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ON THE CONVERGENCE OF NUMERICAL SOLUTIONS
TO ORDINARY DIFFERENTIAL EQUATIONS

By J. C. Butcher

We will be concerned with the solution to the initial value problem

(1) E-rly), ylx) =1,

handiEe N ~ ~~

where y is a point in the (real) Euclidean M-space R, and ;(y) is a

mapping of RM onto itself satisfying the Lipschitz condition

(2) 1w - 2@ <y -z

PV o

for any pair of points y,z E‘RM L is a constant and {vl for VETRM
denotes a norm. Although the particular norm used is irrelevant for most
purposes, a number of details in the results of this paper take a simpler form

if the norm used is defined by
g o] 2] [ 1)

vl, v2, cee vM denoting the components of v. Accordingly, we adopt (3)
as the definition of LXJ'
Tt will be necessary to consider sets of points AT SEIRELY XNé?RM
and we shall regard such a set as corresponding to the point V = v CETV @ .

"'GDXNE~RMN" The norm of RMN will ke defined in a similar way to

Ees

* 1
(3) and a similar notation {V; will be used. Clearly

‘vl\Jl PIE |\I]}

3 ,
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We will have to make use of mappings from RMN to RMN such as
—”&:1’,1@3{2@@&1\1 where

L

a8
(5) ‘Y’l = Z aij \Y’J 2 l = l) 2) A | N )
J=1
d a oo le ts of i . i i
an 1’ ala, s aNN are elements of a matrix A. For this mapping

we shall use the notation

50 that [A is a linear operator on R MN to RMN' |AJ will denote the
norm max }: [ so that

J=1
(7) [[A]\Yl < lAI-Lyl.

Another type of mapping that will arise is that given by 3@'*3& where

(8) ¥ = ‘2(31) =1, 2, ... , N

and f 1s the function occurring in the statement of the initial value

problem (1). We shall write

(9) W o=F()

to denote this mapping and we see that ¥ satisfies a Lipschitz condition
with the same constant L as for £.

Numerical methods for the solution of the initial value problem fall
mainly into two categories: multi-step methods and Runge-Kutta methods.

For these and for some closely related methods, the convergence of the
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numerical solution to the exact solution as the step size tends to zero, has
been studied by a number of authors [1, 2, 3]. It is the aim of the present
paper to make a similar study for a fairly general class of method which in-
cludes both main classes of method as special cases. Also, it is applicable
to methods which combine features common to both multi-step and Runge-Kutta
methods such as the methods of Urabe [4], Gragg and Stetter [5] and Gear[6].
The method consists of performing a sequence of steps numbered 1, 2, 3,

such that at the start of step n, N points in RM are given. We denote

- n-1 n- } - 1) - -1) ..
these by'.yfn l),,yé >, cee {yé 1) and write »X(n ﬂ==£é? quyén l)'+%...
& yNn_l). At the end of the step Y(n) = yin)(f}yén) & ...Qf}yén) is given by

N N )
(n) Z (n-1) z (n) (n-1)
\ = A + h b.. f(y. +c,. fly: '
J=1 J=1

which can be written as

(11) g(n) = [a] v}{ﬁ(n"l) + hB] ;_ﬁ(g(n)) + hic] ‘lf(Y(n_l))

where the matrices A,B,C with elements 2y 37 bij’ cij(i,j =1,2, ..., N)
characterize the method. We interpret yfn—l>, yén-l), e yén_l) as
approximations to ’y(x) for a set of N values of x and ‘yin),ry§n>,...y§n)

as approximations when the values of x are each increased by h (the step

size). For simplicity with no loss of generality we shall assume h > O
and that the method is used to find _y(x) only when x > X,

The method defined by A,B,C will be denoted by (A,B,C) and in the par-
ticular case when C 1s the zero matrix by (A,B). There is no loss of gener-

ality in considering only methods of this last form since (A,B,C) is equivalent



to (A,B) where

A 0
(12) A =[ ]:
I 0
[ c
(13) B =[ ]
0 0

and 0,I are the N X N zero matrix and unit matrix respectively.

