparent in the factors of (21); in particular,
there appear the Thomson amplitude and the transition current from the
initial electron with p to one with momeﬁtum k . The detailed reduction
of (21) to that result is carried out in the appendix.

We also see in (23) and (17) the dominant role of the low mass region

near threshold W ~ m in the magnetic moment calculation. If we keep only

the contribution between m < W < € pax = in (17) we find

(5-5—2-)}\ = %; (1 - 1/2%) (2k)

which shows that more than 80% of the Schwinger correction comes from the
mass region < 2.3 m or within 0.65 MeV of threshold. Comparing (24) with
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(11) we see that the correct relativistic kinematics has converted the log-
aritimic cut off dependence there into (1 - l/ke), a convergent factor as
A =,

Encouraged by this result we proceed to a calculation of higher order
corrections to % (g-2) by including the entire contents of the pole terms
to the Compton scattering amplitude in (21). This means replacing the bare
vertices 7H in (22), corresponding tc & Dirac particle with g=2, by the

vertex for a Dirac particle with arbitrary g:

ARRICRENS [7u’ 7?’]
7y~ T(-a) =7, + §= [;é, VV]

The complete vertex (14) reduces to (25) at the intermediate electron pole
as seen in (15). As shown by Low, Gell-Mann and Goldbergers the nonrelati-
vistic reduction of (22) with the currents (25) operating at the vertices

as in Fig. (4), gives the exact low energy Compton amplitude through first

order terms in the energy w i.e.

where w = |ﬁ1 = lgl ) E»= ﬁ/lﬁl , and g = g/ ig‘ . The corrections in

(25) are proportional to O and to higher powers in the fine structure
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constant and we turn to them, and through them to the full low energy
Compton scattering theorem (26), as the major contributers to the higher
order corrections to the electron g-2 value.

Including the @ corrections by setting Eég = é% in (25) we compute
the O° contribution to the absorptive part. To the extent that we are
able to reproduce in this way the known o contribution to the gLE value
of the electron we are motivated to push on, including the value of g-2
through second order in o? in (25) to derive an approximation to the
o moment.

The absorptive part (21) to order o is found using (22) and (25)

by direct calculation:

| - of WD () ) et
2 (cB) 1 W2 we-m?® |w2-m2 2 wa
2
. %; (WZ;iz) Weem® =~ 0

{l/

(27)
J3C y2 s> 2
Bnt

Tnserting (27) into (17) and cutting off the logarithmically divergent

integral at W = Am gives for the o? correction

g2) . _ (%) a3, 2 J.1,5

(2 >oc2 <2“) [(%n +) [2 ' 2(}\2—1)] BT uxe]
~ - 0.28 062/31:2 for A2 =5 (28)
~ - 0.33 /x® for A% =6

showing as in (24) that more than 80% of the correct fourth order anomalous

moment contribution comes the mass region < 2.3 m. Evidently the sum of
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contributions from radiative corrections to the vertex and to the Compton
scattering amplitude in addition to the pole terms in (18), as well as the
high energy contributions to the dispersion integral, play only a minor
role.

We proceed then to the next higher order in « , including the full
pole term in the Compton scattering, setting the anomaly to its "experimental
value”

%g = % - 0.328 o?/x? (29)

and choosing the same cut off indicated in (28). In this way we deduce
the approximate & moment according to the philosophy of low-energy
dominance which was successful to orders @ and O°.

The total contribution to the absorptive part (21) to all orders of

O coming from the pole terms, (22) and (25), is

rt(i®) = ¢ (2 |8® | alge) { o [ ]
2

o

W2 ‘ wa (Wg_mg) W22 02
(30)
6W2 - 5m2} (g-2)2 (Wg—m2>
- ————————— + h
' w2
and the resulting g-2 value is
g2.2 ¢ alg2) (2n 22) 123, 2 }_)Z_,Lj,
2 2n =~ 2x 12 2(32-1) 12
3
. %-0.28925+o.149‘-3— for 22 ~ 5
* %% (E%@) [fﬂ I R " 7
2 2 3
2 = -03L 017 L foratss
It 72 1I3

(31)
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or approximately

g-2 o/ 2n
2 1+ 0.6 o/

Equation (31) represents our final result and is presented here as our
answer to Feynman's challenge guoted in the first paragraph.

The analyticity properties of Feymman graphs together with the exact
low energy Compton scattering limits for photon electron scattering have
been used as a basis for an approximation scheme. The Schwinger correction
of o/2n is reproduced approximately using only the exact Thomson limit at
zero energy to the Compton_amplitude and the two component Pauli current for
a non-relativistic electron. These physical inputs also fix the sign of g-2
correction. Retaining relativistic kinematics as well as the full content
of the low energy Compton scattering theorem gives the exact Schwinger
correction as well as a good approximation to the Petermann-Sommerfield term,
- 0.328 O?/ﬂg . On the basis of this success we conjecture that our o’
prediction of =+ 0.15 OP/ﬁ3 is correct in sign and approximately wvalid in
magnitude.

