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The magnetic field measurements in multipole 
magnetic fields, which are used to measure magnetic 
field parameters in the strong-focusing lenses for 
the Stanford two-mile linear accelerator, will be 
reviewed. Specifically, the theory and the meas- 
urement processes used to determine such important 
parameters as the magnetic center in multipoles, 
the length of the gradient fields, and the harmonic 
content in strong-focusing lenses will be described. 
The results of these accurate measurements will be 
related to the optical parameters of the multipole 
lenses. 

Field Distribution In Multipoles 

The Ideal Quadrupole 
The quadrupole magnet was introduced in 1952 

by Courant, Livingston and Snyder1 along with th; 
strong-focusing synchrotron, and by Christofilos 
as a means of focusing charged particle beams. In 
order to study the field configuration, let us con- 
sider the interior of the quadrupole magnet as 
shown in Fig. la, which is bounded by four equipo- 
tential electrodes maintained respectively at the 
potential fly.. 

Solving for the scalar magnetic potential in a 
quadrupole by starting with the two-dimensional 
Laplace equation, assurLr?g the existence of a pro- 
duct solution in r and 8 and then applying the 
coundary conditions of fcur-fcld symmetry, results 
in a magnetic potential 

U 
2 

(r,e) = 1 B2n (sin ne) rn 

n=2,6,10 

and the magnetic field intensity is 5 =.- Ju. 
A constant-gradient quadrupole is one in which the 
first term is the only non-vanishing term, i.e., 

B2n #. 0, but Ban =0 for n=6,10,14 . . . 

It is convenient to express the scalar poten- 
tial for a quadrupole in the XYz coordinate sys- 
tem. Using the linear transformation X = r sin 8, 
Y = r cos 8, one gets 

U 
P 

= 2B2xy + 6~ xy 
6 

Origins of Higher Poles in Quadrupole Magnets 
Figure 1 shows some of the differences between 

an ideal quadrupoie and a practical one. In the 
ideal quadrupole the pole surfaces are shaped ac- 
cording to the equation X *Y = *R2/2. One can see 
that in the practical quadrupole the pole surfaces 
have the required hyperbolic shape over a consider- 
able extent, but must be truncated laterally at 
some point to allow sufficient space for the exci- 
tation windings. In order to discuss the effects 
of mechanical imperfections in the practical magnet, 
designate the pole tip spacing along X as A and 
the pole tip spacing along Y as B. Let the 

letters a, b, c, and d‘stand for the spacing be- 
tween adjacent poles measured at the point of trun- 
cation. 

Consider first a mechanically perfectly fabri- 
cated quadrupole as far as symmetry of the location 
of the four poles is concerned, that is, where 
A = B = 2R and a = b = c = d. In this case, the 
fabrication of the poles themselves would be the 
only source of the higher poles. Let us further 
assume that the poles themselves are symmetrical 
about their own centerline axes along X and Y. 
The fact that the extent of the hyperbolic pole 
pieces is not infinite would result in a pole con- 
figuration that has the four-fold quadrupole sym- 
metry; however, because the magnetic equipztential 
of the pole stops at the point of truncation, the 
field would appear too low at the truncation. Near 
the points of truncation, the field of the pcle (K) 
suffers a weakening of the N field and can be re- 
presented as a virtual S field superimposed on 
the N field. The cause of this weakening can be 
attributed to two factors, a leakage of flux beycnd 
the truncation point and a saturation of the pole 
at the truncation point. The multipole so produced 
is the duodecapoie, as each pole acts as three poles. 

If the pole is mede by taking a circ-Alar approx 
imation tc the reT;ired hyperbolic shape, even 
higher poles will be present in the quadrupole. If 
the pole is made symmetrically, these higher pcles 
will result in some sf each of the possible poles 
having fc.Jr-fold symmetry, that is, each wi:l have 
an odd number of poles in each q-uadrant. Therefore, 
the higher poles that can possibly exist in the 
magnet when all elements of construction are perfect 
(i.e., A=B=2R and a=b=c=d)are4-pole, 
12-pole, X)-pole, 28-pole, or 4(2n - 1) poles where 
n=l,2,3 . . . 

