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ABSTRACT 

A general method is proposed for the measurement of the polari- 

zation and alignment of a particle of arbitrary spin from the analysis 

of its three body decays. This method provides a procedure for the 

determination of spin and parity of the decaying system which is in- 

dependent of the dynamics of the decay process.. The procedure is 

closely related to the one currently used for two-body reactions except 

that the normal to the decay-plane replaces the center-of-mass momentum 

as an analyzer. The general formalism is developed and illustrated by 

two examples; three pion decays and baryon-two pion decays. 
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I. INTRODUCTION 

J 

> 

. 

The description of three interacting bodies is a well seasoned and 

familiar problem which has received a revived interest by particle physi- 

cists during the past few years.ij2 The fact that increasing numbers of 

particles (or resonances) of high mass are being experimentally discovered 

which have appreciable three body decay modes behooves us to examine the 

three body problem from the standpoint of a decaying system. However, w,e 

do not consider the dynamics of the decay process but merely make use of 

the consequences of rotational and inversion invariance, The treatment 

presented here is therefore completely genera&exhibiting the kind of 

angular and polarization distributions which are consistent with a system 

of arbitrary spin decaying into three particles with spin. Such distribu- 

tions, when compared with experiment, provide a possible determination of 

the spin and parity of the decaying particle and eventually a means to 

measure its polarization and alignment, quantities of great interest for 

the understanding of its production mechanism.3 Our method applied to three 

body decays is closely related to the one currently used in the analysis of 

two body decays except that the normal to the decay plane replaces the h 

center-of-mass momentum as an analyzer of the polarization. Formulae 

giving the angular and polarization distributions in terms of the decay- 

ing particle density matrix are in fact written in a very similar form for 

both cases. 
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As is well known, the description of a three body system requires 

five variables. A convenient choice of these variables consists of two 

energies and three angles. The two energies are taken to be the center- 

,;* of-mass energy of two decay particles whose domain of variation defines a 

Dalitz plot. The three angles can be chosen as those which define completely 
L 

the orientation of the decay plane. In the treatment presented here we con- 

sider only the orientation of the decay plane and sum over all energy con- 

figurations, or, in some eases, separately over different regions of the 

Dalitz plot. In this sense, the distributions presented here are the 

complement of the Dalitz plot distribution where all angular configurations 

are averaged over, and where the three body system is studied in terms of 

its energy distribution. 4 

The analysis of the energy distribution in terms of a Dalitz plot has 

the advantage of giving useful information even if the decaying particle is 

neither polarized nor aligned. Nevertheless, its practical interest is bou_rld 

to the dominance of a very small number of independent amplitudes. In many 

cases the general analysis suggested here, which does not rely on any dynamical 

assumptions governing the decay process, can be used to determine the spin 

and parity of a decaying state via its three-body decay alone. When the 

system has in addition a two-body decay mode the combined analysis of both 

two and three body modes can be applied in unison in order to obtain improved 

and more accurate knowledge of the system's quantum numbers. 5 Tn all cases 

it could be used in order to get information about the production mechanisms 

by means of polarization and alignment analyzation. 
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The angular distribution of the normal to the decay plane is readily 

obtained when three free relativistic particle states of well defined 

angular momentum J and parity are constructed using the general projection 

method of Wigner.6 The angular dependence of the decay amplitude is given 

as a linear combination of rotation matrix elements corresponding to the 

2J + 1 dimensional representation of the rotation group: D;,,(%P,d. 

i' 

" 

The arguments are three Euler angles, which can be chosen as the azimutha 

and polar angles of the normal to the decay plane and a third angle, y, re- 

ferring to a rotation of the decay plane around the normal. These angles 

. 

then completely specify the orientation of the decay plane. This is a 

straightfor-ward extension to three particles of a procedure already used 

to construct two particle states.7 

The general formalism is presented in Section II, and a general ex- 

pression for the angular distribution of the normal to the decay plane is 

obtained.6 The simplifications due to parity conservation and possible 

identity of two of the particles are also discussed. The formalism is 

then applied in Section III to the problem of the decay into three spin 

zero articles and in Section IV to the problem of the decay into two spin 

zero and one spin l/2 particle. The distribution of the polarization o,f 

the decay spin l/2 particle is discussed in detail and we stress the analogy 

between the formulae obtained and the ones currently used for two body decays 

into a spin zero and a spin l/2 particle. In both Sections III and IV we 

'1 

also discuss decays into a pion and a resonance which eventually decays 

into two pions or a pion and a hyperon depending on its quantum numbers. 
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In addition to giving the general formalism the most simple cases are 

explicitly treated. In Section III angular distributions are given for 

the decay of spin 1' and 2 A into three pions. In Section IV angular dis- 

C. tribution of the normal to the decay plane, as well as polarization dis- 

c- 

tributions for the decay spin l/2 hyperon are given for the decaying state 

having spin l/2 and spin 3/2. 

The D;Tm functions required for explicit calculations with spins 

less than or equal to 3 are given in an appendix. 

II. GENERAL FORMALISM 

Three Particle States 

A quantum state containing 3 free particles is completely defined by 

the momentum and polarization of each particle. Such a state may be con- 

structed as the direct product of three one-particle states 1% +. ,Ai > 

where !i and Ai stand respectively for the momentum and helicity of the 

i-th particle. To be more precise we define the state 1% +.,hi > as done 

in Reference (7,)i namely that 

-+ 
1% ., hi > = R 

'Piei 1 Qi, hi > 
c 

(1) 

where ; 1 &, hi > is an helicity state with eigenvalue h. and momentum 1 

c 'i along the positive z axis (l&l = 1 <I).' Rvseio stands for the rota- 

tion operator, with Euler angles cpi,Bi,O. (pi and Qi are respectively 

the azimuthal and polar angles of with respect to the fixed coordinate 
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system x y'z (Figure 1). The helicity, i.e., the component of the total 

angular momentum of the particle along its momentum, is obviously invariant 

under rotition. 

. 

A three particle state is written asi' 

It is convenient to describe the decay in the center-of-mass system 

where 

Q- “s2 + G3 = 0 (3) 

The three momenta then form a triangle in a plane, the normal of which is 

defined as a unit vector along zi X & . The consen;ation of energy gives 

the further restriction 

(4) 

where m is the mass of the decaying particle. 
0 

A more convenient description of this state is in terms of a different 

set of quantum numbers which are the energies 5.J % and CD of the three 
3 

particles restricted by (4) - and three Euler angles a, @, 7 which specify 

the orientation of the momentum triangle in space (Figure 2). 

The rotation angles are defined by starting from a standard position 
. 

where the triangle is in the x-y plane. As a convention we take G1 + "9, 

along the x axis and the normal ;i X 'Tg, along the z axis. The angles * 
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CX and B are respectively chosen as the azimuthal and polar angles of the 

normal to the decay plane. The angle 7 refers to a rotation around the 

normal and is illustrated in Figure 2.. All helicities remain unchanged 

through these three successiire rotations. We then write a three particle 

state thus defined as 

(5) 

With the set of states (2) the density of final states dpF for the 

three body decay is written as 

or as usually done 

(6) 
3 

where cp 
12 

and @i2 are the azimuthal and polar angles of q 
2 

with respect 

to ;;, . Integration with respect to cos 0i2.' cpiZJ cos 9, and (pi gives a 

density distribution in the miJ w2 plane. This is the'Dalitz plot. 