In order to complete this program and to establish the validity our
approximation of dominance of the low energy amplitudes two calculations
must be undertaken. One includes a more complete treatment of the current,
represented by u(k) ¥Y u(p) in (21) for the incident electron to produce
the 1y, le state, by retaining the full vertex structure of (14). This
analysis is currently in progress and necessitates a discussion of the com-
pensating infra red divergences buried in F;(WZ) as well as in the 2y, le
intermediate states. The aim here is to compute as much as possible, if

: : +i.2 . 2 242
not all, of the contributions to ImFZ(W ) that are proportional to (W<-m<)
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near threshold (W2-m®) —0, in addition to the exact threshold term (23).
It is readily established that the additional contributions to ImF*z'(wz)
from the Fg(we) terms in (14) are proportional to (We-mz)z as W2-m®—0
and therefore do not disturb the exact low energy behavior of the absorptive
amplitude given by (10). The terms in (14) proportional to Fi(wg) vanisgh
when contracted with the Compton amplitude according to current conservation
- i.e. in (18), 7y Ty Fg(wz) and by (19), %E(p) -V u(k) a, = 0.

The second calculation is of course the complete o perturbation
calculation including the 3y, le intermediate states which must be faced
up to eventually.

Our prediction of =+ 0.15 073/113 cannot be tested against experiment
until more accurate determinations of the muonium (u+ e ) hyperfine structure
in the ground state, or of the deuterium or helium fine structure,yiéld a

. . . 17
more accurate determination of the fine structure constant.

The present
limit of accuracy

o = 137.0388 + 0.0006

when included in writing the Q/2n term in the formula (12) leads to an

uncertainty
6(5—'3) = 5(—0‘—) =+ 0.4 /x>

due to the experimental uncertainty in «& alone. Thus more than a more
accurate g-2 measurement itself is needed before a test of the sixth order

anomalous moment is achieved.
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IV. MUON g-2 VALUE

’

An alternative dispersion approach to the calculation of g-2 is to
study the electromagnetic vertex as a function of the momentum transfer
introduced by the electromagnetic current, with both fermion lines on their

mass shells. This is the form of dispersion relation familiar in the elec-

1ls8

tromagnetic form factor studies,™ " viz.,
~  d¢2InF (o3)
() =% [ ——= : (32)
o= - q2 - le
4m?®

In this approach the absorptive amplitude is obtained by multiplying the
current to produce a lepton pair by the Bhabha scattering amplitude in the
SSl and 3Dl states. Once again a perturbation approach reproduces the
Schwinger correction and the positive sign of the moment correction corres-
ponds to the fact that the electron and positron attract one another via
their coulomb interaction in the dominant S-state interaction. We have
preferred the sidewise dispersion relations of the previous section as
being of more direct intuitive appeal, although similar results to order
of and O can be obtained from Eq. (32) by including encmalous moment con-
tributions to the e-e+ rescattering;19 no exact low energy theorem can be
cited, however.

When we turn to a study of the muon g-2 value, however, our previous
considerations fail. This is because we have relied heavily on the assump-
tion that thevlow energy behavior near the Compton scattering threshold
plays the dominant role. For muons, however, there exist states such as

the one muon plus e-e+ palr states shown in Fig.6ba which has a very
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low-1lying threshold at
2 . | k e
(m  + Eme) m 1L + ; 1.02 m

and must not be ignored. This absorptive amplitude arises from the indi-
cated cut'through the vacuum polarization bubble in Fig. 6b. Whereas this
vacuum polarization contribution is totally negligible for the electron
g-2 value® and has a threshold of 3 n, above and beyond our low-energy
region, it plays an important role in the muon‘problem with its low-lying
threshold.

In order to study the muon g-2 value we turn then to Eq. (32) and
attempt to calculate the difference between the muon and electron moments
due to the vacuum polarization contributions. Our éim here is to give a
very simple physical basis for understanding this difference in sign and
approximate magnitude. As computed with perturbation theoryal through

order OF it equals

(5%§> - (Eé§> = 0.75 &&/x® - (- 0.328 &®/x®) = 1.08 oF/n2 (33)

We achieve this by observing simply that a vacuum polarization con-
tribution necessarily enhances the photon propagator and therefore in-
creases the e_e+ attraction since the spectral function ﬁ(ce) is

always greater or equal to gzero in®?