Now assume that the poles are perfect hyperbo- 
las but that the mechanical construction is such 
that the opposite pole spacing A is not equal to 
B, but a = b = c = d. This is one way in which 
the octupole perturbation can be generated. The 
other usual way is when A = B, a = c, and b = d, 
but a#b. From a slight extension of this analy- 
sis one can see how these misalignments can account 
for the whoie set of mlultipcles with two-fold sym- 
metry. These are the multipoles contained in the 
set octupole, lb-pole, 24-pole, 32-pole, or 2(4n) 
poles where n=l,2,3 . . . 

In quadrupoles constructed such that a # c or 
b # d, various higher poles can occur; these are in 
general poles that are assymmetric, that is, they 
have neither two- nor four-fold symmetry. These 
poles are the dipole, sextupole, decapole, 14-pole, 
18-pole, or 2(4n*l) poles where n = 0, 1, 2, 3 . . . 

Spectroscopy of Multipoles 
Interpretation of Harmonic Spectrum 

It is apparent that one of the most important 
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methods of evaluating a multipole magnet is the 
determination of the harmonic content of its field. 
In any practical multipole magnet there are some 
higher harmonic fields present, and these, if suf- 
ficiently large, can affect the beam dynamics in 
the magnet. In some cases it is desirable to build 
xmgnets in which there is a large harmonic content 
in order to correct optical errors. One can use 
the information about the harmonics of a multipole 
magnet to design special pole faces3'* or fringing 
fields for the magnetic multipoles. 

The magnetic scalar potentials for various mul- 
tipoles can be written as 

u= 
z 

Ban (sin ne) r" 

for quadrupole fields, 

u= c B3n (sin no) rn 

n=3,9,15,21, -. - 

for sextupole fields, and 

ll= 7 B (cos n.6') rn 
L-J 4n 

n=4,12,20, . . . 

for octupole fields. 
When the proper boundary conditions are satis- 

fied, only one term remains in the summation. For 
example, in the case of the quadrupole only B2a 
is the non-vanishing coefficient when the equipo- 
tential pole tip surfaces are in the form of equi- 
lateral hyperbolas in the X-Y coordinate system. 
By measuring B2,6> B2,io . . . in a quadrupole, one 
actually gets a measure of how well the pole faces 
approach the theoretical shape. In the case of 
pole saturation, because of ihe distortion of the 
ideal equipotential surfaces, the higher harmonic 
content increases. In a quadrupole, for example, 
B B will be non-vanishing at high field 
v%%s z&g when at low field only B,, is not 
zero. If the symmetry conditions in a quadrupole 
are not completely satisfied, other coefficients 
like B3n, n = 3, 9, 15, 21 . . . . and B,,, n = 4, 
12, 20 . . . will be present. Then measuring B,, 
and B4*, one might draw conclusions about the 
quadrupole symmetry. One can analyze other multi- 
poles in a similar manner. 

To summarize, one might say that by measuring 
Bmn in a multipole (mn), where n = m, m+2n, m+4n, 
. . . . one gets a measure of how well the actual mul- 

tipole approaches the theoretical muitipole with 
ideal boundary conditions, and by measuring Bmln' 
where m' = m+l, m+2, . . . . n' = m+l, (m+l)+2n, 
(m+2)+2n, one obtains a measurement of the symmetry 
of the multipole. 
Harmonic Measurement System 

The existing harmonic content with all the am- 
plitudes (B,) can be considered as the spectrum of 
the multipole, Naturally the amplitudes of the 
higher harmonics decrease rapidly with harmonic 
numbers. For exampie, in a quadrupole magnet, t'ne 
pure quadrupole field (B,) is much larger than 
other multipole field components, and some provi- 
sion must be made to cancei or at least reduce the 

quadrupole field coefficient sufficiently so that 
its presence does not mask the other multipole co- 
efficients. 