With the states (5), the density of states is obtained by replacing 

Ql d cos e1 dvPlz by dh: d cos @ d y in (6). The Jacobian determinant 

is equal to 1.i' 
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In their center-of-mass system the three decay particles are in a 
. 

state of well defined angular momentum and, if we consider only decays 

via strong or electromagnetic interactions, also parity. The total 

angular momentum is equal to the spin j of the decaying particle. Such 

a state is written as 

I to& cn2h2; 0) h 33; jmM> (7) 7 

where m is the eigenvalue of the component of angular momentum operator J‘ 

along a fixed axis chosen as the z axis; Mis the eigenvalue of angular 

', momentum along the.normal to the decay plane, which can be used together 

with the other observables J2 and Ji to specify the state. 

The angular distribution of the normal to the decay plane, obtained 

from a pure state of definite m and M such as (7)J is given by 

a -= 
d!J \ 

IAl* dy dwldco 
2 

(8) 

where dR = sin S d $ d Q. and where 

In order to continue further we need the r.elationship between a state _ , 

of definite angular momentum such as (7) and a state'described in terms of 
r 

Euler angles. To achieve this we follow the procedure of Wigner6 and write 
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where the integration is performed over all rotations, namely 

o<u<2x O<B<X O<y<2fl - - - - - - 

As is well known these angles can be defined as in Figure 2 or just 

as well y may be considered as the angle of the third rotation per- 

formed around the normal to the decay plane. As easily checked using the 

group property of the D functions, (9) transforms under rotations as a 

state of total angular momentum j with z component. m and component M.along 

the normal to the decay plane, a rotationally invariant quantity. The 

energy and helicity of each particle are invariant under rotations and 

their same eigenvalues appear on both sides of (9). It should be remarked- 

that we do not obtain in this way the most convenient orthonormal set of 

states for three free particles similar to the case of the two body problem. 6 

Such states have been explicitly construct&d by Wicki in coupling two 

particles together and then coupling the third one to the system con- 

etructed from the first two. A quantum state with eigenvalues j m and M 

will be in general described by a wave function of u)~ and u2 which 

multiplies the angular wave function (10). The angular distribution of 

the normal which is obtained by integration over the Dalitz plot (8) will 

average over all configurations the final state interaction of two of the 

decay particles in a particular angular momentum state. 

Using the angular momentum eigenstate (9) we have that . 

A =D$ (a B 7) (10) 
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A normalization coefficient could appear in (10). It is however inde- 

Jpendent of m and M and therefore irrelevant for our purposes. 

The Normal to the Decay Plane as an Analyzer 

We now turn to the decay of a particle of spin j whose state is 

not pure but rather a statistical mixture of states described by a 

density matrix pmt. The eigenvalues m and mf run from -j to +j in 

integer steps and refer to the z axis. The angular distribution of the 

normal to the decay plane can be obtained for each set of eigenvalues 

of the final particle helicities. Using (10) the angular distribution 

reads as 

The phenomenological decay amplitudes FM which have been introduced are 

functions of rotationally invariant quantities only. They depend in general 

on M but not on m. 

Since the 7 dependence of a D function is simply a factor .-iMy e 

interference between different FM amplitudes, vanishes in the normal 

angular distribution when it is integrated over 7. 

If everything else but the direction of the normal to the decay plane 

, 

is summed over, a simple relation is obtained for the angular distribution 

of the normal c 

. 

- 10 - 



I 

where 

I I RM 
2=2Kc dw dw 

1 2 
FM k'& ; a2h2; a3h3 ) 2 I 

Equation (11) relates the angular distribution of the normal to the 

density matrix of the initial particle in terms of the 2j + 1 decay 

parameters RM. 

This also shows that the maximum number of independent decay ampli- 

tudes, as far as the orientation of the decay plane is considered,is 

actually 2j + 1 for each set of final helicities. Conservation of parity 

in the decay process further reduces this number as will be shown later. 

This number of independent decay amplitudes is also equal to the maximum 

number of linearly independent tensors, built with the particle momenta, 

in terms of which the decay amplitudes can also be written. 

In order to use (11) one may calculate the required D functions. 

Alternatively, use of the Clebsch-Gordan series allows (11) to be written 

as 

dN c -= 
dR 

c c C(jj& \mr,-m) C(jjtlM,-M)(-l)"-" 
mm' %mr M& 

where we have introduced standard Ciebsch-Gordan coefficients.12 

. The angular distribution is thus given by a sum of spher'ical harmonics 

with highest order 2j. This generalizes the well known theorem on the 

complexity of the angular distribution in 2-body reactions to the case of 

3 bodies in terms of the normal to the decay plane. 
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It is conve?lient to group together terms with opposite values of 
. 

M and to write (11) as 

Re Pmr cos(m-m')a- Lm pmmt sin (m-m')0 

(13) 

where we have introduced the notations -" 

and G = $( lRMlz 5 IR-Mii) , R+ L 0 and R- may be either positive 

or negative. The D functions have been writtenI as 

-imW 
e ditM (B) eBiMy 

As follows from their defitition, and the relation 

d;,m (p) = (..I++~' d;;i,_, k-p) 

the Z functions satisfy the relation 

zr (p) = i (-l)m-mr z;J$ (X-B) 

If we invert the direction of the normal which, in terms of 

the Euler angles means the following transformation CX II + a, 

B +JI - @, then the angular function which goes with 4 is unchanged 

while-the function which goes with Ri changes sign as is obvious 

from (13)= Hence the normal direction is not determined when two 

particles are identical and when the summation over all available 

energies is prformed according to (8). In that CD.SP~ all 
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terms proportional 

keep the direction 

to 5 will.vanish identically. In order to 

of the normal well defined it is necessary to sum 

independently on parts of the Dalitz plot, for instance separately for 

0) >w and w <o . 
1 .2 1 2 

\ We can further group together terms wit'n opposite values of both 

m and rn' and write the angular distribution of the normal as 
.' 

dN -= 
dR c cos(m-m*) CX Re + (-l)m-mr 

M>O t pmt Re p-m-m! ) 
- 

( 
. 

- sin(m-m')CX Im p,,, -(-l)m-m' Im P-m,, Z$ (B) R; 

+ cos(m-ml) cx 
I ( 

Re p,,, -(-l>m"' Re p-m-m' ) 

- sin(m-m') a Im p,,, + (-l)m-m' Jin p,,, Z'j$ (p) R; 

Due to the hermiticity of the density ti-trix, and the definition of the 

Z functions, terms where m and m* are interchanged give the same contri- 

bution. As follows from their definition ZEi (9) I 0, for integer j 

and 2,:: (B) E 0, for half integer j. 

Parity Conservation 

If parity is conserved in the decay we have to replace (7) by an 

eigenstate of the parity operator with the proper eigenvalue. We then 

consider the action of the parity operator P on an angular momentum eigen- 

state (9). We have that 

p I%h 2 2' 3 3 wh cnA;jmM>= (a&) Ran P 1 CL@~,U)~~~,UJ~~~,O,O,O > da sin PdBdr 
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since the parity operator P commutes with the rotation operator. We now 

use the fact that the parity operation can be defined as the product of a 

reflection with respect to a plane times a rotation of angle r[ around a 

normal to that plane. The plane chosen is the decay plane of the reference 

state. 

I CDh wh wh 1 1J 2 2, 9 3,0,0,0 > i.e., the x-y plane (Figure 2). I.3 

We denote by Y the reflection operator -k.th respect to that plane and write 

p = ,+ifiJz y* The action of Y changes the sign of all helicities. In 

fact the following relation holds13 

A. 
y 1 qp2~2;~3~3;o,w > = y-12v3 C-1) 

s1 -A1+S2 -h2+S3 -?; 
I (U1-A~;w,-h2;~3-h3;0'0,0 > 

where S and 7 stand for the spin and intrinsic parity of each particle. 

