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PIN THE CONVERGENCE OF NUMERICAL SOLUTIONS 

TO ORDINARY DIFFERENTIAL EQUATIONS' 

By J. C. Butcher 

We will be concerned with the solution to the initial value problem 

$$ = gy, , YJxo) = L 7 \ 

where y is a point in the (real) Euclidean M-space RM and ;(y,) is a 4--. 

mapping of s onto itself satisfying the Lipschitz condition 

(2) 

for any pair of points y,z f s. L is a constant and iv/ for vC+s ~.. 
,- ..,I -. 

'denotes a norm. Although the particular norm used is irrelevant for most 

purposes, a number of details in the results of this paper take a simpler frirm 

if' the norm used is defined by 

(3) \vJ =max 
I 

Y 

3, v2, . . . , vM denoting the components of v. Accordingly, we adopt (3) 

as the definition of v . I I .,-- 

It willbe necessary to consider sets of points v, v-2, . . . . v-4cqa 

and we shall regard such a set as corresponding to the point V = zl@vT@.. -\ 

. . . @~,y~c l$m - The norm of JJJ C k will be defined in a similar way to 
I 

(3) and a similar notation V I I will be used. Clearly 
,--. 
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We will have to make use of mappings from h to %N such as 

,Y, + w <.A= ww5@.&@ . . . @iN where 

N --I 
(5) w = 4 z “ij ~j 9 i = 1, 2, . . . , N ? 

j=1 

and a 
11' 

a 
12' *** , a Nil 

are elements of a matrix A. For this mapping 

we shall use the notation 

(6) $ = [Al ,v, 

so that is a linear operator on R MN to G. /A] will denote the 

norm mfx Cl 1 
a ij so that 

j=l 

(7) 

Another type of mapping that will arise is that given by ,J +W+ where 

(8) W. -1 = ,f,(q) , i = 1, 2, . . . , N 

and ,f,, is the function occurring in the statement of the initial value 

problem (1). We shall write 

(9) E = $1) 

to denote this mapping and we see that ,E satisfies a Lipschitz condition 

with the same constant L as for s. 

Numerical methods for the solution of the initial value problem fall 

mainly into two categories: multi-step methods and Runge-Kutta methods. 

For these and for some closely related methods, the convergence of the 

i 
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numerical solution to the exact solution as the step size tends to zero, has 

been studied by a number of authors [l, 2, 31. It is the aim of the present 

paper to make a similar study for a fairly general class of method which in- 

cludes both main classes of method as special cases. Also, it is applicable 

to methods which combine features common to both multi-step and Runge-Kutta 

methods such as the methods of Urabe [4], Gragg and Stetter [5] and Gear[6]. 

The method consists of performing a sequence of steps numbered 1, 2, 3, . . . 

such that at the start of step n, N points in 9, are given. We denote 

these by y("-'), ~(~-l) ,_. 1 and write 

"~-2 ('F‘ ~~-l) . At the end of the step y(n) = yen' ~ 
IL--. L.4 

(n (lo) ..Yj. 
N 

.> = 
1 

a (n-1 
ij Kj 

j=l 

which can be written as 

t-h b ij g(Yj (q + c > _I 

y(n) = [A] Y(n-l) + h[Bl F(Y(n)) + h[Cl F(Y("-I)) ,v._, ".. . . . <i 

where the matrices A,B,C with elements a.., b.., c..(i,j = 1, 2, . . . . N) 

characterize the method. We interpret y(ni'),,*Gin-l't . . . ,"yg-') as c-1 1 

approximations to y(x) for a set of N values of x 'i-4 and y("), ~(~),...yf) .c 1 L. 2 

as approximations when the values of x are each increased by h (the step 

size). For simplicity with no loss of generality we shall assume h > G 

and that the method is used to find y(x) only when x>x. .-.. 0 

The method defined by A,B,C will be denoted by (A,B,C) and in the par- 

titular case when C is the zero matrix by (A,B). There is no loss of gener- 

ality in considering only methods of this last form since (A,B,C) is equivalent 
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to (x,g) where 

A 0 
(12) A= 

10 1 
B- C 

03) g= 
0 0 1 

and 0,I are the N X N zero matrix and unit matrix respectively. 

