ON THE CONVERGENCE OF NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

By J. C. Butcher

We will be concerned with the solution to the initial value problem

(1)
$$\frac{dy}{dx} = f(y) , \quad y(x_0) = \eta ,$$

where \underline{y} is a point in the (real) Euclidean M-space $R_{\underline{M}}$ and $\underline{f}(\underline{y})$ is a mapping of $R_{\underline{M}}$ onto itself satisfying the Lipschitz condition

(2)
$$\left| f(\underline{y}) - f(\underline{z}) \right| \leq L \left| \underline{y} - \underline{z} \right|,$$

for any pair of points $y, z \in R_M$. L is a constant and |v| for $v \in R_M$ denotes a norm. Although the particular norm used is irrelevant for most purposes, a number of details in the results of this paper take a simpler form if the norm used is defined by

(3)
$$\left| \frac{\mathbf{v}}{\mathbf{v}} \right| = \max\left\{ \left| \mathbf{v}^{\mathbf{1}} \right|, \left| \mathbf{v}^{\mathbf{2}} \right|, \dots, \left| \mathbf{v}^{\mathbf{M}} \right| \right\},$$

 v^1 , v^2 , ..., v^M denoting the components of v. Accordingly, we adopt (3) as the definition of |v|.

It will be necessary to consider sets of points $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_N \in \mathbb{R}_M$ and we shall regard such a set as corresponding to the point $\underline{V} = \underline{v}_1 \oplus \underline{v}_2 \oplus \dots$ $\dots \oplus \underline{v}_N \in \mathbb{R}_{MN}$. The norm of $\underline{V} \in \mathbb{R}_{MN}$ will be defined in a similar way to (3) and a similar notation $|\underline{V}|$ will be used. Clearly

(4)
$$\left| \begin{array}{c} V \\ \end{array} \right| = \max \left\{ \left| \begin{array}{c} v \\ 1 \end{array} \right|, \left| \begin{array}{c} v \\ 2 \end{array} \right|, \cdots, \left| \begin{array}{c} v \\ N \end{array} \right| \right\}$$

Stanford Linear Accelerator Center, Stanford, California

_] _

Work supported by University of Canterbury, New Zealand, and by U. S. Atomic Energy Commission.

We will have to make use of mappings from R_{MN} to R_{MN} such as $V \to W = W_1 \oplus W_2 \oplus \cdots \oplus W_N$ where

(5)
$$W_{i} = \sum_{j=1}^{N} a_{ij} V_{j}$$
, $i = 1, 2, ..., N$

and $a_{11}, a_{12}, \dots, a_{NN}$ are elements of a matrix A. For this mapping we shall use the notation

so that [A] is a linear operator on \mathbb{R}_{MN} to \mathbb{R}_{MN} . [A] will denote the norm $\max_{i} \sum_{j=1}^{N} |a_{ij}|$ so that (7) $|[A] \underbrace{V}| \leq |A| \cdot |\underbrace{V}|$.

Another type of mapping that will arise is that given by $\underbrace{\mathbb{V}} \to \underbrace{\mathbb{W}}$ where

(8)
$$y_i = f(y_i)$$
, $i = 1, 2, ..., N$

and $f_{\mathcal{N}}$ is the function occurring in the statement of the initial value problem (1). We shall write

(9)
$$\underbrace{W}_{\mathcal{W}} = \underbrace{F}(\underbrace{V})$$

to denote this mapping and we see that $\underbrace{F}_{\mathcal{K}}$ satisfies a Lipschitz condition with the same constant L as for \underline{f} .

Numerical methods for the solution of the initial value problem fall mainly into two categories: multi-step methods and Runge-Kutta methods. For these and for some closely related methods, the convergence of the

- 2 -

numerical solution to the exact solution as the step size tends to zero, has been studied by a number of authors [1, 2, 3]. It is the aim of the present paper to make a similar study for a fairly general class of method which includes both main classes of method as special cases. Also, it is applicable to methods which combine features common to both multi-step and Runge-Kutta methods such as the methods of Urabe [4], Gragg and Stetter [5] and Gear[6].