It follows that 

?I u.J~~~;w~~~;o) h ;j m M > = ~,~2~3(-1) 
s, -h,+S,-h2+S3-h3 

33 

+isrJz 
(@7) Rwr e 

I co,-h,;w,-h,;~~~-h~,0,0,0 > da sin BdBdy 

In order to express the state after the parity operation in terms of the 

original states (9) we use Rap7 = eviaJz eeiBJy e-iyJz and simply add 

-II to the first rotation angle thus replacing D j$ b B 7) by 

b-1) M D 2 (al&y -I- II). In this manner one obtains that . 

P u+?,l;r32h2;a)31,3;jtil > = (-1) M(-l) I 

s1 -h1+S2 -h2+S3 -A3 
71~273 I 

co1 -A, ; U12 -A,; m3 -7, ,;Jm-M > _ 

(15) 
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Applyiw (15) t o a 3-pion state we find the relation that 

This yields an important result for 3-pion decays, namely that if the 

parity of the decaying particle is even (odd) only odd (even) values of 

M contribute. 

For a one baryon and two pion state we take A1 = $ and get 

where E is the relative parity between the initi.al and final baryon. 

Whereas only even or odd values of M contribute to a final 31~ state, for 

a two pion one baryon state, all values of M contribute. However we 

consider the proper parity states given by 

(17) 

Either parity case will give the same angular distribution since states _ 

of different helicities are orthogonal. 

One of the Momentum as an Analyzer 

The basic quantum states (5), which we have introduced, are labelled 

by Euler angles which refer to the direction of the normal. We could 

just as well consider these 3 angles as defining the direction of one 

of the three momenta, q, say, and a further rotation of q2 around q,. 

We can follow the same steps and obtain a formula identical to (11) for 
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the angular distribution of one of the momenta. The functions 

will of course be different. Equation (14) is still valid and gives the I 

polarization of the decaying particle in terms of the distribution of 

one of the momenta.14 If the analysis in terms of the normal turns 

out to be a little easier to work through, it is due to the simple 

form in which parity conservation is expressed. For a three pion de- 

cay, we simply had to eliminate either even or odd values of M. When 

the three Euler angles refer to one momentum it is found that (16) has 

to be replaced by the following relation: 

If the parity of the decaying particle is (-l)j, the decay amplitude, 

94 and R -M are equal (opposite) if M is odd (even) and there is no 14 t 0 

amplitude. If the parity is - (-1)j the opposite assignment holds. For 

each M value, both parity states give the same angular distribution. 

Identical Particles 

The identity of two (or all three) particles will imply further re- 

lations among the decay amplitudes. In the examples considered in Sections 

III and IV for instance, they will apply when two a-mesons have the same 

charge or are in an eigenstate of isotopic spin. If two identical particles 

are produced, the decay state has to be symmetrical (antisymmetrical) with 

respect to the exchange of the two particles according to their Bose-Einstein 
. 

(Fermi-Dirac) statistics. In order to construct states with such permu- 

tation property, we introduce a permutation operator P 12 (exchange of 
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particle 1 and 2 leaving 3 unchanged) and apply it on both sides of (9) 

(18) 

The set of angles CI S 7 which now appears in the Ket vector no longer refers 

to the normal to the decay plane but rather to a final rotation of negative 

angle around an axis opposite to the normal. Since we are defining the set 

of angles with respect to the normal this actually corresponds to a new 

set, namely CX f fi, li - .S and 2~ - 7. The rotation defined by'the set of 

angles CI + rl and ti - f3 brings G1 + & in a direction identical to the 

one obtained using cx and, S. A rotation of angle 2fi - 7 around-the new 

normal then gives the same configuration as the one obtajned with the set 

of angles CY,S, and ,y; Since we integrate over all rotation angles, we 

may replace the arguments of the D function and write (18) as 

- II, 3-r - @,2fi - 7) is the new angular part of the wave function 

describing the orientation of the normal to the decay plane. 

Transforming the D functions and using the definition of our state 
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. We note that, as a consequence of our convention, the applica- . 

tion of P 
12 

twice is equivalent to a rotation of 2fl. 

The decay states being symmetrical (antismetrical) with respect 

to the exchange of the two particles have amplitudes FM(~1h1,~2$) 

which will satisfy the relation 

When the identical particles are spin zero mesons the helicity indices 

are suppressed and we have in both cases 

I 2 
(20) 

When integration over the whole Dalitz plot is performed according to (8), 

we find that opposite values of M give the same angular distribution for 

the normal to the decay plane, and therefore Ri does not contribute. 

III. DECAY INTO 3 SPINI.ESS PARTICLES 

We now consider in more detail the decay of a particle of arbitrary 

integer spin j into three non identical spinless particles. At first we 

do not take into account any restrictions resulting from possible isotopic 

spin configurations. 

The 2j + 1 a priori independent decay amplitudes are reduced by 

parity conservation according to (15) and we obtain the maximum number 

. 

of ind.ependent a.mplitudes as shown in Table I. 
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In the most simple cases we have: one amplitude for O- and l-;'two 

independent amplitudes for 1+ and 2'; three independent amplitudes 

for 2- and 3-, etc. This result may be obtained by other approaches, 

. 

but not in such a simple way. We can, for example, exhibit sets of 

independent amplitudes written in terms of Cartesian tensors and which 

for the spin 1 and 2 cases take the form 

I- GE VPP 
,vpaqlqZq3 

i+ G1(\ + q2jp + G2(s, - q21cl , 

2+ 
t :G$ql + g2jp + G&q - q2’p) E Ypoaq~q~q~ 

The G's which are the coefficients of the independent tensors are 

Lorentz invariant quantities. They are assumed to be analytic functions 

of s, t and uI the center-of-mass energy squared of the three particles 

taken two by two, i.e.,l" 

s = (3 + CQ”, u = (3 + q2j2, t = (9 + q212 w 

The functions 
I I RM 2 defined above will in general be linear combinations 

of products of two of the tensor invariants G. with coefficients that are 
1 

functions of s, t, or u; 

Taking account of the conservation of parity we next give the ex- 

plicit expressions for the angular distribution of the normal t,o the decay 
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plane. For the case of the decaying prticle having spin and parity 

l- we have only the M = 0 amplitude and R, = 0. Rz is the common 

factor to the angular distribution which following (14) takes the form 

dJJ R+ -= 
dfi 0 p,, + '-1-1 

+ 2 [cos cx (Re p,, - Re pwlo) - sin cx (Im pl, -t Im p-,, flZ:z (B) 

(23) 

We readily get the Z functions from the table of d functions given in 

the Appendix and obtain 

dN = R+ 
dR o 2 (308~ B P,, + sin2 fhl, + p-,-,) 

- 2fi (Re plo - Re p-,,) cos cx - (Im plo + Im pmlo ) sin Q 

- 2 sin2 p (Re p,-, cos ~CX - lh pl-, sin 2a) (24) 

This is a well known result. The angular distribution determines six _, 

quantities (including the trace p,, + p,, + p-,-,) of the spin 1 density 

matrix(usually known as the tensorj.al polarization) but leaves undeter- 

mined the three other terms (the vectorial polarization). The fact that 

the vectorial polarization is not determined is because there is only one , 

decay amplitude. The observation of the y distribution would give 

nothing new. 
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We now turn to the pseudo-vector (l+) case. Where there are two 

decay amplitudes corresponding to M = A 1 and the angular distribu- 

tion is a function of two terms, one propotiomlto R: and one pro- 

portional to Ri . It reads 

dN 
dn= R; (P,~ + P-~-~)Z;;+(B) + P,, Z;;+ (B) 

10 
- Re p 

-10 
> - sina (h plo -t h pwlo 4 

P 11 - P -1-l 1 “‘1:- (B) 

cos cx (Re p,, + Re pwlo) - sin a (Im p 
I.0 - Im p-,0 "I;- (PI 

The Z functions are easily calculated yielding the explicit expression 

dN F+ 
t 

1 + cos2B 
xii= '1 (PI1 + P-, 1) 2 + p,, sin2~ 

+&sin B cos P (Re p,, -Re p )cosa - (Imp 
-10 10 

+ Im p 
-10 

) sin ~3 

+ sin2 /3 (cos ~CX Re pl-, - sin 2a Im pXU1) 

+ R- i 
1 ( \ 

P - P ) cos p + 2 sin P vf- 11 -1-l I30 
f Re p 

-10 
) - sin Q 

(Im PIO - = p-,0 
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I 
Provided the two decay amplitudes "1 are both different from zero, 

the vectorial polarization can now be completely determined. One needs 

only the ratio of their absolute values. 

