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ABSTRACT 

A simple model for a possible modification of the fermion 

propagator in quantum electrodynamics is presented along with 

the accompanying change in the vertex function dictated by the 

Ward-Takahashi identity in order to maintain current conserva- 

tion. This model is used to compute corrections to the calcu- 

lations of the muon g-2 value, to the p-pair production and 

to the muon-proton scattering cross sections. The purpose is 

to show by explicit calculation, and thereby to emphasize, that 

these are independent and complementary probes of the theory. 

Therefore, each measurement should be carried out to a maximum 

obtainable accuracy independent of the results found in the 

other two. 
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INTRODUCTION 

Recent experiments on the electrodynamic interactions of p mesons 

have been in agreement with the predictions of the theory of quantum elec- 

trodynamics. The muon appears to be just a heavy electron. The principal 

results of interest to us here are the comparison of muon with electron 

scattering from hydrogen,l and measurements of the g-2 value of the muon' 

and of the cross section for large angle photoproduction of p-pairs.3 

These experiments have been analyzed in terms of limits they put on 

possible deviations from the standard theory of quantum electrodynamics. 

Since different ingredients of the theory enter into the different proc- 

essee listed above, different features of the theory are probed by these 

experiments, In particular the Feynman diagrams in Fig. 1 show that the 

comparison of muon with electron scattering gives the ratio of muon to 

electron electromagnetic form factors as funcki,ons of momentum transfer 

s2. In Fig. 2 the lowest order g-2 calculation involves photon and muon 

propagators as well as the electromagnetic vertex when two lines, one 

photon and one muon, are off their mass shells. In Fig. 3 for the Bethe- 

Heitler pair-production amplitude there appear a muon propagator and ver- 

tices with the muon propagator off the mass shell and with the photon real 

OT virtual. In contrast with the g-2 diagram in which one' integrates over 

all virtual four momenta flowing through the lines and vertices in the 

closed loop, for the pair production the muon has a fixed (large) virtual 

four momentum. Also the virtual photon 'carrying" the Coulomb interaction 

is almost on its mass shell for the symmetric arrangement of equal energies 

and equal angles left and right for the CL- and P+. 
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From these diagrams it is clear that the close agreement of the differ- 

ent experiments with theory limits the possible deviatlons that can be intro- 

duced from quantum electrodynamic predictions. For example the equality 

of muon with electron scattering at identical energies and momentum trans- 

fers constrains the structure of the muon vertex for real muon lines as a 

function of the photon four momentum but does not limit (to this order in 

CI = l/137) the behavior of the muon propagator or the vertex contribution 

for a virtual muon line entering or leaving. This latter behavior is con- 

strained by the g-2 and large angle pair experiments which do not, however, 

constrain vertices with photons of large q2. 

As a convenient mnemonic device it has become customary to regulate 

propagators appearing in the cross section calculations and to refer to 

the lower limit of the regulator mass A, or correspondingly the upper 

limit of the cutoff length l/A, consistent with the experimental results 

as the limit to which quantum electrodynamics has been probed within the 

errors of the experiments.4 For example a regulated photon propagator 

11 I. 
--3-, 
q" q2 q2 - A; 

; q2 = s’, - F 

in the g-2 calculation, Fig. 2 corrects the magnetic moment as first com- 

puted by Berestetsky, Krokhin, and Khlebnikov' to 

g-2 = : (1 - $ m2/A7) 
nr " m * 

Similarly a regulated muon propagator in the large angle pair production 

experiment 

1 1 1 

p2 _ m2 p” - m2 p2 - m2 _ AZ 

(1) 

(3) 
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gives a correction proportional to 

P2 k202 
-z -- 
A2 A2 

P P 

I 

where k is the incident photon energy and 0 the angle of a muon emerg- 

ing with energy N k/2. 

It is an old remark that neither of these regulator modifications (1) 

and (3) are in a form that is attractive from a purely theoretical view- 

point. Their charm is solely that of simplicity. The regulated photon 

propagator is designed to improve convergence at q2 +m when carrying 

out the renormalization program. However, it takes a change in sign of 

the second term to 1+ 1 
q2 q2 - A2 

to yield a simple and special model not 

in conflict with the general spectral form 

; da2> 2 0 

based on local, relativistic field theory. The only effect of this sign 

change is to change the sign of the correction term in (2) from minus to 

plus. 

The regulation (3) of the muon propagator wreaks greater havoc with 

the theory, however, because we are now dealing with a charge bearing line. 

In order to preserve a differential current conservation law the altera- 

tion (3) must be accompanied by a change in the vertex function as dic- 

tated by the Ward-Takahashi identity.6 

The purpose of this note is to discuss the matter of modifying the 

muon (fermion) propagator in a more systematic way and to compute in a 

simple model the resulting corrections to the g-2 and p-pair production 

(4) 
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calculations. There is no contribution to the muon-proton scattering 

since no virtual muon line appears in Fig. 1. We then make a comparison 

with experiment in order to emphasize the main point motivating this note: 

The g-2 and p-pair measurements are complementary and independent probes 

of the theory of quantum electrodynamics and a precise measurement of one 

of these numbers in no way pre-empts the urgency of measuring the other 

to the highest accuracy attainable. 