Basically, the harmonic measurement system is 
a coil rotating in the aperture of the magnei at a 
fixed frequency. The output from the coil is 
Fourier-analyzed with a narrow bandwidth wave ana- 
lyzer and the amplitude of each Fourier coefficient 
is noted. In this system the Fourier coefficient 
corresponding to the frequency of rotation u! of 
the coil is the dipole field; the coefficient cor- 
responding to frequency 2u1 is the quadrupole 
field; the coefficient of ti is the sextupole 
field, and so forth for higher fields. The rotat- 
ing coil can be calibrated in multipole calibrating 
magnets of known field strength, or its response 
can be calculated for a given coil geometry. 
Coil Design and Calibration 

The rotating coil used for harmonic analysis 
in a multipole field should be sensitive to the 
harmonic field components which are being measured. 
If a field component with large harmonic number is 
measured, it is desirable to suppress the coil sen- 
sitivity for the other harmonics, particularly when 
the corresponding fields are large in magnitude. 
For example, if one desires to measure B,, in a 
quadrupole field, it is necessary to minimize the 
coil response for B,; otherwise the small signal 
corresponding to B,, would be lost in the large 
signal background. With special coil design one 
can decrease the coil sensitivity for any one 
harmonic. 

W. H. Lamb calculated5 the induced voltage in a 
rotating asymmetric coil where two return bundles 
are used. The return bundles are located at an 
angle 0 from the main bundle so that 8' = - Q  
for one and 8' = + a for the other. Figure 2 
shows the arrangement of the wire bundles on the 
rotating coil. The induced voltage in this coil is 
given as 

En = po&LA --& sin no' 

[( 
r n+l - an+l n+l -b n+l 2 cos n9' 

la rb 1 
With this formula the coil response En/El can be 
calculated, and using this formula it is possible 
to make the voltage response of the coil for the 
n-th harmonic vanish. For examnle. the condition 
that the voltage response be zero for B, is 
such that 

[(rza - a') -(b' - rcb) 2 cos 2o]= 0 

Because this particular coil has a response charac- 
teristic that is more sensitive for measuring B,, 
than it is for B,, it is particularly useful for 
measuring the sextupole field in a quadrupole- 
sextupole magnet. Figure 3 is a representative 
spectrum of a quadrupole magnet made with a simple 
asymmetric loop with the return wire placed on the 
axis of the coil. 
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Magnetic Center Location 

Experimental 

In general, the magnetic center of a quadru- 
pole magnet does not correspond to the mechanical 
center. For alignment of a quadrupole, the rela- 
tionship of the magnetic center to the mechanical 
center must be known. 

Rotating coils provide one method. Because the 
field at the center of a quadrupole is zero, the 
output from a symmetrical rotating coil is a mini- 
mum when the coil is at the center. Thus, by using 
a rotating coil and moving it around until its out- 
put is a minimum, one can locate the center. It 
is very difficult to reference the spatial location 
of the magnetic center as determined by this method 
to the mechanical structure of the magnet because 
of (1) uncertainty of the location of the coil axis 
and (2) runout of the coil shaft. Considering these 
factors, probably the best center determination 
possible by this method is kO.005 inches. 