Before proceeding, it must be remarked that (ll) is of the form

(lh) ‘Y(n) _ G(Y(n))
(n)

and in general does not define Y explicitly, However, if

Y=y @yz @®...@yy end 2= 2, (—szz @ ... @EN are any two points in

RMN then

15 e -e@| =alml 5@ - x@| e lp]-|x -z
so that if
(16) h<l/(LlB’)

then ¥‘—>g(¥) is a contraction mapping. Thus if h is sufficiently small,
Y(n> is defined unigquely by (11) and may be evaluated iteratively. For a

o

computer realization of the procedure for evaluating Y' ', it is more con-

venient to use an iteration process based on the egquation

(17) z(n) = g?(g.(n))



where ;(';(X) = %l(:g) ®§2<~¥> @ ... ®.§N(v¥> is related to

6(¥) =g, (N Og,(ND-. Dgy(y) by

g (1) =g, @y, @ - Oy ,
g,V =& (N®y,®... @),
(28) W EMWeL0®.- Oy
g (D) =gule, (N @e,(N®... 08, (V)@Dy)

With the norm defined by (3), it is trivial to prove that R4 —>§(z) is a
contraction mapping if the same is true for Y "’SQE)’ so that (16) is suf-
ficient for either type of procedure.

To illustrate the variety of methods that can be written in the form

(A,B) we note that the multi-step method given by

(19) wyn - ql En..l e qk gn-k + h(roa(yn) + rl»f\.(ynq_) o rkg(yn-k))

where Y denotes the numerical sclution at the point X + nh, is equiva-

w

lent to (A,B) with N =%k + 1 and

| 0
(20) A={0 0 1 e 0
0 © 1
LO Q. Y, %
- i}
0 0 0
(21) B=1/0 0 O ... 0

o
o
O
B O
P



On the other hand an N-1 stage Runge-Kutta process takes the form

(A,B) with

o co 1]
(22) A=10 )

0 .1

0 0 © . 1]

o o . 0]
(23) B=|b, O

lb b _©

;.31 .32 .

| . .

R

b b b ..

L N1 "Nz "Nz OA

In the example of the classical fourth order process we have

7

0 0 0O 0 O
0 0 0 0
(2k) B =/o 3 0o o of-:
0O 0 1 0 O
13301 o

We shall not be concerned in this paper with methods of obtaining the

(o)

starting vector X but we shall suppose this is done in such a way that

in the limits as h — O, y(o)

N -7 for i=1, 2, ..., N. We now define con-

vergence as follows:

1. (Definition). (A,B) is said to be convergent if for any initial
value problem (1) satisfying (2), the following statement can be made: If
(A,B) is used to compute \X(V) with step size h = (x - xo)/v where f¥(o)
is given in such a way that {Xﬁo> —~3(311GD... C)Ql -0 as V -»® then

[JY}V) - y(x) @g(X)®...®3(x)| -0 as Voow .
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Just as for linear multi-step processes it 1s convenient to introduce
concepts of consistency and stability for (A,B). However, it is convenient
first of all to consider A by itself.

2. (Definition). A is consistent if As = s where s is the vector
in RN with every component equal to unity.

3. (Definition). A is stable® if there is a constant « such that

for any positive integer n

(25) ISETE

The following results are consequences of these definitions.

4. If all eigenvalues of A have magnitude less than 1 except for a
simpie eigenvalue at 1, A 1is stable.

5. If A 1is stable, no eigenvalue has magnitude greater than 1.

6. If A has minimal polynominal P(z), then A is stable if and only
if no zero of P(z) exceeds 1 in magnitude and all roots of magnitude 1 are
simple.