1 42 = - 1
Di(q )uv gy = €

For scattering g = - Fﬂz and, since =n(c®) >0
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Di(-|q]?) =|—— + n(o7)ag” f, 1
F , 2 2 2— 2
|a] o o+ |q la|

Physically this inequality records the fact that the vacuum polarization
cloud shields the bare electron or muon charge and thus a probe of the
electron or muon charge to within the range h/Emc ~2X 10 tem of the
vacuum polarization cloud "sees" a larger charge and hence a stronger
attraction. In the Lamb shift, for example, vacuum pclarization contri-
butes® an added binding of = - 27 Me, lowering the 23% relative to the
EP% level since in the latter state the electron and proton remain out-
side of their vacuum polarization clouds due to the centrifugal barrier.
The difference(33)hlthe'vacuum polarization contributions to the
muon and electron'g-e values ariges solely from the difference in their
scales of energy and momentum transfers, and hence of impact parameters
for the rescattering of the u+p— or e+e" pairs in Fig. 7. The energy
gscale is determined by the rest masses of the particles,; i.e., by the
threshold 4Ym® in Eq. (32). The momentum transfer in the scattering,

t = q2, is related to the total energy s = o according to

t = - E—:Eﬁgf (1 - x) (34)

where x 1is the cosine of the center-of-mass scattering angle which is
integrated over in the scattering. The angular momentum and parity selec-
tion rules assure us that only the 38l and 3Dl scattering channels contri-
bute (i.e., J =1 and C = -1 corresponding to a photon) and so the effective

2

t values are just the energies s =m® for x = 0 in Eq. (34%). The u+p_
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scattering is thus at small impact parameters, = l/m and the correspond-

v
ing vacuum polarization contribution is large. In fact, we may simply
extrapolate the Serber-Uehliné“term for the vacuum polarization contribu-

tion for large t=t = mi >> mi and enhance the muon g-2 calculation by

Just that amount

i.e.,
(), - () = £ |20 )
i e mi

Up to terms of order unity relative to 4 mi/mi , Bg. (35), just accounts
for the more accurately computed difference, Eq. (33). The sign of the
difference is now clearly seen to arise from the increased attraction

between the u+u_ pair as they scatter with J = 1 at small impact parameters,

~ l/m“ , within the vacuum polarization cloud.

V. NUCLEON g-2 VALUE

As a final application of the ideas in this paper and as independent
evidence supporting the point of view exploited here - namely that of
daminance of the threshold contributions to the absorptive amplitude - we
turn to the nucleon ancmalous moment calculation as first studied by
Bincer’ as a function of the incident fermion mass W5 . As illustrated
in Fig. 8, the absorptive amplitude at threshold W= = (M + p)® corres-
ponds now to the pion emission amplitude multiplied by photopion

production.

- 24 -



The exact threshold behavior of the photopion amplitude — i.e., S-wave
production of charged pions — is given, for u/M —+0 for the external
pion line, by the renormalized perturbation term according to the
Kroll-Ruderman theorem® which replaces the Thomson limit for this ap-
plication. TIts relativistic dispersion theoretic form, i.e.,; the
complete pole term, gives rise to both P- and S-wave amplitudes with
J = 1/2 that are relevant’ in our applications.

Keeping just the leading term at threshold, W* - M® —0, letting
p/M — 0, and repeating the calculations of Section III with the renor-
malized Born amplitude for photo-pion production replacing (22) and

with

eu(k)y u(p) %gﬁ'(k)igzu(m (36)

in (21) we find in analogy with (23) [the 1/W® comes from phase space

as found in (2)]

]

Isz (W) = - Imfli (W2) = ImFZ (W2)

5 5 (37)
~ L (g2/hn) W=-m7) , as W2 —>M?
2 W2
The superscripts P, N, and V denote proton, neutron, and isovector
respectively and the T in (36) are the isotopic Pauli matrices:
gg/hﬁ ~ 15 is the pion-nucleon coupling strength. The resulting
ancmalous moments are
A2M=
= ___-1;_ 2 dw _ _l_- 2 2
By = My 2(g/lm)_/ ————E—En(g/lm)%nk
2 W :
M
(38)
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The contribution to the isoscalar absorptive amplitude vanishes as
2
(W= - M?) at threshold. If we retain the entire Born amplitude for

arbitrary W2 Dbut again approximating p,/M —+0 for simplicity we find

M:i(wz) _ % (ﬁf)[(SwZ-Mg) M2 M2 1og wz/Mgl o (Wz-M2)2 (%f)

L emt w2 - M2 I L

for W2 —N® (39)

e}

&1

Tl (w2) = & ( 2) (W2-3M%) M2 M2 1o0g W/M2
2 g an w2 - M7

Although it has an extra factor of (W2-M%) at threshold, the absorptive
amplitude for the isoscalar mament grows rapidly until for WZ/MZ >> 1 s

T (W2) = - 3 TuF (V%)

2

It is here that we see explicitly the failure of the perturbation calcula-
tions of the anomalous moments which have long been known to predict much
too large an isoscalar par't.lé3 Evidently if we insert (39) into the dis-

persion integral

co

- :
aplsS = S0y = 2 f S 'S (W) (%0)
2 n 5 WM 2
M

and perform the integral over the full range of energies M2 < w2 <o we
are just reproducing relativistic perturbation theory with the familiar

unsuccessful result

A = 1%; (g%/lx) = -)l; Al 5 pm o
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The same failure has been noted in the dispersion calculations first per-
formed with the photon mass as the variable and with the nucleons on the
mass shell. There the large unwelcome isoscalar contribution originated
fram the nucleon current of Fig. 9a and was discarded due to its high
threshold, qf = hy2 , compared with the purely isovector contribution
with threshold qﬁ = 4u2 arising from the pion current in Fig. 9b.