The method consists of performing a sequence of steps numbered 1, 2, 3, ... such that at the start of step n, N points in \mathbb{R}_M are given. We denote these by $y_1^{(n-1)}, y_2^{(n-1)}, \ldots, y_N^{(n-1)}$ and write $\underline{Y}^{(n-1)} = \underline{y}_1^{(n-1)} \oplus \underline{y}_2^{(n-1)} \oplus \ldots$ $\oplus \underline{y}_N^{(n-1)}$. At the end of the step $\underline{Y}^{(n)} = \underline{y}_1^{(n)} \oplus \underline{y}_2^{(n)} \oplus \ldots \oplus \underline{y}_N^{(n)}$ is given by

(10)
$$y_{i}^{(n)} = \sum_{j=1}^{N} a_{ij} y_{j}^{(n-1)} + h \sum_{j=1}^{N} \left\{ b_{ij} f(y_{j}^{(n)}) + c_{ij} f(y_{j}^{(n-1)}) \right\},$$

which can be written as

(11)
$$\underline{\mathbf{y}^{(n)}} = [\mathbf{A}] \underline{\mathbf{y}^{(n-1)}} + \mathbf{h}[\mathbf{B}] \underline{\mathbf{F}}(\underline{\mathbf{y}^{(n)}}) + \mathbf{h}[\mathbf{C}] \underline{\mathbf{F}}(\underline{\mathbf{y}^{(n-1)}})$$

where the matrices A,B,C with elements a_{ij} , b_{ij} , $c_{ij}(i,j=1, 2, ..., N)$ characterize the method. We interpret $y_1^{(n-1)}$, $y_2^{(n-1)}$, ..., $y_N^{(n-1)}$ as approximations to y(x) for a set of N values of x and $y_1^{(n)}$, $y_2^{(n)}$, ... $y_N^{(n)}$ as approximations when the values of x are each increased by h (the step size). For simplicity with no loss of generality we shall assume h > 0and that the method is used to find y(x) only when $x > x_0$.

The method defined by A,B,C will be denoted by (A,B,C) and in the particular case when C is the zero matrix by (A,B). There is no loss of generality in considering only methods of this last form since (A,B,C) is equivalent

- 3 -

to $(\overline{A},\overline{B})$ where

(12)
$$\overline{A} = \begin{bmatrix} A & O \\ I & O \end{bmatrix},$$

$$(13) \qquad \qquad \overline{B} = \begin{bmatrix} B & C \\ 0 & 0 \end{bmatrix}$$

and O,I are the $N \times N$ zero matrix and unit matrix respectively. Before proceeding, it must be remarked that (11) is of the form

and in general does not define $Y^{(n)}$ explicitly, However, if $Y = y_1 \oplus y_2 \oplus \cdots \oplus y_N$ and $Z = z_1 \oplus z_2 \oplus \cdots \oplus z_N$ are any two points in R_{MN} then

(15)
$$\left| \underset{\mathcal{L}}{\mathcal{G}}(\underbrace{\mathbb{Y}}) - \underset{\mathcal{L}}{\mathcal{G}}(\underbrace{\mathbb{Z}}) \right| = h \left[[B] \left\{ \underset{\mathcal{L}}{\mathbb{F}}(\underbrace{\mathbb{Y}}) - \underset{\mathcal{L}}{\mathbb{F}}(\underbrace{\mathbb{Z}}) \right\} \right| \leq hL \left[B \right| \cdot \left| \underbrace{\mathbb{Y}} - \underbrace{\mathbb{Z}} \right|$$

so that if

(16)
$$h < 1/(L | B |)$$

then $\underline{Y} \to \underline{G}(\underline{Y})$ is a contraction mapping. Thus if h is sufficiently small, $\underline{Y}^{(n)}$ is defined uniquely by (11) and may be evaluated iteratively. For a computer realization of the procedure for evaluating $\underline{Y}^{(n)}$, it is more convenient to use an iteration process based on the equation

(17)
$$\underline{\underline{y}}^{(n)} = \underline{\underline{G}}(\underline{\underline{y}}^{(n)})$$