7. A is stable if and only if there is a non-singular matrix T such
that [T AT < 1-

8. If A is consistent and has only non-negative elements, then A is
stable.

9. A given by (12) is stable if and only if A 1is stable.

10. A given by (12) is consistent if and only if A 1is consistent.

11. A given by (20) is stable if and only if no zero of

(26) Q(z) = X - a 25 4, A2 - %

exceeds 1 in magnitude and all zeros of magnitude 1 are simple.

¥
In the theory of linear operators, the term "power-bounded" is used for
this property.
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12. A given by (20) is consistent if and only if Q(z) given by (26)
has a zero equal to 1.

13. A given by (22) is stable.

ik, A given by (22) is consistent.
PROOFS: 10, 12 and 14 are immediate consequences of the definition of con-
sistency. 4, 5 and 11 are trivial conseguences of 6. 13 is an example of

8 which follows from 7 with T = I. 9 is imnmediately seen from the obvious

formula
I P
(27) Ah =
At o

so that | A% = mex (IAnl , |An"l|)
It remains to prove 6 and 7. Let the Jordan canonical form of A be
(?\lIl + SlJl) @ (?\212 + 62J2) ®@...0 O\sIs + 6SJS) where the orders of

ee 5, T such that r. +r_ + ... +r_ = N.

the various blocks are r,, r
1 s 1 2 ]

2)
I, (i=1,2, ... ,8) is the r, X r, unit matrix and J, is the r, Xr,

i i i i i
matrix with every element zero except those immediately below the main diasg-
onal and these are unity. The Ki correspond to the eigenvalues of A and
the 5i are arbitrary non-zero numbers. If for any i, r, = 1, J’i consists

of the 1 X 1 zero matrix and the term 6iJi is omitted in such a case. Con-

sider the three statements
Sl: l%il <1 for i=1,2, ..., s and for all 1 such that[%il = l,ri = 1.

S,: T exists such that | v 2| < 1.

S : A is stable.
3
From the relstionship between the Jordan canonical form and the minimal

equation we see that 6 asserts the equivalence of Sl and S . Also T asserts
3
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the equivalence of Sg and 83. We will thus have proved 6 and 7 when we

have shown that Sl =5 _, S =85_,and S = Sl. To deduce S2 from Sl

2% T2 3 3
we choose T so that T"*AT 1is the Jordan canonical form with Si =1 - l%.t
i
for every 1 for which rs > 1. 83 follows from Sg since
- - -1 .
‘An‘ = |o(z7an)" T Y o<l | . Finally ve deduce S from S_ by noting
-1
that |(AT, + 8,007 2 A |? forall i ana that [(A, T, + 6.J.)nl>n[7\.|n [6.'
11 11 = i 11 11 = 1 1
whenever r, > 1.
We now state two necessary conditions for convergence.
15. If (A,B) is convergent, A is stable.
16. If (A,B) is convergent, A is consistent.
PROOFS: To prove 15 we suppose that (A,B) is convergent but A is not stable

and we use (A,B) for the solution of the initial value problem defined by

n
M=1, =0, 0t =0, x_ =0, x =1 Let o = lA l and let ‘gnE"RN be such

o+
Iy
m
Cf.
>
<
li

Q@ an] = 1. Furthermore, let B = max (o, Oy eens oh) and
Gefine ¥_ =B 'y s that, since A is not stable, | \ - 0. If we choose
wn n wn n
Y(O> as W, write h = l/v and perform the solution to the initial value

-

problem using (A,B),we find E(V) = A%yv. Since the method ig convergent and
the true solution is y*(x) = O, we have ‘Av&v‘ -0 as V —»wo. But
{AYyVl = av/Bv which equals 1 for an infinite set of values of V.

To prove 16, we assume (A,B) is convergent and apply it to the solution

of the initial value problem defined by M =1, f~ =0, n* =1, x_ =0, x = 1.

o}
We choose ‘y(o) =5 independently of Vv, so that convergence implies that

[Ag/- §) < Av+ls - Agl +! Av+l§ - sl

V+L ‘

5 -5
fv.v3 (e

so that As = s.
s w



Further definitions and theorems now follow.
17. (Definition). (A,B) is semi-consistent if A is consistent and if

there is a ;CEF%_ and & scalar c¢ such that
(28) At + Bs =t + cg

18. (Definition). (A,B) is stable if A 1is stable.