In our case the method of magnetic center de- 
termination is the use of a colloidal suspension 
of ferrous oxide particles. This technique was 
proposed and used by R. M. Johnson' to locate the 
nagnetic center in quadrupole fields. The physical 
nechanism of this method was explained recently7 
as scattering of polarized light on aligned colloi- 
dal particles in multipole fields. In this system 
a small vial of the suspension is placed in the 
magnetic quadrupole field such that the mechanical 
center falls within the area of the vial. White 
plane-polarized light is directed through the vial 
of solution from one end of the magnet. The exper- 
imental arrangement is shown in Fig. 4. The ob- 
server at the opposite end of the magnet then looks 
at the vial through a plane-polarizing analyzer 
which is crossed with the polarizer of incoming 
light such that complete cancellation of light 
should occur when the magnetic field is turned off. 
With magnetic field, complete cancellation does 
not occur except along two mutually perpendicular 
sxea which cross at the magnetic center of the 
quadrupole. The accuracy of this type of center 
determination is of the order of *O.OOl inch. The 
vial-with the polarizer and analyzer is mounted in 
a small carriage which can be moved along the Z 
axis of the magnet. With this device the "magnetic 
center line" can be measured. 

The scattering centers in the colloidal solu- 
tion are Fe,0 crystallites. The preparation cf 
such a colloi .I al solution is described by D. J. 
Craik and P. M. Griffiths.8 The individual crystal- 
lites of the magnetite (Fe304) have been measured 
with an electron microscope by Craikg and it was 
found that the particles are of the order of 1OO'A. 
The alignment of these magnetite crystallite6 in 
the magnetic field might be explained by the theory 
of paramagnetic alignment. 
Symmetry Relations in Multipole Fields 

The theory of anisotropic light scattering is 
complicated and a rigorous solution of the problem 
exists only in a few special cases. In our case 
the symmetry properties of the magnetic multipoles 
allow a number of simplifications in the calcula- 
tion of the intensity distribution ofthe scattering 

pattern. Such a symmetry reiation in a quadr-upole 
field is that any line passing through the center 
of symmetry with an angle 6, with respect tc the 
X axis, will cross the magnetic field lines at an 
angle S, where $ = - 3~12 + 26. In order to prove 
this relation, write the magnetic field in a quad- 
rupole in the following form 

where u = 2B2xY is the scalar magnetic potential. 
Thus 

ii =  2(1Y + 3x) 

The line which gives direction of the magnetic field 
at point Q intersects the X axis with an angle y 
(see Fig. 5) which is given by 

(3, x rcos6 tany=-=-=-= 

@ix y rsinE 
Cot 6 = tan(rr/2 - 6) 

or y =  x/2 - 6. Hence, since Y+fl - 6 +  B = r, 
f3 =  rr/2 +  26. But 6 is defined as the angle 
between two vectors; therefore, one must consider 
S and S + n as the angles between the direction 
of the magnetic field line at point Q and the 
line passing thrc-.gh the lenter. rn; s x,-elas 

which agrees with the observed placement of lines. 
Measurement of the Effective Length in Nuitipoles 

The action of a transverse magnetic field on a 
particle beam can be, characterized by the integral 

Br(r,z)dz 
-m 

where the line integral is taken along the particle 
trajectory in the magnet system, and B,(r,z) is 
the magnitude of the transverse field component at 
a distance r from the center line (Oz) of the 
multipole field. 

It is also very useful, especially for magneto- 
optical calculations, to define equivalent lengths 
for the multipole field components in a magnet sys- 
tem. Using the analog to the definition of the 
equivalent length in a dipoF field, 

L, =  & o _,J' B(z)dz 

one can define the effective length of the qdadru- 
pole field as 

The effective length of a quadrupole is one of 
its most important characteristics because it is 
used in the matrix element when calculating the beam 
dynamics in a magnetic lens system. In general, the 
effective length is a function of the radial posi- 
tion r from the magnetic axis of the quadrupole. 
There are several methods of finding the effective 



length. One involves using normal mapping proce- 
dures, plotting the field at a point r as a func- 
tion of the axial position z for -0~ < z < m  and 
integrating the area under the curve from -m to Do. 
This area is then divided by the maximum field, and 
thus the effective length of the dipole field IR 
as a function of radial position is obtained. 
From this, using the formula 

aL (r) 
L2(r) = Li(r) + r 1 

ar 

the length of the quadrupole field L2 is calcu- 
lable. 