- 4 -

where
$$\overline{g}(\underline{Y}) = \overline{g}_{1}(\underline{Y}) \oplus \overline{g}_{2}(\underline{Y}) \oplus \dots \oplus \overline{g}_{N}(\underline{Y})$$
 is related to
 $\underline{G}(\underline{Y}) = \underline{g}_{1}(\underline{Y}) \oplus \underline{g}_{2}(\underline{Y}) \oplus \dots \oplus \underline{g}_{N}(\underline{Y})$ by
 $\overline{g}_{1}(\underline{Y}) = \underline{g}_{1}(\underline{y}_{1} \oplus \underline{y}_{2} \oplus \dots \oplus \underline{y}_{N})$,
 $\overline{g}_{2}(\underline{Y}) = \underline{g}_{2}(\overline{g}_{1}(\underline{Y}) \oplus \underline{y}_{2} \oplus \dots \oplus \underline{y}_{N})$,
(18)
 $\overline{g}_{3}(\underline{Y}) = \underline{g}_{3}(\overline{g}_{1}(\underline{Y}) \oplus \overline{g}_{2}(\underline{Y}) \oplus \dots \oplus \underline{y}_{N})$,
 $\overline{g}_{3}(\underline{Y}) = \underline{g}_{3}(\overline{g}_{1}(\underline{Y}) \oplus \overline{g}_{2}(\underline{Y}) \oplus \dots \oplus \underline{y}_{N})$,
 $\overline{g}_{3}(\underline{Y}) = \underline{g}_{N}(\overline{g}_{1}(\underline{Y}) \oplus \overline{g}_{2}(\underline{Y}) \oplus \dots \oplus \underline{g}_{N-1}(\underline{Y}) \oplus \underline{y}_{N})$

With the norm defined by (3), it is trivial to prove that $Y \to \overline{G}(Y)$ is a contraction mapping if the same is true for $Y \to G(Y)$, so that (16) is sufficient for either type of procedure.

To illustrate the variety of methods that can be written in the form (A,B) we note that the multi-step method given by

(19) $y_n = q_1 y_{n-1} + \dots + q_k y_{n-k} + h(r_0 f(y_n) + r_1 f(y_{n-1}) + \dots + r_k f(y_{n-k}))$ where y_n denotes the numerical solution at the point $x_0 + nh$, is equivalent to (A,B) with N = k + 1 and

(20)
$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & q_{k} & q_{k-1} & \dots & q_{1} \end{bmatrix},$$

(21)
$$B = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ r_{k} & r_{k-1}r_{k-2} & \dots & r_{0} \end{bmatrix}.$$

- 5 -

On the other hand an N-l stage Runge-Kutta process takes the form $({\rm A},{\rm B})$ with

(22)

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix},$$
(23)

$$B = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ b_{21} & 0 & 0 & \cdots & 0 \\ b_{21} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ b_{N1} & b_{N2} & b_{N3} & \cdots & 0 \end{bmatrix}.$$

In the example of the classical fourth order process we have

$$(24) B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & 0 \end{bmatrix}$$

We shall not be concerned in this paper with methods of obtaining the starting vector $\underline{Y}^{(o)}$ but we shall suppose this is done in such a way that in the limits as $h \to 0$, $\underline{y}_{i}^{(o)} \to \underline{\eta}$ for i = 1, 2, ..., N. We now define convergence as follows:

1. (Definition). (A,B) is said to be convergent if for any initial value problem (1) satisfying (2), the following statement can be made: If (A,B) is used to compute $\underline{y}^{(\nu)}$ with step size $h = (x - x_0)/\nu$ where $\underline{y}^{(0)}$ is given in such a way that $|\underline{y}^{(0)} - \underline{\eta} \oplus \underline{\eta} \oplus \dots \oplus \underline{\eta}| \to 0$ as $\nu \to \infty$ then $|\underline{y}^{(\nu)} - \underline{y}(x) \oplus \underline{y}(x) \oplus \dots \oplus \underline{y}(x)| \to 0$ as $\nu \to \infty$.

- 6 -

Just as for linear multi-step processes it is convenient to introduce concepts of consistency and stability for (A,B). However, it is convenient first of all to consider A by itself.

2. (Definition). A is consistent if $A_{\Sigma} = S$ where S is the vector in R_{N} with every component equal to unity.