If we insert (39) in (40) but cut off the absorptive integral at the
low threshold A% = 2.3 - i.e. M <W<1.5M we find the role of the un-
wanted isoscalar term is greatly suppressed and that

Bhp = 27

i
l_.l
nl )
r——
&
o
o=
1
Iw
| WS———
1]
‘_J
o
X
o
-1
N
T
J

(k1)

if

1 g2 20y A2 _ N
puy = -2 £ 2-——-————]~-l.7~0.9(Ap )

As in the electron g-2 calculation we see that the low energy region plays
a major role. Inserting just the pole terms we reproduce the measured mo-
ments with scme success. We conclude with this independent evidence in

support of the point of view exploited in the calculations throughout this

paper.
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APPENDIX

Here we shall demonstrate the non-relativistic reduction of the cal-
culation of the Schwinger correction, G/Zn s and show that all the enters
the final result is the Thomson scattering amplitude multiplying the Pauli

current at the vertex. We begin with Eq. (21) which we write in the form

—_ +
T (2) = - (Wg‘mg)z [ - [io, )1 u, s[5k, 5")7%ulm,50)]
s,s%,8" -1

(A1)
[ﬁ(p,S’) (;TW;%;;_)E io’“ /E/T) u(P:S)]

where the factor (W2—m2)/W2 arises fram considerations of relativistic
kinematics. To obtain the reduction of Eq. (Al) as w =W - m —0 , We
may consider each texrm in the brackets separately.

The third term in Eg. (Al) is the projection operator. Since

ﬁ(p)oojﬂku(p) = 0 , we need consider only the space component as o —0 ,

2
- A *
Up,st) [—E—= 1%, ) ulp,s) =~ == Xri(gx p)F X (a2)
2(w2 2) 80)2 S v o S
where p = Tﬁ:' The second term in Eq. (Al) is the familiar Dirac current

and has the non-relativistic reduction valid to order v/c, as in Egs. (8)

and. (9)
(i, 5")7°u(p, s) = L,
- i « (2 + k) . (43)
s enet) = ol (20 () &) X
i
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in terms of the Schrodinger and Paull current. The first bracket in Eq. (A1)

is given by the low-energy theorem (26) as ® —0. The time components,

ﬁ(p)TkOu(k) may be obtained from ﬁ(p)Tkiu(k) by invoking current conser-

vation as in Eq. (19)
2 |
zJ QTyy = Wb o= lq‘ = 947k
=1

Putting all this together we cobtain from Eq. (Al) the reduction as

w —0,
+1 -
22 .2 T p+k (p ~ k)
g2y - W WS-m * * P + =
ImF (W<) i 2 L f dx STkian xs,,( i = X 0). o
S,S',S -1 - =
[ (A4)
q. % % 1(0 X p)
1 - K
+ m XSTki xsn xsn xs,:l X::' 8w2 xs

Using the full low-energy theorem (26) and the fact that

1
dx g, = 0
Ja o,
-1
it is seen that the term

w

A g
i ¥*
fdx X T, X,
=1

corresponding to the contribution from intermediate longitudinal photonsg
gives no contribution. The Schrodinger current also gives no contribution

in this limit which can be seen by substituting the Thomson limit

+3
il
i
E(qv
o

ki
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in Eq. (AL) and teking the trace. What remains is just the Thomson limit

of Compton scattering in conjunction with the Pauli current,

e Z22 T Fa (2o,
s -1 /

,

(45)
* (G X P) W2m®

X, ek

8P w2

I
nojQ

in agreement with our previous result, Eg. 10.
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FIGURE CAPTIONS

Feynman graphs contributing to the first-order radiative corrections of
the electron current.

Cut Feynman graphs contributing to the absorptive amplitude.
Three-body intermediate state contributing to the absorptive amplitude
to order OF.

Pole term contribution to the Compton amplitude.

Analytic properties of the invariant functions Fi(wz).

Vacuum polarization contribution to the muon current.

Cut vacuum polarization Feynman graph.

Pion-nucleon intermediate state contribution to the absorptive part of
the nucleon current.

Perturbation contributions to the nucleon current.
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