POSITION MONITORING ELECTRONICS FOR THE STANFORD LINEAR ACCELERATOR*

Raymond S. Larsen and Hugh A. Woods
Stanford Linear Accelerator Center
Stanford, California

This paper outlines the overall beam steering system and lists the design requirements for the position monitoring electronic. at the $j 0$ sectors $\rightarrow f$ the accelerator. The operatinn of the electronics is explained, and the mure inieresu ing circuits are described in detail. The performance is summarized.

Introduction

An important problem with the SLAC accelerator is to determine accurately the transverse position of the beam within the accelerating structure. Moreover, since multiple beams of widely different charge will be used, it is essential to be able to observe the position of each beam independentiy.

Sensors are in use which produce video output signals proportional to the horizontal and vertical position coordinates of the beam measurcd from the contral axis. In the two milc SLAC accelerator, however, the transmission of large numbers of such wideband signals to the control room would be difficult and costly. The approach taken here has been rather to develop a system in which video pulses are processed locally, i.e., at the drift section at the end of each 330' sector, to obtain high level average position signals suitable for transmission over a hardwire telemetry link.

Specifically, the Position Monitoring Electronics to be described normalizes video position pulses from microwave position monitors into 0 to 5 volt, $550 \mu \mathrm{sec}$ pulses proportional to horizontal position, vertical position and the logarithm of beam charge, over a 1000 to 1 range of charge.

A general description of the beam steering system will first be given.

System Description

Figure 1 illustrates the main components of the beam steering system located at a drift section in the SLAC accelerator, and their connection to the Central. Control Room. Three microwave resonant cavities provide RF outputs which are functions of beam intensity (i), intensity times horizontal displacement from the accelerator central axis (ix), and intensity times vertical displacement (iy). These are fed to microwave detector circuitry which produces video outputs directly proportional to i, ix and iy. These signals are processed by the Position Monitoring Electronics to give $\ln Q, x$ and y in
a serial form, where Q is the total pulse charge. This sigral is sent by a baseband telemetry eystorm tc a ce-multiplener at the Central Control Ronm, tngether with similar signals from the rematnir ef sectora.

The de-multiplexer first samples each of the 30 signals and channels $\ln Q, x$ and y into 3 separate oscilloscope displays. A remote control system allows the operator to adjust the steering dipole currents at any sector while monitoring the resulting beam position displacements for the entire machine.

The $\ln Q$ uisplay is not a particularly accurat ϵ measure of charge. Its utility lies in hoing abic to display simultaneously beams of widely varying charge, such as will be encountered in multiple beam operation of the machine.

It is the main purpose of this paper to describe the operation of the Position Monitoring Electronics. As mentioned, its function is to derive from the video signals normalized position signals in a form suitable for transmission to the Central Control Room.

Design Requirements

The main requirements for the position monitoring electronics are as follows:
(a) The circuit must handle a range of beam charge of 1000:1. The maximum beam pulse amplitude and width are 100 mA and $2 \mu \mathrm{sec}$ respectively, corresponding to a charge of 2×10^{-7} coulombs. Thus the circuit must handle beam charges down to 2×10^{-10} coulombs. The normalized position signals should be independent of charge over this range.
(b) The maximum beam displacement in the accelerator is taken to be $\pm 1 \mathrm{~cm}$. The system must he eble to resolve changes in position of 1 mm over the upper 40 db of its range, i.e., over a 100:1 range of beam charge.
(c) It is imperative that the on-axis position of the beam be detected with high accuracy. This means that systematic errors and drifts in the electronics which would erroneously indicate a beam displacement, cannot be tolerated. However, a measurement of the exact value of the displacement is of secondary importance, because the system will be used as an aid to placing the beam on axis,

[^0]rather than in accurately determining displacements from the axis.
(d) The electronics must operate on a pulse-tom pulse basis, i.e., at a 360 pps rate. This is because as many as six interlaced beams of widely differing energy and charge will be provided by the accelerator. The electronics must thus be able to perform a complete cycle of operations in $1 / 360 \mathrm{sec}$ (2.78 msec) with no interaction between data obtained from successitr beam puise.. Tris requirement eliminates the nead for beam identification at eacin sector.
(3) The output signals from the electronies must be suitable for telemetering over a base-band system using standard telephone cable pairs. To allow as great a sampling time as possible in the de-multiplexing circuit, the $\ln Q, x$ and y signals must occupy as much of the 2.78 msec as possible.

Circuit Operation

The basic information required from the sector Position Monitoring Electronics is the average value, for each pulse, of the horizontal and vertical beam displacements from the accelerator axis. Accordingly, this circuitry evaluates average position values given by
$\bar{x}=\frac{\int_{0}^{T}(i x)(t) d t}{\int_{0}^{T} i(t) d t}$ and $\bar{y}=\frac{\int_{0}^{T}(i y)(t) d t}{\int_{0}^{T} i(t) d t}$
where i, ix and iy are functions of time and T is the pulse duration.