3. (Definition). A is stable^{*} if there is a constant α such that for any positive integer n

(25)
$$\left| A^{n} \right| \leq \alpha$$
.

ŝ,

The following results are consequences of these definitions.

4. If all eigenvalues of A have magnitude less than 1 except for a simple eigenvalue at 1, A is stable.

5. If A is stable, no eigenvalue has magnitude greater than 1.

6. If A has minimal polynominal P(z), then A is stable if and only if no zero of P(z) exceeds 1 in magnitude and all roots of magnitude 1 are simple.

7. A is stable if and only if there is a non-singular matrix T such that $|T^{-1}AT| \leq 1$.

8. If A is consistent and has only non-negative elements, then A is stable.

9. A given by (12) is stable if and only if A is stable.

10. \overline{A} given by (12) is consistent if and only if A is consistent.

11. A given by (20) is stable if and only if no zero of

(26)
$$Q(z) = z^{k} - q_{1} z^{k-1} - q_{2} z^{k-2} - \dots - q_{k}$$

exceeds 1 in magnitude and all zeros of magnitude 1 are simple.

^{*} In the theory of linear operators, the term "power-bounded" is used for this property.

12. A given by (20) is consistent if and only if Q(z) given by (26) has a zero equal to 1.

13. A given by (22) is stable.

14. A given by (22) is consistent.

PROOFS: 10, 12 and 14 are immediate consequences of the definition of consistency. 4, 5 and 11 are trivial consequences of 6. 13 is an example of 8 which follows from 7 with T = I. 9 is immediately seen from the obvious formula

$$(27) \qquad \qquad \overline{A}^{n} = \begin{bmatrix} A^{n} & 0 \\ A^{n-1} & 0 \end{bmatrix}$$

so that $|\overline{A}^n| = \max(|A^n|, |A^{n-1}|)$.

It remains to prove 6 and 7. Let the Jordan canonical form of A be $(\lambda_1I_1 + \delta_1J_1) \oplus (\lambda_2I_2 + \delta_2J_2) \oplus \dots \oplus (\lambda_sI_s + \delta_sJ_s)$ where the orders of the various blocks are r_1, r_2, \dots, r_s such that $r_1 + r_2 + \dots + r_s = N$. I_i (i = 1, 2, ..., s) is the $r_1 \times r_1$ unit matrix and J_1 is the $r_1 \times r_1$ matrix with every element zero except those immediately below the main diagonal and these are unity. The λ_i correspond to the eigenvalues of A and the δ_i are arbitrary non-zero numbers. If for any i, $r_i = 1$, J_i consists of the 1 × 1 zero matrix and the term $\delta_i J_1$ is omitted in such a case. Consider the three statements

$$S_1: |\lambda_i| \leq 1$$
 for $i = 1, 2, ..., s$ and for all i such that $|\lambda_i| = 1, r_i = 1$.
 $S_2: T$ exists such that $|T^{-1}AT| \leq 1$.

S_: A is stable.

From the relationship between the Jordan canonical form and the minimal equation we see that 6 asserts the equivalence of S_1 and S_3 . Also 7 asserts

- 8 -

the equivalence of S_2 and S_3 . We will thus have proved 6 and 7 when we have shown that $S_1 => S_2$, $S_2 => S_3$, and $S_3 => S_1$. To deduce S_2 from S_1 we choose T so that $T^{-1}AT$ is the Jordan canonical form with $\delta_1 = 1 - |\lambda_1|$ for every i for which $r_1 > 1$. S_3 follows from S_2 since $|A^n| = |T(T^{-1}AT)^n T^{-1}| \leq |T| \cdot |T^{-1}|$. Finally we deduce S_1 from S_3 by noting that $|(\lambda_1 I_1 + \delta_1 J_1)^n| \geq |\lambda_1|^n$ for all i and that $|(\lambda_1 I_1 + \delta_1 J_1)^n| \geq n |\lambda_1|^{n-1} |\delta_1|$ whenever $r_1 > 1$.

We now state two necessary conditions for convergence.