Before proceeding, it must be remarked that (11) is of the form 

(l-4) yen) = G(y(n)) ,I. ,' 

,w and in general does not define explicitly, However, if 

y = y,@,y2@? . ..@yN and ,,z, = +zl <~~,@...~~, are any two points in 

Rm then 

(15) I .G(:) -,G(z)j =hl[B] lx(;) - $($/I :+I- 13 -81 
so that if 

(16) h<l/(LIBI) 
then y. + _G(y.) is a contraction mapping. Thus if h is sufficiently small, 

,b) is defined uniquely by (11) and may be evaluated iteratively. For a iw 
,(d computer realization of the procedure for evaluating __, , it is more con- 

venient to use an iteration process based on the equation 

(17) y(n) = F(y(n)) c. , a 
-4- 
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(18) 

With the norm defined by (3), it is trivial to prove that ,y dLF(Y) is a 

contraction mapping if the same is true for ,Y I$(.:), so that (16) is suf- 

ficient for either type of procedure. 

To illustrate the variety of methods that can be written in the form 

(A,@ we note that the multi-step method given by 

where y.- denotes the numerical solution at the point x0 + nh, is equiva- 
L-J 11 

lent to (A,B) with N = k f 1 and 

(20) 

(21) 

L 0 

0 

0 

r B= 0 
. 
. 
. 
0 

1 'k 

1 

0 
. 
. 

0 . . . 0 1 
1 . . . 0 I . 
. 
. 

0 

'k 

0 

0 
. 
. 
. 
0 

r,- 

0 . . . 0 

0 . . . 0 
. 
. 
. 

0 . . . 0 

T- -r 
K-l-k-2 “’ -0. i 

. 
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On the other hand an N-l 

(A,B) with 

(22) A= 

(23) 

stage Runge-Kutta process takes the form 

B = 1 b21 0 0 . . . 0 
ib31b 0 . ..O 

. .32 . . 
!. . . . 
I 
i- l - 

. 

'b 
t N1 bN2 bN3 '** 

0 

In the example of the classical fourth order process we have 

(24) B = 

We shall not be concerned in this paper with methods of obtaining the 

starting vector Y (0) 
L' but we shall suppose this is done in such a way that 

in the limits as h +O, y(O) \\ 1 +v for i = 1, 2, . . . . N. ,We now define con- 2. ' 
vergence as follows: 

1. (Definition). (A$) is said to be convergent if for any initial 

value problem (1) satisfying (2), the following statement can be made: If 

(0) is used to compute ,(v) with step size h = (x - x0)/V where yo 
L.l ,. 

is given in such a way that I y(O) -&Jorio **- O:j+O as v -+m then 

- $x) @$x) 0 . . . oWy(x) 1 -+ 0 as* v+m. 
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Just as for linear multi-step processes it is convenient to introduce 

concepts of consistency and stability for (A,B). However, it is convenient 

first of all to consider A by itself. 

2. (Definition). A is consistent if A%= s, where E is the vector 

in s with every component equal to unity. 

3. (Definition). A is stable* if there is a constant Q! such that 

for any positive integer n 

(25) I 1 An <a. = 

The following results are consequences of these definitions. 

4. If all eigenvalues of A have magnitude less than 1 except for a 

simple eigenvalue at 1, A is stable. 

5. If A is stable, no eigenvalue has magnitude greater than 1. 

6. If A has minimal polynominal P(z), then A is stable if and only 

if no zero of P(z) exceeds 1 in magnitude and all roots of magnitude 1 are 

simple. 

7. A is stable if and only if there is a non-singular matrix T such 

that 1 T-l ATI 5 1. 

8. If A is consistent and has only non-negative elements, then A is 

stable. 

9. x given by (12) is stable if and only if A is stable. 

10. x given by (12) is consistent if and only if A is consistent. 