A second method of effective length determina- 
tion involvesl$he use of four coils rotating on a 
single shaft. Two of the coils are long compared 
to the field while two are located in the central 
field of the magnet. The outputs from the long and 
short coils add in a quadrupole field but exactly 
cancel in a dipole field. The total output sinu- 
soidalwave from the long coils is divided down on 
a precision potentiometer and compared with the 
total output sinusoidal wave from the short coils. 
The phase of the outputs is exactly the same be- 
cause the long and short coils are built in the 
same plane. The two signals are thus compared un- 
til the divider potentiometer is set for complete 
cancellation of signals. Cancellation is facili- 
tated by inversion of one signal with respect to 
the other, so that when the signals are equal they 
appear as a null. Then, measuring the ratio of the 
induced voltages and knowing the c:il dimensions, 
the effective length of the quadruple field is 
calculable. In this way, accuracy of ab3t C.l$ 
is assured. 

Gradient Measurement in Multipoles 

One of the best methods of specifying the 
quality of a given quadrupole is the constancy of 
the gradient aBr/ar over the aperture of the mag- 
net. Because the direction of the field vector is 
a function of azimuthal angle in the aperture, the 
gradient is usually determined along the two axes, 
one principal and one secondary. The simplest 
method of examining the deviation of the gradient 
along an axis is by normalizing the gradient at a 
point to the gradient at the center of the magnet. 
Thus referring to the axis X, the gradient devia- 
tion would be expressed as a function of X as 

and along the axis x the equivalent expression 
would be 

Among the methods available to measure these 
quantities, one is to use a pair of closely matched 
linear hall probes mounted so that they are spaced 
6Y for the measurement of the gradient versus dis- 
placement in X and Ax for the measurement of the 
gradient versus displacement in x (see Fig. 6). 

Since the procedure for making the measurement 

is essentially similar along the twc axes, this 
description will describe the measurement in x 
only. The difference between the hall probes out- 
put is determined for the case when the probes are 
at the center of the magnet, and this difference 
signal is then nulled with an external voltage. 
Next, the probes as a unit are displaced along the 
principal axis and the change in difference versus 
position from the center is recorded. This opera- 
tion yields the quantity aB/ax - dB/oxIx=o. Normal- 
izing this to the gradient at the center of the 
aperture waxI x=0' one obtains 

the nonlinearity of the gradient over the aperture. 
In an ideal quadrupole magnet this would be zero 
for all values of x. In a practical quadrupole 
there is some nonlinearity caused by the factors 
mentioned earlier. Referring to that discussion, 
one can construct what nonlinearity of gradient 
will result from the truncation of the poles and 
from various misalignments and asymmetries in the 
construction. 
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a) IDEAL (THEORETICAL) QUADRUPOLE 

. 

b) PRACTICAL QUADRUPOLE. THE SHAPE OF 
THE POLE SURFACES DOES NOT EXACTLY 
CORRESPOND TO A TRUE HYPERBOLA AND 
THE POLES HAVE BEEN TRUNCATED 
LATERALLY TO PROVIDE SPACE FOR COILS. 

FIG. 1 
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FIG. 2 -GEOMETRY OF COIL ARRANGEMENT 
ON ROTATING ASYMMETRICAL COIL. 
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FIG.3 - TYPICAL SPECTRUM OF QUADRUPOLE MAGNET, COIL ROTATING AT FREQUENCY d 
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FIG. k-- EXPERIMENTAL SETUP FOR MAGNETIC CENTER LOCATION IN QUADRUWLE 1364-A 
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FIG. 5- INTERRELATION OF ANGLES y, 8, AND p IN 
A MAGNETIC FIELD W ITH QUADRUPOLE SYMMETRY. 
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PROBE ARRANGEMENT FOR MAKING GRADIENT 
MEASUREMENTS IN QUADRUPOLES 