15. If (A,B) is convergent, A is stable.

16. If (A,B) is convergent, A is consistent.

PROOFS: To prove 15 we suppose that (A,B) is convergent but A is not stable and we use (A,B) for the solution of the initial value problem defined by $M = 1, f^{\perp} = 0, \eta^{\perp} = 0, x_{0} = 0, x = 1$. Let $\alpha_{n} = |A^{n}|$ and let $y_{n} \in \mathbb{R}_{N}$ be such that $|A^{n}y_{n}| = \alpha_{n}, |y_{n}| = 1$. Furthermore, let $\beta_{n} = \max(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n})$ and define $y_{n} = \beta_{n}^{-1} y_{n}$ so that, since A is not stable, $|y_{n}| \to 0$. If we choose $y_{n}^{(o)}$ as y_{v} , write h = 1/v and perform the solution to the initial value problem using (A,B), we find $y_{n}^{(v)} = A^{v}_{W_{v}}$. Since the method is convergent and the true solution is $y^{\perp}(x) = 0$, we have $|A^{v}y_{v}| \to 0$ as $v \to \infty$. But $|A^{v}y_{v}| = \alpha_{v}/\beta_{v}$ which equals 1 for an infinite set of values of v.

To prove 16, we assume (A,B) is convergent and apply it to the solution of the initial value problem defined by M = 1, $f^{1} = 0$, $\eta^{1} = 1$, $x_{0} = 0$, x = 1. We choose $\underbrace{Y^{(0)}}_{0} = \underbrace{s}_{0}$ independently of v, so that convergence implies that $\left|A_{\underline{v}}^{v}\underline{s} - \underline{s}_{\underline{v}}\right| \rightarrow 0$ as $v \rightarrow \infty$. But

$$\begin{vmatrix} A_{\mathfrak{S}} - \mathfrak{s} \end{vmatrix} \leq \begin{vmatrix} A^{\vee + 1} \mathfrak{s} - A_{\mathfrak{S}} \end{vmatrix} + \begin{vmatrix} A^{\vee + 1} \mathfrak{s} - \mathfrak{s} \end{vmatrix}$$
$$\leq \begin{vmatrix} A \end{vmatrix} \cdot \begin{vmatrix} A^{\vee} \mathfrak{s} - \mathfrak{s} \end{vmatrix} + \begin{vmatrix} A^{\vee + 1} \mathfrak{s} - \mathfrak{s} \end{vmatrix}$$
$$\rightarrow 0$$

so that As = s.

- 9 -

Further definitions and theorems now follow.

17. (Definition). (A,B) is semi-consistent if A is consistent and if there is a $t \in R_N$ and a scalar c such that

(28)
$$At + Bs = t + cs$$
.

18. (Definition). (A,B) is stable if A is stable.

19. If (A,B) is stable and semi-consistent, the value of c in (28) is unique.

PROOF: If (28) were also satisfied with \underline{t} , c replaced by \underline{t}' , c' where $c \neq c'$, we would have $A(\underline{t} - \underline{t}') = (\underline{t} - \underline{t}') + (c - c')s$ so that $\underline{t} - \underline{t}'$ is a member of the null space of $(A - I)^2$ but not of A - I. Hence, the minimal equation of A contains a repeated unit root contrary to 6.

It may be remarked that t in (28) is not unique but may be altered by the addition of any null vector (for example <u>s</u>) of A - I.

20. If A is consistent and the characteristic equation of A has only a simple root at 1, then (A,B) is semi-consistent.

PROOF: Let V be the range space of A-I so that V is of dimension N - 1 and $\underset{N}{s} \notin V$. Hence, an arbitrary vector of $\underset{N}{R}$ can be written as a linear combination of $\underset{N}{s}$ with a member of V. Write c as the component of $\underset{N}{s}$ in Bs and the result follows.

21. (Definition). (A,B) is consistent if it is semi-consistent and the value of c in (28) is 1.

22. If (A,B) is semi-consistent with $c \neq 0$, (A, $\frac{1}{c}$ B) is consistent. The proof of this result is immediate. Before proceeding further we return to the examples (A,B) given by (12), (13), by (20), (21) and by (22), (23).