The angular distribution of the normal to the decay plane for a spin 

2 Particle is obtained in the same way. The pertinent CL* functions are 

given in the Appendix. For the 2+ case where there are two independent 

decay amplitudes we obtain for the normal angular distribution 

) + cos2B) + (Pll + p ) -2-2 -.1-l 
5 

3 (cos2@ + cos2 2f3) + p,, 2 sin2 28 - cx Re (p2i - P-,-~) - sin CI 

m. (pzl + p-2-l sin 2p cos2B - 
4 

cos 2a Re (p20 + P-,~) - sin cI Jkn (p20-P-20 

2j3 + (COS 2a Re p 
1-l 

- Sin 2Q In? pl-1)(cos2~ - cos2 28) 

f cos cx RP (p - p ) - sin 0. Pm (p + p 
10 -10 10 

-,,)) 

+ cos ?cl Re (pm,, - P~-~) - sin 3 h (P-21 + P2-1 
( 

sin 28 sin2B 
I 

- ~0s ,!+a Re 9 
( 

- sin kX 11 p 
2-2 ) 1 

sin"B 
2-2 

-I- R- 
1 ( I 

P - P 
22 

-2-2) sin2B co@ + (pi1 - PB1-i) Cos B Cos 2@ 

- ( \ cos a Re (p21 * p-2-1) - sin Qr Im (P,~ - p-, i), sin B (3 cos2B - 1) 
. 

I, COS%f Re (p - p ) - sin2CX Im (p + p ' 
2?0 -20 20 ,-20 

cos Q: Re (plo + pWlo) - sin cx Im (plo - p,io 3 2 sin 2B cos B . 

- t 
cos 32 Re (pW2i + pzml) - sin p Jm (p/ - p 

4 
sin p sin'@ 

L!l 2 -I 

(26) 
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For 2- we have 3 decay amplitudes corresponding respectively to 

Mi C 2 and 0 and thus the decay distribution will be a three para- 

meter expression. We use (14) and the d2 functions given in the 

Appendix and obtain 

P 22 + P-2-2) [ ii 
sin"@ + cos2B I 

1 
+ (P,l + p+l) P sin2@ (1. + cos"B) + p,, g sin4B 

+ cos a Re (p2= - P-,-~) - sin a 3-n (P21 + Pw2 1 _ 1) i sin 28 (3 + cos2pj 
i- ( cos 2a Re (p20 + p -20) - sin zx h (p20 - P-2o) 1 tf- 4 sin2@ (1 + cos2B) 

+ 
( 
cos2cXRe p - sin2OJImp 

1-l l-1 1 
sitip 

+ 
( 

cos Q! Re (plo - pelo) - sin a h (P,~ + P,,~ 
6 

4 G 
sin 28 sin2B 

-( 
cos p Re (P-,~ - P~-~) - sin 2 h (P-,, + pzml 1) t sin 28 sin2 !I3 

+ cos b Re p - sin k Im p 
2-2 

(p22 - p_,-,) $ cos B (1 -I- cos2B) + (pll - P-,-,) sin2B cos f3 

+ cos a Re(pel + pn2-=) - sin a Im (P21 - Pm2 1 
- 4 

$ sin @ (1 + 3 coS2B) 

+ cos 2a Re(p - p sin2p cos p * CQg a 
20 -20 

) - sin a h(PBo + P-2o 
)f- : 

+ cos a Re(p 
( 

+ p,lo) - sin a h(plo - PeLo 
)) 

J- 6 
10 

T s-jn3p .I 

+ 
( 
COSTS Re(p-21 -+ p2-1) - sin 3 fi(Pal - P2 1 )) ; s5..F& 

+ +, 
1 

(P 
22 + P-2-2) Li 

sin% + (p,, + p_,-,) $-Sin2 28 

sin‘$ -- 6 sin23 
\ 

\ 
4 
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- cos a Re (p21 - P-~-~) - sin a h (P21 + Pmzvl ( ) 2 1 
sin 28 sin28 

* 

cos EQ Re (pzo + pmzo) - sin 2cI Im (pZo - PeZo ))J ; 

. 
sin2B (3 cos2B - 1) 

- (20s ‘2Cl Re p - sin m 30 Plwl ) 6 sin2f3 cos2S 
l-1 

d- 
- cos a Re (p 

10 
- pmlo) - sin a 3-a (Plo -+ Pwlo 4 

T sin 28 (3 cos2B - 1) 
, 

9 Re (P-~~ - P~-~) - sin 3 b (pmT1 + pzal 
3 .2 
2 sin B sin 28 

= 

cos b! Re p,-, - sin &CX Im p,-, 

yhen two particles are identical, integrating over the Dalitz plot averages 

to zero those terms proportional to R - and the resulting expressions reduce 

to those given by Dennery and Krzywicki.16 It is however possible to aver- 

age separately over parts of the Dalitz plot ("1 > uZ and m2 > o)~, say) and 

thereby a11037 for non- zero contributions from terms proportional to R . 

Should resonances with higher spin be observed, explicit angular dis- 

tributions of the normal to the decay plane could be readily obtained from 
12 

the Legendre polynomial of order j, P. (cos S) using the following relations. 
J 

d;,m'+l (IQ = 
1 

I 

-m - a a? - + m1 cot B -I- 8 m,m sin B 
(B) 

d( jtm' + l)(j.Tm' ) , i 

dd, (B) = Pj (cos B) ; dlTm (S) = (-l)mr-m d!m,-m(@) = (-l)m'-m dim,(B) 
* 

W 

Relations (24), (;I?), (26) and (27) are somewhat more complicated than neces- _ 

sary since they correspond to the most general density matrix. In many prac- 

tical cases the production mechanism is such that the density matrix has many 

symmetries -&k+n referred to particular aies and many of the terms written 
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in (24-27) will not appear. On the other hand, the observation, or 

absence of particular terms in (24-2';3 would give information on the pro- 

duction process.3 In this respect we recall the relations which express 

parity conservation in a two body production process, when the initial 

beam and target are not polarized. If the z axis to which the density matrix 

is referred is chosen normal to the production plane parity conservation in 

the -production process yields 

P m'm = 0 if m-m' odd 

If the z axis is along the resonance momentum in the center-of-mass system, 

parity conservation in the production process yields17 

P m’m = wm’-m P,! -m (30 1 

This last choice of density matrix has the advantage of being invariant 

under special Lorentz transformations along the resonance momentum i.e., 

when one passes from the production CM system to the decay CM system.18 

We now consider the implication of the identity of the R-mesons. If 

two of the x-mesons are identical, i.e., have the same charge or are in a 

state of well-defined isotopic spin, we have shown in the preceding section 

that 

whether they are symmetrical or antisymmetrical with respect to the ex- 

change of the two particles' charges. It follows that < = $(tFMi2 + lF-M\2) 

and R1i = k (]FM1" - IF-J41" ) are respectively syiirfrlc-tric and ankksynmetric 
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functions of (ULaZ) ol of (s - u). An antisymmetric function does not 

contribute when the distribution is integrated over the Dalitz plot (8). 

