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Consider a partial wave elastic scattering amplitude for two spinless

equal mass, M, particles as a function of s(= 4(k% + Mg))l

! 1, 2iy R
B =55 (8-1) = z(ne”1) =5+ (1)

where o is a kinematical factor and the '"generalized potential" B is regular

in the physical region, whereas RA has cuts for s > UM® = sE- The inelastic

partial wave cross section oﬁ is determined by n alone:

of = (g +1)(1-12) . (2)
Given B and 1, we can determine A = N/D using the Frye-Warnock eq_uations:z’5
2n(s - 1 ) (B(s') = B(s)) 2p(s') Re N(s')ds'
O OREORE S| (s = 5)(L * n(7)
o
= B P v (1L - n(s")) ds!
Be) - B(s) + 2 [ Loale ) ds (3)
°1
P 2p(s') Re N(s') ds! ., 2
D(s) = 1 — %_L/h DES,ZS)?1+g%EQ))S - i EI%%S%’ Re N(s) 6(s-sy),
s
E

Im N(s) =-%é%é%l Re D(s) e(s—sI) ,
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where SI is the lowest inelastic threshold. On the other hand consider a set

of coupled 2 body channels with potentials Bij' The amplitudes

Ay (: (Sij - 8,.) — 31 )

I
J 2i(p, DJ)Z

may be determined by the multichannel I\TD-l formalism from the Bij' Now

take B,, and 7 determined from the ’Aijlz and calculate A from (3).h

The purpose of this note is to demonstrate by a simple example that

p)

the solution A is not in general equal to A We generalize from the

11°
results of calculations described below that a sufficient condition for

the two amplitudes A (calculated from (3)) and Alq (calculated by the
multichanunel ND-l equations) to be identical is that the diagonal forces
Bii(i +:l) are not strong enough to produce bound states in channel i in

the absence of coupling between the channels. As one increases the strengths
for the B, (i ¥ 1) beyond these values (necessary to produce binding),

complex conjugate pairs of zeros in S move onto the physical sheet through

11
the inelastic cut (s > sI). The two calculations then disagree. Thus the
physical situation in which we have a Bii strong enough to produce a

bound state in channel 1 and then weakly couple it to the open channel 1

to produce a narrow resonance in A cannot be reproduced in the one

11
channel calculation (3). In addition, we demonstrate that, in our simple

example, there are no poles of the S matrix on the physical sheet for

complex values of s.
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In order to carry out a substantial amount of the calculations
L
analytically, we consider a two channel non-relativistic s wave (pi =(s-si)2)

system with the input (symmetric) B given by a single pole

By = 85/ (stm). ()
Then
-1
B11,(D )kj
Aij T s+m 5
1-n2 ‘
—HQ" = DlpglAlgie 9(5’52) ) (5)
i - ij - glj ﬁi
1 1
1 (si+m)2 (si—s)2
= v -+ - M

g1 2(s +m)% s+m s+

i

The procedure is for given 8 5 and m calculate A, and n from (5). Then

using Bll and n as input we calculate A from (3) and compare it with All'

(The integral equation (3) for Re N(s) is solved numerically by the

matrix inversion technique.) The next step in the program is to locate

the zeros and poles of Sll(: 2ipl Ay ¥ 1). This problem is easily reduced
1

to solving a quartic equation in the variable (5-52)5; the same equation

gives both zeros and poles of S.. as a function of the 3 gij’s for a given

11
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input pole position m. After solving for the roots, we determine whether they

correspond to poles or zeros of S., on the physical sheet (where Im(s-se) >0

11
L
and Im(s—sl)2 > 0) by putting these values back into the expressions for Al

and S_... We find that there are no poles in 8§ on the physical sheet for

11 11

complex values of s.

Now for given 817 and 8107 take 80 small; then All agrees with A
as calculated from (3). Increase 8y, 1 Tor all g,, > some value éee(gll,gl2,m)
> 2(82+mf% (the value for which chamnel 2 in the absence of coupling to
channel 1 developes a bound state) the 2 amplitudes All and A disagree. Return-
ing to the location of the gzeros in Sll’ we find that é22 corresponds to the
value for which a (double) zero in 8,, occurs along the real axis above the
inelastic threshold, i.e., n for some s > S5 is equal to zero. We see for
this situation that the integral equation (3) for Re N is no longer Fredholm.
For Eop > é22(g11,g12,m) a pair of zeros in Sll (at complex conjugate points)
move from the real axis onto the physical sheet.

We iuvestigated in great detail the case 817 = 0, i.e.,, no left hand

cut in channel 1. 1In this case the Ball-Frazer6 representation 1s applicable:

We write a dispersion relation for the phase shift in chanmnel 1:

: EL'_]F ( Zals Jas’ (6)

s‘-sl)i(s‘-s)
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In addition, we note that the quartic equation for the zeros in Sll reduces to

a cubic. We find that in all cases (gll = 0) that both one channel calcu-

7

lations (3) and (6) for A agree. They both break down and disagree' with the

two channel All when zeros in Sll appear on the physical sheet, coming
through the inelastic cut. It is clear that A as calculated from (6) will

disagree with All then since zeros in Sll amount to cuts in § which are not

taken into account by (6).

*
The appearance of zeros (at o and @ ) of S on the physical sheet

11

through the inelastic cut will also cause the Froissart8 one channel N/D

formalism to disagree with All' He introduces

1
5 [5)

R:eXp(_i(i'f_l_)_f o ingler) )

T (515, )%(s"-s)

°1

-1 . . .
and notes that R °S satisfies elastic unitarity. However R 1s not unique

since we could multiply it by the factor

ol

— 1{s=-s * i s-s.)%
L (o= (e )@ — i(sms, F)

(o + i(s-sl)%)(oz* + i(s-sl)%)

This would presumably bring the one channel calculation in agreement with the
multichannel one. The G factor is clearly related to specifying the CDD

ambiguity.9

ITP-149



In summary, we speculate that a sufficient condition for one channel
calculation (3) to agree with the multichannel amplitude All is that the
diagonal forces in the channels not explicitly considered should not be strong

enough to produce bound states in the absence of coupling to channel 1.

We would like to thank Professor M. Nauenberg for helpful discussions.
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