- 10 -

23. (A,B,C) is semi-consistent (that is, $(\overline{A},\overline{B})$ given by (12), (13) is semi-consistent) if and only if A is consistent and $\underbrace{t} \in R_N$ and c exist such that

(29)
$$At + (B+C)s = t + cs.$$

24. If A given by (20) satisfies the conditions of 11 and 12 so that A is stable and consistent, and if B is given by (21), then (A,B) is semiconsistent with $c = (r_0 + r_1 + ... + r_k)/(q_1 + 2q_2 + ... + kq_k)$.

25. If A is given by (22) and B by (23), then (A,B) is stable and semi-consistent with $c = b_1 + b_2 + \dots + b_{\gamma}$. PROOFS: 23 follows by noting that (29) is equivalent to

(30)
$$\overline{At} + \overline{Bs} = \overline{t} + c\overline{s}$$
,

where $\overline{t} = t \oplus (t - c_{\underline{s}}), \overline{\underline{s}} = \underline{s} \oplus \underline{s}$. 24 can be verified immediately with tin (28) such that its component number i is -c(k + 2 - i). 25 is an example of 20.

We now come to the two main theorems.

26. If (A,B) is convergent, it is stable and consistent.

PROOF: In view of 15 and 16 we may assume A is stable and consistent if (A,B) is convergent. We need only prove that there is a $t \in \mathbb{R}_N$ such that

$$(31) \qquad At_{u} + Bs_{u} = t_{u} + s_{u}.$$

As for the proofs of 15 and 16 we prove this result by considering a special example. We take M = 1, $f^{1} = 1$, $\eta^{1} = 0$, $x_{0} = 0$, x = 1 and $\Upsilon^{(0)} = 0$ independently of ν . With $h = 1/\nu$ we find

(32)
$$\underbrace{Y}^{(\nu)} = \frac{1}{\nu} (A^{\nu-1} + A^{\nu-2} + \ldots + I) B_{g}$$

-11 -

and for convergence, this must tend to $\underset{\sim}{s}$ as $\nu \to \infty$. Since A is stable, the range space and the null space of A - I are disjoint so that we may write $B_{\underset{\sim}{s}} - \underset{\sim}{s} = (I - A) \underbrace{t} + \underbrace{y}$ where \underbrace{v} is in the null space of A - I. Substitute into (32) and we find

(33)
$$\underbrace{\mathbb{Y}^{(\nu)}}_{\overset{}{\overset{}}} - \underbrace{\mathbb{S}}_{\overset{}{\overset{}}} = \frac{1}{\nu} \left(\mathbb{I} - \mathbb{A}^{\nu} \right) \underbrace{\mathbb{t}}_{\overset{}{\overset{}}} + \underbrace{\mathbb{v}}_{\overset{}{\overset{}}}$$

so that

(34)
$$\left| \underbrace{\mathbf{v}}_{\mathbf{v}} \right| \leq \left| \underbrace{\mathbf{y}}_{\mathbf{v}}^{(\mathbf{v})} - \underbrace{\mathbf{s}}_{\mathbf{v}} \right| + \frac{1}{\mathbf{v}} \left(1 + \left| \mathbf{A}^{\mathbf{v}} \right| \right) \to 0$$

as $\nu \to \infty$. Hence v = 0 so that (31) follows.

27. If (A,B) is stable and consistent, it is convergent. PROOF: Let \pm in (31) have components t_1, t_2, \ldots, t_N . We may assume by the remark following 19 that none of t_1, t_2, \ldots, t_N is negative. We write

(35)
$$\mathfrak{I}_{i}^{(n)} = \mathfrak{Y} \left(\mathbf{x}_{o} + h(n + t_{i}) \right)$$

for i = 1, 2, ..., N; n = 0, 1, ... where $\underline{y}(x)$ denotes the true solution to the initial value problem (1). Also we write $\underline{H}^{(n)} = \underline{y}_1^{(n)} \oplus \underline{y}_2^{(n)} \oplus ...$ $.. \oplus \underline{\eta}_N^{(n)}$ so that, by the continuity of $\underline{y}(x)$, convergence will be proved when we have shown that as $v \to \infty$ with $h = (x - x_0)/v$ and $|\underline{y}^{(0)} - \underline{H}^{(0)}| \to 0$ then $|\underline{y}^{(v)} - \underline{H}^{(v)}| \to 0$. It will be assumed that h is no more than some fixed h₀ satisfying (16).