In order to observe terms proportional to F$ 2, and determine all 

parts of the decaying particle density matrix, it is necessary to de- 

fine the normal to the decay plane according to the different energies 
. * 

of the two identical particles. As mentioned above this corresponds to 

summing twice over half of the Dalitz plottith cu > w and co K=w . 
1 2 1 2 

In many cases the symmetric function will be dominant since the 

simplest symmetric function is 1 whiJ.e the simplest antisymmetric one 

is (s 4 u)/J?, where M is a phenomenological parameter with the dimension 

of a mass. In any reliable model this mass would be of the order of the 

inverse range of the interaction. If the range is short, i.e., if vector 

mesons play a dominant role,lg the average energy of each particle could 

be less than the inverse range (depending, of course, on how heavy the 

decay particle is) and the antisymmetric term would then be quenched by 

centrifugal barrier effect as opposed to the dominant symmetric one. 

Furthermore, when the decay amplitude is written in terms of 

Cartesian tensors such as (22) as is usually the case when dealing with 

a particular model, the antisymmetric term vanishes when the different teneor 

amplitudes have the same phase, i.e., are relatively real. This can be 

seen as follows: If the spin is j, the decay amplitude is written as a 

Cartesian tensor or order j. It is constructed with the two linearly 

independent vectors available, for instance q = q - q and p = q + q 
1 2 1 2 

where q and q are the momenta of the two identical pions. The decay 
1 2 
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amplitude is a linear combination of monomial expression of the type 

Gk Pi, Pi2 '*. Pi, gin+r .'. 9iJ (31) 

The density matrix element constructed in tensor form pi ...i . . . . . 
1 JJJ 1 JJ 

contributes to the angular distribution a term 

c Gk Go Pi 
“‘%J 'ji "'9jJ pi,...iJ,jl...jJ 

k1 1 

where the indices of the sets ! * ,I I and I 
running from 1 to 3 refer 

either to p or q components depending on the subscript k,&.... We can apply 

the Hermitian property of the density matrix to write the decay distribu- 

tion as 

Using the fact that the whole decay amplitude is symmetrical with respect to 

the exchange of the two identical particles we have that if Gk is sym- 

metrical (antisymmetrical), the associated tensor contains a component of 

q an even (odd) number of times. Inspection then shows that odd powers of 

components of the normal to the decay plane, i.e., terms of the form 

nk = Piqj - 9iPj J 
which correspond to terms linear in cos p or sin p in 
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the angular distribution are obtained only in the terms proportional to 

ImjG Gxl 1 kJaj' 

. 

In order to fully determine the decaying particle density matrix we 

see that it is necessary to hav e amplitudes of different phases. This is 

necessarily the case in 3 pion decays when a two pion resonance (the p meson) 

can actually be produced. 9 

To illustrate this point we consider the decay of a pseudo vector 

particle A into a p II state with the subsequent decay of' the p into 

two pions (Figure 3). We introduce the unsymmetrized A p SC decay ampli- 

tude as 

g, ‘A EP + g2kA’q2)kp*q2) 

and a psrrc decay amplitude 

where E, and E n respectively stand for the linear polarization vectors 

of the A and p mesons. The A 3~ decay amplitude can be expressed 

after proper symmetrization of pions 1 and 2, as 

'A g 
1 

&pl - 9,) + g2q2 q2(q - 9' g (9 - 
$ -&--.- 

9,) + g2q1 qcs - 9,' 

(a_ + 9 1' - m; 
1 

(q + q212 - mz 

This last expression is of the form 

Gl(s,t,uh.l + 9) * G2b>t,U )Cq - “i) (32 
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where GI (G2 > are symmetrical (antisymmetrical) functions with respect 

L 

to the exchange of s and u. In (32) the mass of the p is actually 

complex and we write rn: as % + 2i Mp rp where M and I' are the 
P P 

p mass and width. In terms of the coupling constants g and g one 
1 2 

finds for the interference term the covariant expression 

I 
* 1 2M r (s-u) 

Im G, G2j = ,(s-~2;(u~m2), 1 ( 
g; ow2 - (K*P - 2s;s2 - P212 1 

+ 3g’ + 2glg2(K+ - +a2 - p2) 
I 1 

where K = q + q1 + q2 is the A meson momentum. The term R; in Eq. (25) 

is proportional to the interference term h (G& - The interference term 

will be non-negligible as compared to a symmetric 
A-2 

I I G1 term on the p 

bands, except on that part of the p bands which actually cross-over within 

the Dalitz plot. The non-cross-over p bands contain the events useful for 

determining the vectorial polarization of the A particle. 

Vector Meson-Pion Decay - 

Since meson resonances appear to play a dominant role in elementary 

. particle interactions a three meson decay may often be considered as two 

r 
successive two body decays, two of the mesons being the decay products of 

a meson resonance produced together with the third one. Decays of this 

type have been already observed' and we now consider in some detail an 

example of such a process (Figure 3). 
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To illustrate the argument we consider a parity conserving decay 

where the intermediate two meson resonance is a vet-tor meson and where 
. 

the initial decaying state has a definite angular momentum. In order to 

construct a state of well-defined parity we use the result of applying 

the parity operator on a two body helicity state given by Equation (41) 

of Reference 7, i.e., ., 

PI j m h > = rl,q2 h-1) j -S= -S 
2tjm, -A> 

Therefore a decay state of well-defined mrity can be expressed as21 

Z FA L 
A>0 2 i-- 

(I j m h > + e (-1)jlj m, -?I > 

(33) 

(34) 

where j is the spin of the parent decaying particle, m its component on 

a fixed axis, h is the helicity of the vector meson and E is the relative 

parity of the vector meson and parent decaying particle. The sum in (34) extends 

over only two values of A; h = 1 (or -1) and 0. 

It follows from (33) that for either nhn;ne of -+ri-tjr a vector meson LLI"-LC 

helicity of +l is allowed while the helicity 0 state is allowed only 

when E = (-1)j. If the vector meson is a p (negative parity) the 

helicity state A = 0 is allowed for the assignments, lfJC?'-,3+ . . .) etc., 

for the parent decaying particle. Turning now to the two spinless particle 

decay mode of the vector meson we see that states with 7, = f: 1 and 0 1 

give different angular distributions. When the angular distribution is red 

ferred to the vector meson line of flight as a polar axis and averaged 

azimuthally one finds respectively for the cases h = Lland 7, = 0 (in the 
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vector meson rest frame) angular distributions of the form, 

sin2 8 Or cos2 e 37s l?5( 

This is true independently of the prent decaying particle state of 

polarization or alignment. 

A cos2 e,, term allows for the occurrence of events with the 3 

mesons along the same line in the parent decaying particles rest framee 

and would show that the relative parity to the vector meson is (-l)j. 

Taking into account the negative parity of the o meson yields a parity 

(-l)j+= for the parent particle decaying into an intermediate psr state, 

This simple 2 body approach neglects any interference effects 

between the third particle. Nevertheless it can be confidently applied 

when there is no doubt that two of the mesons form a vector meson the 

third one being unaffected. The p bands for instance, in a 371 decay, 

(outside of any overlapping region) can be selected for this purpose. 