GENERAL FOFiMULAS 

We raish to consider only the effects on these processes which arise 

from a modification of the fermion propagator. From invariance consider- 

ations this propagator may in general be written in the form (up to irrele- 

vant gauge terms) 

s;(P) = 
B1 r5 + B2m 

p2 - m2 
(5) 

where the B i are arbitrary functions of p2. The fermion electromag- 

netic vertex with all three particles off the mass shell may similarly 

be written in terms of 12 arbitrary functions7 

F&P' , p, q> = 1 (m)-'J+k)($~ - m)jkfk ycI. + C: abvqy + C? q,](fi - m)k (6 

j,k=O,l 

where the $k 2 depend on the scalars p12, p2 and q2 = (p' - p) , and 
1 

by charge conjugation invariance, 

CJk(py p2, q’) = Ckj(p2, p12, q’) (7) 
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It is OUT purpose to generalize the vertex only as much as is necessary 

to satisfy the Ward identity 

S-JgP’) 8 T&P', P> q) S$P) = s;(p) - S$p') (8) 

where S;(p) is given in (5) and FcI is the complete Dyson irreducible 

vertex. Also because we are only interested in deviations associated with 

internal fermion lines we do not consider any q2 dependence of the form 

factors. We can accomplish these aims by keeping only the terms 

rp(p', p) = 1 (m)-(J+k)($' - m)j[Cjk(pr2, p2) 7V]($ - m)k (9) 

which introduce 4 arbitrary functions. 

If one of the fermions is on the mass shell there are only two func- 

tions and the vertex may be written in the form 

3P') p&p*, P 1 = 3P') TcL + + C,(P',] (10) 

Application of Ward's identity now determines the Ci in terms of the 

Bi. Furthermore the relationship is such that a cancellation between the 

vertex and the propagator occurs in this model; specifically' 

3PS) r&Pr' P) S;(P) = U(p') ycL & (11) 
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At a vertex with both fermions off the mass 

plus the symmetry requirement (7) determine the 

shell the Ward identity 

$k in terms of the 

Bi and hence in terms of the C i 

coo(pf2, p”) = ,2L 

- P2 I: 
(PI2 - m2> C2(P") - (p2 - m2) C2(p2) 

P 1 

1 
cOl(p'2, p2) = cypy p2) = ,2 

L - p2 
(PI2 - m2> Cl(Z)'") - (p2 - m2> Cl(p2) 

P 1 
2 

c11(pr2, p2) = - - C$P') f 
P 

12m 
- P2 i 

2 C1(P12) 
[ 1 [. C2(Pf2) - C2(P2) 11 (12) 

With these alterations we can write down the expressions pertinent to 

the anomalous moment and pair production. Using the cancellation between 

propagator and vertex at the outside vertices the first order vertex 

modification (Fig. 2) is 

i 
Ap(p', p) = - e2 - 

(2rc)4 s - k, P - k) .* YY (13) 

where I' ~ is given by (9) and (12). 

Similarly the amplitude for pair production in an external Coulomb 

field, Fig. 3, is of the form 

r$ C&q") + ,&C2(q12i]j + #[i C$'2) +'& C2(qtt2)]$(p+) AFoul 

(14) 

where q' =k- P+7 q" = P- - k. 
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As they stand, neither amplitude (13) nor (14) is gauge invariant. 

The situation is analogous to the electrodynamics of spin zero bosons in 

which there appear two photon as well as single photon vertices as in Fig. 4 

which arise from the derivative coupling. The form factors here play the 

role in momentum space of derivative interactions and we must include an 

amplitude from diagrams as in Fig. 4. This cannot be constructed uniquely 

in the absence of a theory but it will serve our present pnrposes to write 

an amplitude which when added suitably to (13) and (14) restores gauge 

invariance. Such a two photon vertex is given by 

IT k"qv + k'q' (15) 
IIV 

= -2c I 1 k * 9 + (6, - m) LVy(k,q,p2) + Rp,,(k,q,pl)(il - m) 

I 

The first term of (15) when added to Eq. (14) gives a gauge invariant 

amplitude for symmetric pairs and the last two terms vanish in virtue of 

the inverse propagators appearing there sandwiched by u(p,) . . . . u(p,). 

In particular it is now clear that the term proportionalto C does not 
1 

contribute to the Bethe-Heitler cross section for symmetric pairs sinoe 

in transverse gauge 

In the anomalous moment calculation the one particle matrix element 

of the fermion current is of interest and as found from (13) is of the 

form 

u(P') Ap(P', p) u(p) = u(p') ArCl + iBa 
IIV + Dq p U(P) 

1 
(16) 

where A, B, and D are functions of q' resulting from carrying out 

the integrals over d*k involving the Ci. n3.e q CL 
term is the only 

one which is not conserved and on general invariance grounds must be 
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removed from (16). When graphs containing the two photon vertex are con- 

sidered all terms of V 
PV 

in (15) contribute since one of the fermion 

lines emerging from this vertex is off the mass shell. We simply choose 

L 
CLV 

and R 
PV 

so as to cancel both the contributions of the first term 

in V 
WV 

and also the q cI term in (16). The amplitude is now gauge 

invariant. 