11. A given by (20) is stable if and only if no zero of 

(26) Q(Z) = zk k-1 
-y -s zk-2 - . . . - q k 

exceeds 1 in magnitude and all zeros of magnitude 1 are simple. 
* 

In the theory of linear operators, the term Mpower-bounded" is used for 
this property. 
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12. A given by (x7) is consistent if and only if Q(z) given by (26) 

has a zero equal to 1. 

13. A given by (22) is stable. 

14. A given by (22) is consistent. 

PROOFS: 10, 12 and 14 are immediate consequences of the definition of con- 

sistency. 4, 5 and 11 are trivial consequences of 6. 13 is an example of 

8 which follows from 7 with T = I. 9 is immediately seen from the obvious 

formula 

(27) 
-n A = 

A" 0 
n-1 A 0 

so that 1 3inl = rmx (IAni , lAn-'I) . 

It remains to prove 6 and 7. Let the Jordan canonical form of A be 

01 I, + S,J,, @(h,I, + e2J2) 0 .*. G(~,I, + 6,J,) where the orders of 

the various blocks are rlJ r2, . . . , rs such that rL + r2 + . . . + rs = N. 

Ii (i = 1, 2, . . . , s) is the ri X ri unit matrix and Ji is the ri X ri 

matrix with every element zero except those immediately below the main diag- 

onal and these are unity. The A, correspond to the eigenvalues of A and 

the Ei are arbitrary non-zero numbers. If for any i, ri = 1, Ji consists 

of the 1 X 1 zero matrix and the term GiJi is omitted in such a case. Con- 

sider the three statements 

sl: Ai I I <l for i = 1, 2, . . . . s = and for all i such that hi = 1, ri = 1. I I 
s2: T exists such that IT-'ATI =< 1. 

s : A is stable. 
3 

From the relationship between the Jordan canonical form and the minimal 

equation we see that 6 asserts the equivalence of S, and S . Also 7 asserts 
3 
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the equivalence of S2 and S . We will thus have proved 6 and 7 when we 
3 

have shown that S1 => S,, S2 => S3, and S => S1. 3 
To deduce S2 from S1 

we choose T so that T-lAT is the Jordan canonical form with si = 1 - Ai I I 

for every i for which ri > 1. S3 follows from S2 since 

IAn\ = lT(T-LAT)n T-l/ 2 (T('IT-'1 . Finally we deduce S1 from S3 by noting 

that I(hiIi + 8iJi)np 2 / hiln for all i and thatl(hiIi + SiJi)"lz nlhiln-'i6il 

whenever r i > 1. 

We now state two necessary conditions for convergence. 

15. If (A,B) is convergent, A is stable. 

16. If (A,B) is convergent, A is consistent. 

PROOFS: To prove 15 we suppose that (A,B) is convergent but A is not stable 

and we use (A,B) for the solution of the initial value problem defined by 

M = 1, ti = 0, 7' = 0, x = 0, x = 1. Let an = Jn"( and let 'v,Es be such 0 

that Anzn I I 
=Ol n' zn I I 

= 1. Furthermore, let S, = max (a,, a2, . . . . ",) and 

define :n = 8:' ln so that, since A is not stable, zn -+O. If we choose I I 
Y(O) as W niv' write h = l/V and perform the solution to the initial value 

problem using (A,B),we find 5 b) = Avw 
WV’ 

Since the method is convergent and 

the true solution is ?(x) = 0, we have A'& -+ 0 as I I 
v -300. But 

[ A?v I = Tk which equals 1 for an infinite set of values of V. 

TO prove 16, we assume (A,B) is convergent and apply it to the solution 

of the initial value problem defined by M = 1, fl = 0, # = 1, x0 = 0, x = 1. 

We choose Y(O) = z independently of V, so that convergence implies that \- 

4 0 

so that As&=.s. w 
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Further definitions and theorems now follow. 

1-7. (Definition). (A,B) is semi-consistent if A is consistent and if 

there is a 2 qJ and a scalar c such that 

(28) A;,+ Bz;= ; + es . 