To complete this discussion we give in (35) the angular distributi- 

obtained from (34). The method for arriving at this expression follor>;: 

the derivation of Equation (38) given below. 

The angular distribution of the vector.meson in the parent meson 

rest frame is then 

1 kbd = i a?,, 1 
cos(m-ml)cp Re pmm, + (-1) [ 

m-m' 
P -m-m1 I 

- sin(m-mf)(p 3n pm, - (-1) 
. I 

m-m' 
P -m-m' 

1 



I 

Iv. ISOBAR TWO AND THFEE BODY DECAYS 

We consider next the decay of a particle of arbitrary half integer 

spin j into a spin l/2 hyperon and twospinless mesons. Parity is assumed 

to be conserved in the decay and hence the decay state corresponding to a 

pure spin state J_ = m is written according to (li), as 

C FM(lj,m,M $ > -f- E (-l)M 
M 

15,m,M, - ?j>) (36) 

., 

where E stands for the parity of the decaying particle, relative to the 

decay baryon. M takes all half integer values -j<M<j. - - 

Since all M values may appear in the expression obtained for the 

angular distribution of the normal to the decay plane this distribution 

till appear slightly more complicated than the one obtained in the 35r 

case. Nevertheless, the a priori unknown parameters, the 2j + 1 decay 

amplitudes and the density matrix elements which describe the polarization 

and alignment of the decaying particle, also predict the polarization state 

,of the daughter hyperon. Its density matrix can in turn be fully determined 

from the knowledge of the decay asymmetries. 

Since our approach using the helicity formalism,generaliies the deri- 

vation of well known relations for two body decays,to three body decays, 

we first briefly introduce our method for the two body case. I4any of these 

results are already known2' but have not been given in the same concise and 

simple form presented here. Furthermore, in many practical cases 2-body 

and 3-body decays occur with similar branching ratios (Yz 4x, Y; -+Alm 

and YE +C + 51, YI -+&IX . ..) and it may be useful to have the various decay 

distributions compiled together as they both refer to the same set of density 

matrices. 

- 32 - 



Consider now the parity conserving two body decay of a particle 

into a hyperon and a spin zero meson. From Equation (33) we find that 

parity conservation assumes that the decay state corresponding to a 

pure spin state (Jz = m) takes the .form21 

decay. It follows from (37) that the angular distribution and the longi- 

tudinal polarization of the decay hyperon, depnd on the angular momentum, 

and polarization state of the decaying particle but not on the relative 

parity e . The transverse polarization, which is an interference term 

between the two helicity states, however changes sign with E which is 

a well known result.22 If we take the z axis and the hyperon momentum 

(in the isobar rest frame) to define a.decay plane,then the polariza- 

tion vector of the final hyperon is in this decay plane (Figure 4). 

From (37) one readily finds angular distribution of the decay spin 

l/2 hyperon as 

I cos (m-ml) cp Re pm, + (-l)m-"f p-m-ml 
( 1. 

- sin b-m’> cp 51 pm1 + Wm-m* P,,,~~ 
\ 

I 
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For' the longitudinal polarization,.i.e., the expectation value 

of the helicity, we have merely to replace Z+ (0) by Z- (8) and thus 

we obtain 

pxI(erp) yz = 
L I ml@' 1 

cos (m-m*) 'p Re (pm,- (-l)m-m' P,~,~) 
(39) . 

- sin (m-m'> rp Im (Pm,+ (-I-)m-mr P-m,,)e 

The longitudinal polarization given by (39) vanishes if the isobar is not 

polarized. If the isobar is polarized it is zero, as expected, when 

averaged over the angular distribution since & (g-6) = _ z*- (6) . 

The transverse polarization, directly obtained from (37) reads 

E --& lFl2 = (-1)J 2 -g- - ItIi p ~rsin(m-mt)~'X~,m(6) 
1 

where 

With the relation Xfml -m (p) = (-l)mr+m X$, (9) we rewrite the trans- 
. 

verse polarization as - 

pT x I (e,(p) = e(-l)j+ q2 A, f 
1 
~0s h-m*) cp Re (pm, + (-l)m+m’ P-~,~ > - 

\ 

- sin (m-ml) rp Im (pmxl- (-l)m+mr P,-,,I 
I 

Xi,, (0) * 
(40) 
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Examination of Equation (40) shows that the transverse polarization 

also vanishes if the isobar is not polarized, and furthermore that if 

the azimuthal angle cp is not observed, only diagonal terms of the 

density matrix contribute. 

The simplicity of the method is related to the fact that the ratio 

of the helicity amplitudes does not change when transformed from the 

isobar rest system to the hyperon rest frame. 

For a specific illustration, we give the above decay distributions 

obtained for the decay of a spin l/2 and spin 3/2 isobar. The Ze and 

X functions are obtained from the values of the d. function given in the 

Appendix. In order to give relatively simple expressions we average over 

the cp angle. The effect of any other density matrix elements whose con- 

tributions have been averaged out can be obtained in a straightforward way 

if this azimuthal average is not performed. 

For jr-$ we have the well known results 

pL x x(e) = 2fi IFi' i (PJL 22 - PI ,--3- ) COB 8 
2 2 

(41 1 
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In the j = 3/2 case, it reads 

I(e) = 21x 'IFi 1 I i-6 ( (1 + 3 c0s2e ) + p + P 

. ) 

3 sin 2e 
22 
22 

-$$ 

pL I(e) = g 5) 

(42) 

+3 P 
( .g p-$-;- ) 1 

sin2 e cos 0 

p$.$ - b-1 (9 cos2e-1) 
2 2 

‘3 ( P 
19-p 

1 sin2 8 
3 2 

22 -2-2 

1 sin 8 

At this point we may easily derive a useful result. From (39) and 

(40) we get the ratio of the expectation values of <pL(~'tp) 1 (e,cp) cos 8 > 

and ' PTkb(P) I (',(P) sin 8 > where the bracket symbol means average over 

all directions. We use the Clebsch-Gordan series expansion (1.2) together 

with the orthogonality property of the D functions. We find 

< ~~(~44 1 (e,(p) cos 0 > = 

1 IFI -- C (-l)"+ Re(Pm- p 
32 m 

-m-m) C(j j lb,-m) G<j j II+,- *) 

and 

< pT(O,(p) I (e,yp> sin 8 > = 

!* r&~(-l)j$ C (-l)"+$ Re(pm- p,,) C(j j 11 m,-m) C(j j llL L 
2 3 m 2 2 -1 
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,. 

It follows that 

The ratio of the two Clebsch-Gordan coefficients is readily obtained 

and we find 

I R1 = E(-l)j+ 2j’+ 1 

It should be stressed, however, that the two quantities which appear in 

this ratio are both proportional to the parent particle polarization. This 

result can be generalized to higher moments of the type illustrated below 

with the restriction of & being odd. 2o For example, we can calculate 

the ratios 

RJ = 
< P#,(P) I(WP)Pa(cOs e) > 

where-p; (EJ) = e-im' $, (@,cP) 
J 

4sr 2.g + 1 

In a similar.way we find for the average longitudinal polarization 

1 IFI2 
C (-i.)“-$- Re(pmm- p-,-,) C(j j 4 In,-m) C(j j & I$,- 5) 24+1 2 m 
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which vanishes for even & and for the average transverse polarization 

< $fvd I(e,d?~ b> > = 

E (-& IFi 
C (-l)m' Re(pm,- p,,) C(j j & Im,- 

2 m 
d C(j 3 $I+,-$) 

It then follows that2' Ra can be expressed as the ratio of Clebsch- 

Gordan coefficients 

= E(-l)j-3 C(j j 4 I$,-+) 
Ra C(j j &I$, Sj- 

= E(-ljj-$ JG-5 
2j + 1 

Similar relations can also be obtained in the same simple way when the 

Legendre polynomials and Legendre functions are replaced by D functions. 