19. If (A,B) is stable and semi-consistent, the value of c in (28)
is unique.
PROCF: If (28) were also satisfied with t, ¢ replaced by t', c' where

c £c', we would have A{t -t') = (-1t )+ (c -c')s sothat } -1%' is

a member of the null space of (A - I)2 but not of A - I. Hence, the mini-
mal equation of A contains a repeated unit root contrary to 6.

It may be remarked that E{ in (28) is not unique but may be altered
by the addition of any null vector (for example 5) of A - I.

20. If A 1is consistent and the characteristic equation of A has only
a simple root at 1, then (A,B) is semi-consistent.
PROOF: Let V be the range space of A-I so that V is of dimension N - 1
and §,¢"V. Hence, an arbitrary vector of RN can be written as a linear com-
bination of s with a menber of V. Write c as the component of s 1in
Bgv and the result follows.

21. (Definition). (A,B) is consistent if it is semi-consistent and the
value of c¢ in (28) is 1.

oo, Tf (A,B) is semi-consistent with c £ 0, (4, % B) is consistent.

The proof of this result is immediate. Before proceeding further we return

to the examples (A,B) given by (12), (13), by (20), (21) and by (22), (23).
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23, (A4,B,C) is semi-consistent (that is, (&,B) given by (12), (13) is
semi-consistent) if and only if A 1is consistent and \1’:\,6 Ry and c exist

such that

(29) | At + (B+C)§/ =1t +Ccg, -

2k, If A given by (20) satisfies the conditions of 11 and 12 so that
A is stable and consistent, and if B is given by (21), then (A,B) is semi-
istent with c¢ = +r + ...+ + + ... .
consistent wi (ro L rk)/(ql 2q2 + qu)
25. If A 1is given by (22) and B by (23), then (4,B) is stable and
semi-consistent with ¢ =b +b_ + ... +Db_.
1 2 v
PROOFS: 23 follows by noting that (29) is equivelent to

+ g, ,

(30)

ccty

'+ B

et

]
~

where \E = a@ (’5\’- cg}, a = 3@3. 2L can be verified immediately with ¢
in (28) such that its component number i is - c(k +2 - 1i). 25 is an
example of 20.

We now come to the two main theorems.

26. If (A,B) is convergent, it is stable and consistent.

PROOF: In view of 15 and 16 we may assume A 1s stable and consistent if

(A,B) is convergent. We need only prove that there is a ;tET%I such that
v
(31) At +Bs =t +§ -

As for the proofs of 15 and 16 we prove this result by considering a special

example. We take M = 1, = 1, nl = 0, X

=0, x =1 and Y(o)=o
w

independently of V. With h = 1/v we find

(32) \gl(v) = ;l; (A" + 4”2 + ...+ 1) Bg
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and for convergence, this must tend to 5 as Vv » . Since A 1is stable,
the range space and the null space of A - I are disjoint so that we may write
Bs - § = (I - A)g +y where v is in the null space of A - I. Substitute

into (32) and we find
(33) Y“)-3= (1- A +y

so that

(34) M

<[+

(1 + [AV]) 50

as V - . Hence v =0 so that (31) follows.
27. If (A,B) is stable and consistent, it is convergent.

t.. We may assume by

FROOF: Let % in (31) have components s By s By

the remark following 19 that none of tl, t t is negative. We write

(35) ) -y (x + 0+ 1)

fbr i=1,2, ..., N3 n=0,1, ... where VX(X) denotes the true solution

(n) (n) @J]én) @ ..