This definition of average value differs from the conventional definition which, in the case of a horizontal displacement, is given by $x_{a v}=\frac{1}{T} \int_{0}^{T} \frac{(i x)(t)}{i(t)} d t$

However, the beam pulse will be essentially rectangular, so that $i(t)=I$ for $0<t<T$. In this case, $\mathrm{X}=\mathrm{x}_{\mathrm{av}}$. Even in the case where the beam pulse is not rectangular, \bar{x} and $x_{a v}$ will not differ appreciably.

The circuit to evaluate \bar{x} is much simpler tien that required for X_{av}. In this latter case, instantaneous division in real time is necessary, as well as an averaging process which depends upon the pulse length. These requirements are not necessary when evaluating \bar{x} where, as will be show, two integrations, followed by division, suffice.

Figure 2 is a block diagram of the position monitoring sector electronics. The three video inputs from the microwave detector circuitry are fed into three gated integrators. These are
passive $R C$ integrators having a nominal accuracy of 5% for the widest pulse. The integrator outputs are held for 2.25 msec at which time a clamp pulse clears the information in preparation for the next beam pulse.

The integrator outputs represent $\int_{0}^{T} i(t) d t, \quad \int_{0}^{T}(i x)(t) d t$ and $\int_{0}^{T}(i y)(t) d t$

Noumalinstion is accomplished by appropriatelur grting These outputs into a logarithmic ampli_iti. This smpl.afier consists of an operational amplifier with input summing resistors and a feedback network consisting of 5 series diodes. The diodes are temperature stabilized in a $70^{\circ} \mathrm{C}$ component oven.

Since the amplifier summing junction is a virtual ground, the input resistor current equals the diode current. The amplifier output adjusts to the required voltage to supply this diode current:

$$
\begin{aligned}
& i_{\mathrm{a}} \cong i_{0} \exp \left(\frac{q V}{k T}\right) \\
& V \cong C^{I_{\ln }} i_{\mathrm{a}}
\end{aligned}
$$

Initially the signal $\int_{0}^{T} i(t) d t=Q$ is fed to one of the operational amplifier summing resistors. Absorbing constants of proportionality, the output of the logarithmic amplifier is $V=C \ln Q$.

At a time $850 \mu s e c$ after the beam pulse, the signal $\int_{0}^{T} i x d t$ is gated through a second summing resistor into the amplifier. For $i=$ constant, this signal is proportional to $Q \bar{x}$. Absorbing the proportionality constant into \bar{x}, we can write $\int_{0}^{T} i x d t=Q \bar{x}$. The logarithmic amplifier output then rises to a new voltage $V=C_{2} \ln (Q+Q \bar{X})$. After an additional $550 \mu \mathrm{sec}$, the Qx signal is removed, and $300 \mu s e c$ later the Qy signal is gated in, producing a level $C \ln (Q+Q \bar{y})$ (see Figure 3).

On gating in the $Q \bar{x}$ and $Q \bar{y}$ signals, the output of the logerithmic amplifier changes by amounts

$$
\begin{aligned}
& \ln (C+\overline{\mathrm{z}} \overline{\mathrm{x}})-\ln Q=\ln (1+\overline{\mathrm{x}}) \cong \overline{\mathrm{x}} \text { and } \\
& \ln (Q+Q \overline{\mathrm{y}})-\ln Q=\ln (1+\bar{y}) \cong \overline{\mathrm{y}} \\
& \text { where } \overline{\mathrm{x}}, \overline{\mathrm{y}} \ll 1
\end{aligned}
$$

Thus the changes so obtained are directly proportional to the requirea quantities, that $1 s$, the average horizontal and vertical beam displacements.

The series expansion is

$$
\begin{aligned}
\ln (1+\bar{x}) & =\bar{x}-\frac{\bar{x}^{2}}{2}+\frac{\bar{x}^{3}}{3}-\frac{\bar{x}^{4}}{4}+\ldots \ldots \\
& =\bar{x}+e
\end{aligned}
$$

The summing resistors are chosen so that the ratios $Q \bar{x} / Q=\bar{x}$ and $Q \bar{y} / Q=\bar{y}$ have maximum values of $1 / 3$ for which $1 e l=14 \%$. Thus for the maximum displacement in one direction, \bar{x} and \bar{y} will be 15% high, and for the opposite direction, 14% low.

Circuit Details

Most of the circuits are conventional. Details are given only for the gated integrator and the clamp and range-switch following the logarithmic amplifier.

Gated Integrator

Figure 4 shows the gated integrator and $X I$ buffer. The circuit must handle a range of signals from 1 volt to 1 mv with DC offeets limited to less than 1 mv .

The dual emitter chopper transistor Q1 is turned on for $3 \mu \mathrm{sec}$ to allow passage of the video pulse. The integrator time constant is $20 \mu \mathrm{sec}$, or 10 times the maximum pulse width. The gate Q1 closes to isolate the charge on the capacitor. Clamp Q2, which is back biased, and the field effect transistor Q3 present an impedance of roughly 20 Megonms. Therefore the pulse droop in $2 \mu \mathrm{sec}$ is about 1%.

The FWT output is buffered by a bootstrapped emitter follower which has an output impedance of approximately 5Ω. The buffered signal is coupled through a $15 \mu \mathrm{~F}$ low leakage tantalytic capacitor which is restored after each operation by clamp 26.