(One always obtains the ratio of two Clebsch-Gordon coefficients but off 

diagonal density matrix elements are introduced.) 

We now turn to the three body decay into a spin l/2 hyperon and two 

spinless mesons. The angular distribution of the normal to the decay plane 

is given by (13) and (1'~). This is a simple generalization of (38) where 

the normal to the decay plane replaces the momentum as an analyzer of the 

decaying particle polarization. However for a three body decay into two 

spin 0 mesons and a spin l/2 hyperon, there are in general 2j+l Pnde- 

pendent ampatudes instead of one as in (38). The 2j -t 1 decay ampli- 

tudes FM are in general unknown functions of the invariant scalars 

s, t and u. However, the kind of angular functions which arise in the 
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normal angular distribution do not depend on the explicit form,of the 

FM 'but only on the parameter M. Just as in the case of 3ft decays if 

some of the decay products are in a fixed isospin state, then there can 

be some additional relations among the amplitudes FM . For example the 

21f mesons will be in a state of well-defined isotopic spin for the decay 

Y; (1660)-+-n 2lX( branching ratio O.23), and for the decay Y: (1520) --+UJC 

(branching ratio 0.16) . . . The decay amplitudes FM with opposite values 

of M are then related by (19) and just as in the case treated above for the 

three pion decay the Ri amplitudes will vanish when summed over all 

energy configurations. 

As an illustration of the general formula (lb), we give the angular 

distribution of the normal obtained when the parent decaying particle has 

angular momentum 3/2. In order to make the resultant expression more 

compact we define the 3.2 quantities 

C/P +P 
2.1 -zi._1 
22 2 2 

c 2 =PAl+P 11 
2 2 - 7-T 

- 
c (a) = cos cx Re p - sin ~3 74n p +P 

3 i 
- p 23 +* 

2-z 1 $$ +g 

c (a) = cos 2aRe p “P sin 2a Im 
4 i 3 1 2-- 2 

( 3 1. 31 
p -p -- 2 - 2 -2-2 

C5@X) = cos 3 Re '( p -p - sin 3 Im p -f-P 2 3 33 - 2 -2 F-5 3 3 -33 IF’- 2 25 

Cg(a) = cos Ce Re p 1 1 24 +p11 -^- 
2 2 -2 2 
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and 
. 

t 
C (Cl) = cos Q Re p ‘P - sin CX Im 

3 31 3 1 p -- _-_- 31 -- -p3 1 
22 

---..__ 
2 2 22 2 2 

C!' (a) =cos 2aRe p 
4 3 1 --- 2 1 -- 

2 2 2 2 

+ p 
3 3 .-.--- -22. 
2 2 22 

- p 
3 3 -- - 3 z 
2 2 -22 

c; (a) = cos (3 Re p - sin a Im 
1 1 +P 11 p 1 1 -p 
cm-.- 

11 -FF -_ .- 2 2 - 2 2 22 
In terms of these quantities the angular distribution of the normal may 

be expressed as 

dN -z dR (1 3 cos2B) R+ + 3 sin2B RI + 
2 

3 sin2B R' + (1 + 3 ~ cos2p) R+ 
2 2 

1 
2 2 

+ c; 1 
6 + cos (cos*@ -1 3) R-+3sin2B R- CL 2 P sin"8 cos R-i- (3 cos2p- . 

z- 1 5 2 
g)R- 

1 
2 5 

+ 6 2 C' 3 (Cd) sin@ (1 + COST@) R- + (1 3 COSMIC) - R- J-- --$ C:(U) ,+ cos 2 1 B 
2 2 

+ i CL(a) sin B (9 cos2@ - 1) "1. + 3 sin2g R- ~ 
-5 

2 
2 

(43) 
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Ansilysis of the three body decay in terms of Equation (43) would pro- 

vide 16 different functions of CY and p which can in principle fully de- 

termine the decaying particles density matrix. 

We now turn to the polarization of the decay spin l/2 hyperon. 

As follows from the way we decomposed the parity operation where the z 

and y axis were defined to be along the hyperon momentum and along the 

normal to the decay plane respectively, the state 

if (1 j,m,M, $ > + c (-i)M 1 DA - $ > J 

is an eigenstate of the spin component of the hyperon normal to the decay 

plane, with eigenvalue ~(-1) 
M-$- 

. As usual this polarization is defined 

in the hyperon rest system. 

It follows from (36) that the expectation value 'of the polarization 

of the hyperon, normal to the decay plane, can be easily expressed in 

terms of the decaying particle density matrix. The polarization is de- 

fined as the expectation value of o.n^ where n^ is a unit vector along 

the normal to the decay plane. In terms of the parent decaying particles 

density matrix pmm, the distribution of transverse polarization along the 

normal can be expressed as 

Just as for the angular distribution of the normal, we regroup terms with 
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opposite values of M and obtain 

PTdR=E 

- 2-n Pm&” sin (m-m')cl 
) 

z$; w 

i-R- c 
M mm' 

=E: c (-1 
M>O 

-Im Pm1 I 

Re Pm1 cos (m-m'@ + Im pmmT 

1 

Re [pm, + (-l)m+m' p, cos (m-ml) a / 
/ 
I 

-- (-1,"'"' P,,~\ sin (m-ml) a Z$i (B) RG 

m+m' 
P 1 -m-m', cos (m-mf) a - Im 

sin (m-m')g \ - 
I i 

P m’ + Gl)m-m’ Pememl 

(45) 

In order to illustrate this general relation we consider the case 

3 of the parent decaying particle to have angular momentum 2 . Applying 

the 2' functions already obtained for the normal angular distribution 
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we find 

+ 2 ~1 ~0s @ sin2f3 R+ - 
t 
'3 Cos2p - 2 2 5 

' ) 
R: 

2 5 

45 + T ~4 (a) sin p (1 + COST@) R: 4 (3 COs2p - l) ‘l 

2 2 

J-- + 2 c; (a) cos p sin2p(Ri + 3 Ri)+ i C&(G!) sin @ sin2p(Ri + 3 Ri) 

3 sin2B RS - 
2 

(9 cos2B - 1) R; 
2 z 

R, 
s 

- 3 sin"B R; 

2 -5 

3 sin"@ R- - 
3 

(1 + 3 cos2P) “; 
2 

J-- + $ C*(a) sin2@ 

(46) 

Equations (43) and (46) can be used to determine the spin and parity of 

the decaying isoba, 7 by fitting to the three body data, or at least can be 
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used to impose further consistency requirements when the two body decay 

data are simultaneously analyzed in terms of (38, 39, and 40). 

For example (46) when applied to the YT (1660) data should yield 

polarizations of the same sign for the A and C, when averaged over 

both the Dalitz plot and the azimuthal angle of the normal if the A and 

C particles have the same parity. This comparison could be considered as 
n 

an independent determination of the Cn relative parity and generalizes 

to three body decays a result already known for two-body decays.23 

If desired, the expectation value of the hyperon polarization along 

any other direction is readily obtained from (36). However, the polari- 

zation normalto the decay plane is the only component of polarization 

which does not vanish when an average is performed over 7 . This is 

because the normal component of the polarization does not depend on any 

interference terms between the decay amplitudes. The observation of y, 

or of the decay hyperon polarization component in the decay plane (as a 

function of 7), would yield further information on the decay amplitudes. 