By standard methods we can project from AP(pt, p) the coefficient 

of the uPvqv term. This is conveniently done in the limit of small 

momentum transfer to the external field, q = (p' - p) 40. The coefficient 

will in general depend on p and the moment is obtained from its static 

limit. In particular we find that the Schwinger correction a/2n becomes 

a/2r( A(0) where A(0) is the small p value of 

A(p) = - 2 i2 ld4k >[b-k)2-m2]-2 $ K2[(p - k)2](p . k _ m2) 
I 

+ K1[(p - k)2] 4m2 + 2 k 3( . P)~ - 6p * k - k2 + lim 
(k * d 

(17) 
m q2+ 0 a2 II 

with 
d 

K$&z) =-[ do 2 
W2 - m2> C2 (t2)] 

K2($2) = -?- 
d 

m2 
m2 

I 

x 2 [ (t2 - m2> C2(t2J] + (-e' - m2) s[(t2 - m2) C,(P)] 

I 

For the photoproduction of symmetric pairs, the amplitude (14) gives 

simply a multiple of the Bethe-Heitler cross section 

da = [C2(q12)]2 daBH (18) 
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COMPARISON WITH EiXlERIMENT 

As a first application of these results consider a propagator modifi- 

cation of the type mentioned in the introduction. This is of the form 

S(P) = f(P2> 5 
B 

Calculating in the usual way from (3) without correcting the vertices for 

Ward's identity, this propagator leads to a symmetric pair cross section 

da = f2(p2) daBH 

If however the Ward identity (8) is imposed with B = B2 = f we find 
1 

CL = 0 and C2 = f-i and from (18) obtain 

da = fm2(p2) daBH 

along with appropriate modifications of the anomalous moment. For the par- 

ticular function given in the introduction and d+JBH x 1 the effect of 

this inversion on the estimated value of l/A is small. 

To make further comparisons with experiment it is necessary to choose 

some particular functions C,($) and evaluate the integral (17). A 

suitable pair are 

m2 p2 - m2 
c = ? c =l- 

1 p2 - m2 - m2ql 2 p2 - m2 - m2v2 

where 7 and q are parameters such that the usual theory appears in 
1 2 

the limit v,, 7, -+a~ . 
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With these C i' A(P) is independent of p, and for both 11 , q 
1 2 

large 

gives a Schwinger correction 

g-2 =$+2 [ log 7, 2 -3 7 
2 2 

v1 -7 q2 
I 

Because it is the difference of the log terms that enters, comparison with 

experiment puts no definite bounds on IJ and TJ . 
1 2 

To within the validity 

of the approximation that 11 
1 

and IJ 
2 

are large there is a considerable 

range of 7's for which the moment can be made arbitrarily close to g. 

This is a feature, of course, of the particular Cits we have chosen. 

Others can be readily contrived so that the moment measurement does bound 

both terms. But the result (19) illustrates the point here, namely, in 

these lowest order calculations the fermion propagator can be considerably 

different from the usual form and still give an anomalous moment in close 

agreement with experiment. 

We may obtain estimates on the regulator masses in C and C by 
1 2 

considering the anomalous moment and pair production results together. 

Since C 
1 

does not appear in the symmetric pair cross section this may be 

used to bound 11 . 
2 

Prom the recent measurements of de Pagter, et al 3 we - -' 

find (?I =c =l) 

< (o.16f)2 

This limit together with the most accurate g-2 measurements for the muon2 

gives from (19) 

(19) 

1 
( ) m:ql 

< (O.OYf)2 . 
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I 

The usual comparison of experiments by insertion of regulating functions 

uses only one function. We can make such a comparison by setting C1 = 0. 

This gives an idea of the effect of the Ward identity on the limit imposed 

by the gZ experiment. From (19) this yields 

< (o.06f)2 . 

TQ=* 

This value is somewhat smaller than found in previous estimates.3 

In summary we note that the g-2 expression depends on both the param- 

eters which our generalization introduces while the symmetric pair cross 

section depends on only one. Thus a comparison with experiment of either 

of these results by itself does not completely probe the muon propagator. 

For the particular functions we chose the limits on the regulator masses 

are consistent between the two experiments and are roughly in agreement with 

previous estimates. 

Finally we remark that the generalization we have made is computationally 

simpler than might be expected because of the propagator-vertex cancellation 

implied by the Ward relation. 
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FIGURE CAPTIONS 

1. Diagrams for muon and electron scattering from protons. 

2. Electromagnetic vertex for g-2 calculation. 

3. Diagrams for electromagnetic pair production. 

4. Two photon interaction vertex. 
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