At a time 2.25 msec after the beam pulse, clamps Q2 and $Q 6$ simultencously restore the integrator and output coupling capacitors. The resulting output pulse is temperature stable to better then 1 mv over a wide temperature range.

Looding the output of the buffer causes additional droop. The output coupling capacitor and-load resistor are selected to limit this droup to less than 1% for a $550 \mu s e c$ pulse.

The clamp transistors pose a limitation to the time required to clamp a given sized capacitor. Since in practice the series resistance of Q6 can be reduced only to about 5Ω without introducing an unacceptably large $V_{e e}$ (sat), the restoration time constant for the $15 \mu \mathrm{~F}$ capacitor is about $75 \mu \mathrm{sec}$. Hence it is necessary to allow $300 \mu \mathrm{sec}$ for proper clamping.

Clamp and Range Switch

The output of the logarithmic amplifier
contains the desired \bar{x} and \bar{y} amplitudes atop the larger In Q pulse. To extract this information, the clamp circuit of Figure 5 is used. Initially, the $\ln Q$ signal is coupled through $C l$ into the FET buffer. At a time $550 \mu \mathrm{sec}$ after the beam pulse, a $300 \mu s e c$ pulse applied to Q1 clamps Cl to ground, charging it to (In Q) volts. The clamp is removed, and \bar{x}, now varying about ground, is obtained. The operation is then repeated for \bar{y}. The resultant output signal is In \dot{u}, \bar{x} and \bar{y} in serial format measured from a conmon basejine. ithe buffer, Q2 and Q3, and the oy put coupling scileme, $C 2$ and $Q 4$, are similar in operation to that of the gated integrator.

At this point, the maximum $\ln Q, \bar{x}$ and \bar{y} signals must be equalized in amplitude before being transmitted. This is accomplished in a Switched attenuator which reduces ln Q, but not \bar{x} or \bar{y}, followed by an adjustable gain DC amplifier. The output of the amplifier is 5 volts maximum $f \circ r$ In Q, stable to approximately 2%, and 2 nominel 5 volts maximum for \bar{x} and \bar{y}. A. besebend tranmitter couples the signal to a hardwire telephone pair for transmission to the Central Control Room.

Construction

The entire position monitoring circuit is contained in a 10-1/2" high standard $19^{\prime \prime}$ rack card File. This chassis also contains circuitry, not herein described, associated with the precise measurement of beam charge.

Printed circuit cards are used throughout. The cormercial operational amplifier and power supplies are plug-in modules. The dual 15 V and 30 V supplies are operated from the 115 V AC supply. The diode component oven uses a local 24 V DC battery supply.

Separate high quality and power ground systems are employed in order to minimize pickup due to ground currents from the timing logic and clamp drives.

Calibration and Pert'ormance

The electronics is calibrated by epplying known signals to simulate the microwave monitor outputs. The $\ln Q$ output corresponding to a $100 \mathrm{~mA}, 2 \mu \mathrm{sec}$ pulse is adjusted to 5 volts. The simulated inputs are then attenuated by 60 db , where a threshold is adjusted to eliminate signals below this level.

The nonlinearity in $\ln Q$ for input signals ranging from the maximum to -50 db is approximately $\pm I \mathrm{db}$. The position signal accuracy is $\pm 15 \%$ for maximum beam displacements, but the zero resolution is better then $\pm 2 \%$ of full scale over the top 40 db of the range. For a $\pm 10 \mathrm{~mm}$ maximum displacement, this is equivalent to a spatial resolution of $\pm 0.2 \mathrm{~mm}$, over a 100:1 range of beam charge.

In the foregoing, it has been assumed that the microwave circuitry is perfectly balanced over the entire signal amplitude and temperature ranges.

Three prototype circuits have been operating continuously in Sectors 1 and 2 of the accelerator since January 1965. The output signals are transmitted a maximum distance of 600^{\prime} using baseband telemetry to a temporary control room where steering dipole controls are located. Nu particular problems have been encountered in the noise and temperature tirironment c^{2}. the Klystr in Gallery, and no component failures have occurred.

When the beam through the microwave sensors is well collimated, excellent steering signals result, and resolution of 1 mm displacement over a 40 db range of charge is achieved. If the beam is improperly focused, however, the sensor signals are poor and the overall sensitivity of the system is degraded correspondingly.

Acknowledgements

Thaniks are due to Mr. John Kief'ter for his valuable help in the development and construction of the circuits described.

FIGURE CAPIIONS

1. Beam steering system
2. Position monitoring sector electronics
3. Waveforms
4. Gated integrator circuit
5. Clamping circuit and range switch

> 1- INTEGRATOR GATE
> 2-X POSITION GATE
> 3-Y POSITION GATE
> 4- INTERMEDIATE CLAMP
> 5- FINAL CLAMP

ALL DIODES CD661I
Q1,2,6-3N79
Q3-2N2607
Q4-2N171I
Q5-2N2905A

FINAL
CLAMP

[^0]: Work supported by U.S. Atomic Energy Comission.