Let $\mathbb{E}_{\omega}^{(n)} = \mathbb{e}_{1}^{(n)} \oplus \mathbb{e}_{2}^{(n)} \oplus \dots \oplus \mathbb{e}_{N}^{(n)}$ be the truncation error in a single step defined by

- 12 -

Our first task is to estimate $\underset{\sim}{\mathbb{E}}^{(n)}$. We have

(37)
$$y^{k}(x_{o} + h(n + t_{i})) - y^{k}(x_{o} + h(n - l + t_{i})) = h(l + t_{i} - t_{j})f^{k}(y(x_{o} + h(n + \theta^{k})))$$

by the mean value theorem, where θ^{k} lies between t_{j-1} and t_{i} . Hence we have

$$(38) \quad y(x_{0} + h(n + t_{1})) - y(x_{0} + h(n - 1 + t_{1})) - h(1 + t_{1} - t_{1})f(y(x_{0} + nh)) = u,$$

where

(39)
$$\left| \underbrace{u}_{\infty} \right| \leq h^{2} \operatorname{Im} \left| 1 + t_{i} - t_{j} \right| \max \left(t_{i}, \left| 1 - t_{j} \right| \right)$$

and m is the maximum of the (continuous) function $\left| \begin{array}{c} f (y(x)) \right|$ for $x \in [x_0, x + h_0 \max (t_1, t_2, \dots, t_N)]$. Multiplying (38) by a_{ij} and summing over j we find

$$\left| \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[\begin{array}{c} \left[\begin{array}{c} \left[n \right] \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[\left[n \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \left[n \right]_{j=1}^{N} \left[n \right]_{j=1}^{N} \left[\left[n \right]_{j=1}^{N} \left[n \right]_{j=1}^{N}$$

Similarly we have

(41)
$$\left| f(\eta_{j}^{(n)}) - f(y(x_{o} + nh)) \right| \leq ht_{j}Lm$$

so that

(42)
$$\left| h \sum_{j=1}^{N} b_{jj} \int_{\omega}^{\omega} (\eta_{j}^{(n)}) - h \left(\sum_{j=1}^{N} b_{jj} \right) \int_{\omega}^{\omega} (y(x_{0} + nh)) \right| \leq h^{2} Im \sum_{j=1}^{N} \left| b_{jj} \right| t_{j} .$$

Combining (40) and (42) we find

(43)
$$\left| \begin{array}{c} e^{(n)} \\ wi \end{array} \right| \leq h^{2} \text{Im}^{2} i$$

where l_1 is given by

(44)
$$\ell_{i} = \sum_{j=1}^{N} \left\{ \left| a_{ij} \right| \cdot \left| 1 + t_{i} - t_{j} \right| \max(t_{i}, \left| 1 - t_{j} \right|) + \left| b_{ij} \right| t_{j} \right\}$$

We write for \mathcal{L} for the vector in $\mathbb{R}_{\mathbb{N}}$ whose typical component is $\mathcal{L}_{\mathbf{i}}$. For the accumulated error we use the symbol $\mathbb{Z}^{(n)} = \mathbb{Z}_{\mathbf{i}}^{(n)} \oplus \mathbb{Z}_{\mathbf{i}}^{(n)} \oplus \dots \oplus \mathbb{Z}_{\mathbb{N}}^{(n)}$ and define this quantity by $\mathbb{Z}^{(n)} = \mathbb{H}^{(n)} - \mathbb{Y}^{(n)}$. We also write $\mathbb{F}(\mathbb{H}^{(n)}) - \mathbb{F}(\mathbb{Y}^{(n)}) = \mathbb{W}^{(n)} = \mathbb{W}_{\mathbf{i}}^{(n)} \oplus \mathbb{W}_{\mathbf{i}}^{(n)} \oplus \dots \oplus \mathbb{W}_{\mathbb{N}}^{(n)}$, so that $|\mathbb{W}^{(n)}| \leq \mathbb{L}|\mathbb{Z}^{(n)}|$. Thus we may write