18. (Definition). (A$) is stable if A is stable. 

19. If (A,B) is stable and semi-consistent, the value of c in (28) 

is unique. 

PROOF: If (28) were also satisfied with ,t, c replaced 

c # c', we would have A(l,.- t,') = (t,- -tt ) + (c - c')s 

a member of the null space of (A - I)2 but not of A - 

by ,$, c* where 

so that k,- t,' is 

I. Hence, the mini- 

mal equation of A contains a repeated unit root contrary to 6. 

It may be remarked that 2 in (28) is not unique but may be altered 

by the addition of any null vector (for example 2) of A - I. 

20. If A is consistent and the characteristic equation of A has only 

a simple root at 1, then (A,B) is semi-consistent. 

PROOF: Let V be the range space of A-I so that V is of dimension N - 1 

and ,z, V. 4 
Hence, an arbitrary vector of R can be written as a linear com- 

N 
bination of ,s/ with a member of V. Write c as the component of 2 in 

Bk and the result follows. 

21. (Definition). (A,B) is consistent if it is semi-consistent and the 

value of c in (28) is 1. 

22. If (A,B) is semi-consistent with c / 0, (A, ; B) is consistent. 

The proof of this result is immediate. Before proceeding further we return 

to the examples (A,B) given by (12), (13), by (20), (21) and by (22), (23). 
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23. (A,B,C) is semi-consistent (that is, (x,B) given by (12), (13) is 

semi-consistent) if and only if A is consistent and Lc s and c exist 

such that 

(29) Ak+(B+C)s=;+ ck. 

24. If A given by (20) satisfies the conditions of 11 and 12 so that 

A is stable and consistent, and if B is given by (21), then (A,B) is semi- 

consistent with c = (r. + rl + . . . + rk)/(qL f 2qz f . . . + kqk). 

25. If A is given by (22) and B by (23), then (A,B) is stable and 

semi-consistent with c = bL + b8 + . . . + b,. 

PROOFS: 23 follows by noting that (29) is equivalent to 

(30) xi + BS= E+ cg, 

where E= t,@(t/ CSJ, i=$@,$. 24 can be verified immediately with & 

in (28) such that its component number i is - c(k + 2 - i). 25 is an 

example of 20. 

We now come to the two main theorems. 

26. If (A,B) is convengent, it is stable and consistent. 

PROOF: In view of 15 and 16 we may assume A is stable and consistent if 

(A,B) is convergent. We need only prove that there is a iPN such that 

(31) At*,+ BE = k+ 5 . 

As for the proofs of 15 and 16 we prove this result by considering a special 

example. We take M = 1, f1 = 1, $ = 0, x = 0, x = 1 and Y(O) = 0 
0 

independently of V. With h = l/V we find 

(32) y(') = $ (A'- + Av-2 + . . . + I) Bs 
L-w d 
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and for convergence, this must tend to & as V + m. Since A is stable, 

the range space and the null space of A - I are disjoint so that we may write 

Bs,- 2 = (I - A)k+ z where z is in the null space of A - I. Substitute 

into (32) and we find 

(33) 

so that 

y(v) 
'd - s = $ (I - Av)$+z 

(34) (VJ <p -S +L = 'W b+ 1 v (1 + IA']) -10 

as v +m. Hence 2 = 0 so that (31) follows. 

27. If (A,B) is stable and consistent, it is convergent. 

PROOF: Let 2 in (31) have components tl, t2, . . . . tN* We may assume by 

the remark following 19 that none of t,, t,, . . . , tN is negative. We write 

(35) 
?(d 
*. i = -z (X0 + hb + ti> > 

for i = 1, 2, . . . . N; n = 0, 1, . . . where ,2(x) denotes the true solution 

to the initial value problem (1). Also we write 2 (4 =lJy+p@ . . . 

* l mp 
so that, by the continuity of z(x), convergence will be, proved 

when we have shown that as V --f 03 with h = (x - x0)/V and 1 Y& 
(0) - ,(')I +O ~ 

then I ,(') - H(v)l+O. It will be assumed that h is no more than some k 

fixed ho satisfying (16). 