However, the relations of the type illustrated by (43) and (46), obtained 

by averaging over 7, provide enough constraints to fully determine the 

decaying particles density matrix and further provide an independent means 

of determining its spin 24 and parity. 

Isobar-Pion Decay 

Since a three body decay of a high mass isobar may proceed through an 

intermediate isobar-pion decay we now consider, as in the case of the three 

pion decay, two successive parity conserving two-body decays eventually . 



producing a final three-body state of l/2 baryon and two spinless 

mesons. We restrict the arguments below to exclude any possible over- 

lapping isobar bands, thus eliminating any possible ambiguities as to 

the kind of two-body decay. The N* (1688) -+Nx- (1238) + fi and 

E* (1810) +Z* (1530) + J[ provide two such examples.5 In both cases, ' 

one of the daughter particles is a decuplet member with angular momentum 

3/2+ l 
For the first step of this two step process parity conservation 

implies two independent decay amplitudes. Assuming that the intermediate 

particles are a spin 3/2 particle and a spin zero particle we have that 

the intermediate decay state.corresponding to a pure spin state of the 

initial particle can be expressed as 

\j>m, ;>+E (-l)j- [j,m, -g> + F : 
). ( 1 I 

z 

0+7) 

where j is the parent isobar angular momentum and E stands for the relative 

parity of the parent and daughter isobars. For the special case of the 

parent isobar having spin l/2 there is only one decay amplitude and F 

would not appear in (47). 
5 

The density matrix p' of the daughter isobar can be expressed in 

terms of the parent density matrix p as 

(48) 
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The density matrix p' is defined in terms of a coordir-ate system 

derived from the initial coordinate system in the parent isobar rest 

frame by a rotation of angles 8 and cp where ~3 and y are polar 

and azimuthal angles of the momentum of the daughter isobar in the parent 

isobar system. (Figure 5). Parity conservation as expressed by equations 

of the form (47) then implies that for an unpolarized parent particle 
', . 

pL,-v = p;Lv (49) 

As follows from the transformation property of the helicity amplitudes 

under Lorentz transformation the density matrix p' is the same in either 

the parent isobar rest frame or the daughter isobar rest frame. We note 

also that Equations (48) and (49) are valid for all spin of the daughter 

isobar, 

If the daughter isobar subsequently has a two-body decay her density 

matrix given by (48) may now be used directly in (38), (39) and (40) to 

express the resultant angular distributions. In particular for the case 

of the daughter isobar having spin j/2 the density matrix@8)can be 

substituted directly in (42). The results obtained in the beginning of 

Section IV pertaining to two body decays can now be applied directly to 

the daughter isobar decay, especially the theorem on the ratio of trans- 
L 

verse to longitudinal polarization. 

The succession of reference frames used in the analysis of such a 

two step 

shown on 

process, followed by the eventual isobar decay into Y + 51, are 

Figure 3. 
. 
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It is perhaps by this last example of the two stage decay that 

the simplicity of a method using helicity state is clearly demonstrated. 

The more 

describe 

scribing 

traditional treatment would require recoupling coefficients to 

the second stage of the decay in terms of the parameters de- 

the first stage, a complication avoided by our presentation. 

: 
c 
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APPENDIX 

We list together the d functions which are useful for the analysis 

of the decay of particles of spin less than or equal to 3. Not all the 

d functions are given. The missing ones are easily obtained using the 

simple symmetry relations 

d&m (p) = (-l)m-m’ d:mr-m (@) 

ditrn '$1 = (-l)m-mt d; m,(S) 

Several recurrent relations useful for the calculation of the d 

functions are given in the appendix of Reference 7. More relations are 

given in References 12 and 23. 

The relevant d are now listed below. . 

1 Spin 2 

dl $3) = cos E 
.- - 
22 

Spin 1 

d (p) =l+cosB 
11 

*- 

d 1-1 (p) = IL - gas B 

d 
--i 2 

do,(P) = cos B 

- it8 - 
. 



Spin z 

d3 $8) = -- 
22 

d 

Spin 2 

d2; (B) 

d,, (P> 

d-2-2(B) 

1 + (20s B cos p 
2 2 

Jj 1 - cos B B 
2 cos - 2 

3 cos B - 1 cos p 
2 2 

~ 1 + cos )I3 2 
( 

--- 
2 i 

x ..-.f$ sln2 @ kf 

= 1 - cos p 2 
( 2 ) 

= - $ 
3 ij sin B cos B 

d3 ,(+-@ + gas B sin - ; 
-- 
22 

di i@) =-I -2cos ' sin g 
2 -2 

dl 1(B)=- 1 
+ 

2 3 cos B sin - B 2 --- 
22 

d,, (B) = - " go' ' sin B 

d IL1 !B) = 1 + gas @ ( 2 'cos p - 1) 

do0 (p) = 3 cos22p - ’ 
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Spin g 

d 
5 5 @ 
22 

d (p) = 5 1 9 sin2 f3 cos E 
22 

d 5 $3) = 5’y5 “)’ 
--- 4 
2 2 

d (p) 5 coy - = 3 cos3 r i g 

22 

d ~ 1(B) = '$2' ' sin2 $ cos g 

2 -2 

d (PI 5 cos2g-2 cos p-1 = e 
1 1 2 

cos 
2 

5F 

Spin 3 

d (B) = ( 
1 + cos p 3 

33 2 

dzl (@I = f - sin2 f3 (1 + Cos @I d30 (p) --: - 4 Sin3 B 

- d3-1(P) = 9 sm 2 p (1 - cos B) 

d3-3(@) = ('- - go' 'j3 

d 
--- 
2 2 

d l-tcos 
5 5 w ( =- 

2 
sin B 

2 
---ST 2 

d 
31 -- 
22 

d p 5 cosZP+2 cos B-1 - - - B 
2 

sin 
2 -- - 

2 2 

d 32 (@) = - $ sin P (1 + cos 8)2 - 

J- d.3w2(p)=-$ six B (1 - cos B);? L 

d 
22 

. 
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FIGURE CAI'TIONS 

Figure 1 The angles of rotation of the one particle helicity state. 
c 

Figure 2 The decay plane configuration - Triangle 1 represents the decay 

c plane in the standard position. Triangle 2 shows the plane after 

rotation of angle y. Triangle 3 shows the decay plane in its 

actual position with its normal indicated by z. 

Figure 3 p-z decay. The p momentum is taken along z* - the relative 

momentum of the decay pions is taken along z'. 

Figure 4 II-yperon-pion decay. The decay hyperon momentum is taken along 

2' . pT,pI, and p are the transverse, longitudinal and total polar- 

izations of the decay hyperon respectively. 

Figure 5 The two stage decay Y** -+Y* f JI, Y* -+Y f T[, the coordinate 
*.* 

system (x,y,z) is the rest frame associated with the Y . The 

Y* momentum is along z' and (x',y' ,z') is the rest frame associat.ed 

with the Y*. The Y momentum is along z~. In addition the co- 

ordinate system (x',y" ,z") inthe Y rest frame, used for the 

analysis of the final hyperon polarization is indicated on the 

figure where z" is along the nucleon in the analyzing decay 

Y -+N + r(. Note that the direction of the y axis remains in- 

variant between any two successive frames of reference. 
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j even j odd 

p&.rity even j j+l 

parity odd j+l 3 
I 

Number of independent amplitudes describing the angular 

distribution of the three pion decay of a spin j particle. 

The columns refer to the angular momentum j and the rows to 

the parity of the decaying particle. 