(45)
$$\mathbb{Z}^{(n)} - [A] \mathbb{Z}^{(n-1)} - h[B] \mathbb{W}^{(n)} = \mathbb{E}^{(n)}$$

so that

We now choose constants α , β , γ such that $|A^n| \leq \alpha$, $|A^nB| \leq \beta$, $|A^nC| \leq \gamma$ for $n = 0, 1, 2 \dots$ and use (43) with (46) to find

$$\begin{aligned} \left| \underline{Z}^{(n)} \right| &\leq \alpha \left| \underline{Z}^{(\circ)} \right| + h\beta \left(\left| \underline{W}^{(n)} \right| + \left| \underline{W}^{(n-1)} \right| + \dots + \left| \underline{W}^{(1)} \right| \right) + nh^{2} Im\gamma \\ (47) \quad &\leq \alpha \left| \underline{Z}^{(\circ)} \right| + hL\beta \left(\left| \underline{Z}^{(n)} \right| + \left| \underline{Z}^{(n-1)} \right| + \dots + \left| \underline{Z}^{(1)} \right| \right) + nh^{2} Im\gamma \end{aligned}$$

Hence, it follows that $\left| \underline{Z}^{(n)} \right| \leq \epsilon^{(n)}$, where $\epsilon^{(o)} = \alpha \left| \underline{Z}^{(o)} \right|$ and (48) $\epsilon^{(n)} = \epsilon^{(o)} + hL\beta \left(\epsilon^{(n)} + \epsilon^{(n-1)} + \ldots + \epsilon^{(1)} \right) + nh^{2}Lm\gamma, n \geq 1.$

- 14 -

Thus

(49)
$$\epsilon^{(n)} - \epsilon^{(n-1)} = hL\beta\epsilon^{(n)} + h^2Lm\gamma , n \ge 1$$
,

so that

(50)
$$(\epsilon^{(n)} + hm\gamma/\beta) = (1 - hL\beta)^{-1} (\epsilon^{(n-1)} + hm\gamma/\beta)$$
$$= (1 - hL\beta)^{-n} (\epsilon^{(0)} + hm\gamma/\beta) .$$

If we suppose that $h \leq h_{o}$ where h_{o} , besides satisfying (16) also satisfies $h_{o}L\beta < 1$, we have

(51)
$$(1 - hL\beta)^{-n} \leq \exp\left(\frac{nhL\beta}{1 - hL\beta}\right)$$

so that, writing n = v in (50) and using (51) we find (52) $\left| \underline{Z}^{(v)} \right| \leq \varepsilon^{(v)} \leq \alpha \left| \underline{Z}^{(o)} \right| \exp\left(\frac{(x - x_0)I\beta}{1 - hL\beta}\right) + \frac{(x - x_0)m\gamma}{v\beta} \left\{ \exp\left(\frac{(x - x_0)I\beta}{1 - hL\beta}\right) - 1 \right\}$

and the right hand side tends to zero as $\nu \to \infty$.

Stanford Linear Accelerator Center Stanford University Stanford, California

REFERENCES

1.	G. DAHLQUIST, "Convergence and stability in the numerical integration
	of ordinary differential equations," <u>Math. Scand</u> ., v.4, 1956, p. 33-53.
2.	P. HENRICI, Discrete variable methods in ordinary differential equations,
	John Wiley & Sons, Inc., New York, 1962.
3.	M. URABE, "Theory of errors in numerical integration of ordinary differ-
	ential equations," <u>J. Sci. Hiroshima Univ</u> ., v. Al25, 1961, p. 3-62.
4.	M. URABE, H. YANAGIWARA & Y. SHINOWARA, "Periodic solutions of van der Pol's
	equation with damping coefficient $\lambda = 2 \sim 10$, "J. Sci. Hiroshima Univ.,
	v. A23, 1960, p. 325-366.
5.	W. B. GRAGG & H. J. STETTER, "Generalized multi-step predictor-corrector
	methods," J. Assoc. Comp. Mach., v.11, 1964, p. 188-209.
6.	C. W. GEAR, "Hybrid methods for initial value problems in ordinary
	differential equations," to appear.