' be the truncation error in a 

single step defined by 

(36) 
,b) ] &-') - h[B] .F(H(n) 

Lv *w vcr 
= zcn' - [A 

- 12 - 
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Our first task is So estimate E b-4. We have 

(37) ykcxo + h(n + t,)) - y"(x, + h(n - 1 + ti)) = h(l + ti - tj)fi($(xo + h(n + ek 

by the mean value theorem, where ek lies between t 
J-L 

and t i' Hence we 

have 

(38) ..?("o + h(n + ti)) - y(xo -I- h(n - 1 + tj)) - h(1 + ti - tj)&(c(x 
'W 0 + A)$ =z7 

where 

(39) I I u <h2Lm l-t-ti-t. max (ti, 'uw - I J I 11 - tjp 

and m is the maximum of the (continuous) function 

x E [xg, x + ho max (t , t2, . . . , t,).]. Multiplying (38) by a.. and summing 1 1J 
over j we find 

N 

I 
,(n' - .wi a ij ,2 

j=l 

(40) 

Similarly we have 

(41) 

so that 

j=l 

. N 

ll: 1 
a T-/~) ij +.i - 3 

b-1) - h(1 + ti - tj)$$xo + d)) 
j=l 

h2h t 1 [aijl -11 + ti - tjl max (ti, 11 - tjl )). 

I ACHE”‘) - $x(X, + nh)) 1 f htjLm 

(42) b ij ,fk!j ($ - h &(x0 + *))I ,< h2Lm ~ Ibijltj . 

j=l 
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Combining (40) and (42) we find 

(43) I I .(n) < h2& 4i = i 

where A!. 
1 

is given by 

(44) ti = t (laiji 'Il+ ti - tjl IDaX (tit 1' - tj I) + Ibijl tj] ' 

j=l 

We write for i for the vector in F$ whose typical component is 4.. 

For the accumulated error we use the symbol ,Cn) = ,Cnb +)@ .f . @,cn) 

b-d = Hb) _ Y(n) ~ '-'de al~writ~ 
hN 

and define this quantity by -2 

F$s("') - ;(z(")) = x(n) =z!") @sL') @..Y@z(i), so that [~(~)l 2 LI$")I. 

Thus we may write 

(45) ,b) 
x0- 

_ [A] ,(-) - h[B] wcn) = @) 
'k.' L-d 

so that 

J”) = [An] z(O) b-2 + h([B] x(") + Cm1 wcn-l) + . . . + [A~"B 1 ;(I)) 

(46) , 
+ ,b) * 

L.4 + [A+")+ . . . + [An-l]$(l) 

We now choose constants QI, p, 7 such that An 1 I 2 Q, IAs1 $B, iAn 57 

for n = 0, 1, 2 . . . and use (43) with (46) to find 

\&"'I 2~: I&'"'I + hi3(IW(n)/ f la'"-"1 + . . . + I""'])+ nh21.m7 

(47) * 2 a l~'"'l + hL+$/ + [dn-')I + . . . + [&)I)+ nh2h7 . 

Hence, it follows that Iw I &d < E(~), where = E(') = a 1 Z(')I and 

(48) ecn) = E(O) + hLB (E(~) + e(n-') + . . . + e(l)) + nh'lmy, n 2 1. 

, 
- 14 - 



,b) _ ,b-‘) = hLpE(n) +h21m7 , n>l, = 

Thus 

(49) 

SO that 

(9 + hm7/@) = (1 - bJN1 (E h-4 + hmy/B) 

(50) 

If we suppose that 

hoL/3 < 1, we have 

= (1 - hL8)-n (e(O) + hm7/@) . 

h <ho where ho, besides satisfying (16) also satisfies = 

(51) 

so that 

(52) I 
p 
.r* 

(1 - hLB)-n 

, writing n=V in (50) and using (51) we find 

< 3) + cx - xo)m7 exp 
3: 

VP 

and the right hand side tends to zero as v-+m. 

Stanford Linear Accelerator Center 
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