@n( n) so that, by the continuity of y(x), convergence will be proved

to the initial value problem (1).  Also we write 2

when we have shown that as VvV -« with h = (x - x )/V and ‘ Y(o) <O)l -0
then lz( v) - H(v l—»O. It will be assumed that h is no more than some
rixed b satisfying (16). | |

Let E( = e( )@ e(n> @ . @e(n) be the truncation error in a

single step defined by

(36) E(n) =£(n) - [a) H(n -1) niB] E(g(n))

ww
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Our first task is to estimate VE\}/(n) We have
k k _ k
(37) ¥ (xo + hin + ti)) -y (xo +hin -1+ ti)) = h(1 + by - tj)fk(&r/(xo +hin +67)))

by the mean value theorem, where Gk lies between t and ti. Hence we

3-1

have
(38) y(x + h(n + t, )) - y(x +hn -1+t )) -n(L + tg - tj.)v%(éi(xo +nh)] =
where
(39) ‘&‘Shzlmll+ti—tj’max(ti,[l-tj.)

and m is the maximum of the (continuous) function l‘f_ (y (x))' for
w w

x € [xo, x + h_ max (tl, t, e s tN),]. Multiplying (38) by 8 5 and summing
over‘ J we find
N N
l\llin) - 2 a5 1 (n -1)_ h<z b, >f(y(x +nh)),
3= J=1
N
= Z 853 (n) Wgn-l) - h(1 + by - tj)f(vyd(xo + nh)){'
oy
N\ .
(40) < haLmZ;[aijl"l+ti-tj|max (ti,ll—tjl);-
j=
Similarly we have
(k1) I\{(Egn)) - ggx(xo + nh))‘ < hthm
so that
N N N
(42) h z 1”(35“)) <z bij>£(§j(xo +nh))| < b%m Zlbijltj :
J=1 J=x J=t
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Combining (40) and (42) we find

(43) &P < n2mt,
where fﬂl is given by
3 |
(b 2, = Z {Iaijl 11+ t, - tj] max (63, |1 -ty () + ’bij] %
=

We write for :f/ for the vector in RN whose typical component is /&i'
For the accumulated error we use the symbol Z(n) = z(nbé(n)@ cee ®£1$]n)
s wl 2
and define this quantity by g(n) = H(n) - Y(n), We also write

2@ -2 -1 P erlM @ epF), so e 1] <1z

Thus we may write

(45) Zjn) N -,Zv(n'l) - h[B]E(n) =3§(n)
so that

2 1 2 o) y® s el g s e ™)
(u6) +a(n) N [A]v}g(n-l)+ . [An-llg(l)

We now choose constants «, B, 7 such that ‘Anl < q, lAnBl <B, iAn;@] <7

for n=0, 1, 2 ... and use (43) with (46) to find

2 <al®] o (1] + 1] 4o [5®]) + i
(57) gaié(o)l +hL3([gfn)] + l\zN(n'l)I ..+ Ié(l)')"“ nhZImy .

Hence, it follows that lg'\,(n)l < e(n), where e(o) = a[g,v(o)l and

(48) e(n> = e(o) + hIB (e(n) + c—:(n'l> +oee. + é(l)) + nh®Lmy, n > 1.
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(52)

Thus

(49) () | 1) hLBe(n) +b°Imy , n>1,

so that

(e(n) + my/B) = (1 - hI8) ™ (e(n‘l) + hmy/B)

(50)

(1 - n8)™ (e 4 mmy/p)

If we suppose that h < hO where ho, besides satisfying (16) also satisfies

hOLB < 1, we have

(51) (1 - n1p) ™ < exp (Tﬂ—lﬁ%)

&0 that, writing n = v in (50) and using (51) we find

la(v)l < ) < O‘l?,(o)! oo <(x - xo)lﬁ)+ (x - x_)my {exp <(x - xO)IB)- . }

1 - hif VB 1 - hIB

and the right hand side tends to zero as V — e« .

Stanford Linear Accelerator Center
Stanford University

Stanford, California
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