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ABSTRACT

In this note we investigate the possibility that
the inhomogeneous Lorentz group is only a subgroup of
a larger Lie group G of symmetries for strong inter-
action physics. The discussion is restricted to the
Lie algebra J? of G. We make the assumption that the
remaining generators A; of G commute with the gen-
erators of translations Px which build the idealér'
ina . It is then shown that the Ai generate an
ideal in £ modulo &~ . If this ideal is semi-simple
then & breaks up in a direct sum o =f @ 04

whereg;> is isomorphic with the Lie algebra of the

inhomogeneous Lorentz group and4f1 is semi-simple.
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1. INTRODUCTION

It is interesting to discuss the various possibilities of mixing
"internal symmetries” in strong interaction physics with Lorentz invari-
ance. However this cannot be done in an arbitrary way as was recently

shown by Mac-Glinn.t

We take here a point of view closely related to
Mac-Glinn's, by assuming that the inhomogeneous Lorentz group is only
a subgroup of a larger Lie group G. This is not the only possibility
as pointed out by Louis Michel® who assumes the inhomogeneous Lorentz
group to be only a factor group of G. However, we do not discuss here
these other ways of inter-relating internal symmetries and Lorentz in-
variance. In fact we shall restrict our discussion to the Lie algebra
of G, call it . Our main hypothesis will be that it is possible to
choose a basis of this algebra in such a way that
(i) The generators of the usual translations Pk, 0<A<3 and
homogeneous Lorentz transformations Mpv = - MVp’“’v = 0,1,2,3
have their usual commutation relations (this being another
way of describing the fact that the inhomogeneous Lorentz
group 1s a subgroup of G), and that
(ii) The other generators A; 1 <1 <n commute with Pk. This
assures that any irreducible representation of our group G
will be characterized by a common mass so that we do not
expect the relation of internal symmetries to Lorentz in-
variasnce to account for the actual mass splitting within the
same super-multiplet. Had we only assumed (Ai,PO] = 0, then

TLorentz co-variance would require it to be true in any frame



2 .
so that [Ai,P ] = 0 whatever the index 2A. Now we will show the follow-

ing:
Theorem

Under assumptions (i) and (ii), the P generate an ideal J in L .
The images of the A; under the application L - X /7 = J:Y

\—\,

generate an ideal c/(-t in X . If we assume that this algebra L/Z' is
gsemi-simple then L is equal to a direct sum of Lie algebras £ = A C}.§a
where A is isomorphic to Al dnd,ja is isomorphic to the usual Lie
algebra of the inhomogeneous Lorentz group.

This result is in some sense parallel to the one of Mac-Glinn's.
The essential difference being here that in order to split ;ﬁ into this
direct sum one may have to change the labels of the operators. Before
proving the theorem in section b we recall in section 2 some definitions
about Lie algebras and devote section 3 to the proof of two lemmas which
will clear the way. Section 5 gives some comments on our result.

For convenience we choose all our Lie algebras to be on the real
numbers. In this way PX and Muv have the commutation relations of

Sé_ and X —év -Xy ~§§- respectively. The greek indices will always
LN Hodx ox

run from O to 3; guy = guv is the usual diagonal real Lorentz metric.

*
We use freely of gpv to raise or lower indices.

2. DEFINITIONS

To make our language precise, we recall briefly some facts about

Lie algebras. For details one can refer for instance to S. Helgasson's

*Whenever two indices, one upper and one lower, appear in the same
formula and are equal, they are meant to be summed over; the summing for
greek indices to be from O to 3, the summing for latin indices to be from
1 ton.
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book.” By Lie algebra i over R, the real numbers, we mean a Tinite
dimensional vector space over R with an internal bilinear product

satisfying
[x, x] =0

and the Jacobil identity

[X; [y;Z]jl + [y, [Z,X]} + [z, [x,y]jl =0

A subalgebra of of is a vector subspace closed under the product. An
ideal is a true vector subspace C/(’C rﬁ such that for any Le £ and
ietf , [4,1] velongs to cf '. The factor algebra i/? is the factor
vector space with the inner product inherited from of . We shall say
that a Lie algebra i is a direct sum of two ideals il and ie and
write i il ® i2 it [/&1’/&2] = 0, [’ﬁi,’&i] = €, .fl [&;,’&;J € ig,

] "t 1 1
/ﬂl,'ﬁl,’&l € cfl, /&2,£2,{2 € i2’ and if any element 4 in i can be

I

uniguely written as L = ’E/l + %2’ Mathematicians often call & the
direct product of &fl and ‘fz'

Given A« .f the linear correspondence x —* £ x] = adj (’f/) - X

)

H 4 "
has the property adj L adj 2 adj 4 adj 4 = adj L ,’f/ ] and defines

the adjoint representation of i : adj ( of ). If the symmetric bi-

1 ? 1}
linear from K(’&i,’ﬁ ) = Trace adj L adj £ is non-degenerate, the Lie
algebra is called semi-simple. In this case o‘f has no abelian ideal

except zero and its center is also zero. Finally by derivation on a Lie

algebra one means a linear correspondence:



with the property

D [X,Y] = [D X)Y] + [X,Dﬂ

These derivations themselves build up a Lie algebra,@ ( i ), with
[D!,D"] = D! D" - D" D'. Tt is easy to see that the adj ( &£ ) is an
ideal in .,(() ( Cf ) (in this respect ad] 4 is also called an inner

derivation of i ) with

[D, adj 4] = adj D (1)
Now the main result we shall use is the following.

Theorem
For a semi-simple Lie algebra every derivation is an inner deriva-

tion. In other words D ( £ ) =adj ( £ ). The proof of this theorem

is given on page 122 of reference 3.

3. TWO LEMMAS

In this section we prove the following ftwo lemmas:
Lemma 1
Suppose that we have a Lie algebra over R and that, in terms of a

A
basis P, N the following commutation relations hold:

)\p]__ ) e M
I:P,P = 0, [P,va]—SHPV—FJVPH

pv’



and
By uv A By u v T TRy v T TRy uv (2)
11772 2 171’72 2’ 11 22’ 2 2° 11’

Then the Lie algebra just described is necessarily isocmorphic to

the one of the inhomogeneous Lorentz group.

*
Proof of Lemma 1

The statement of the lemma can be rephrased in the following way.

There exists a set of (real) coefficients f such that putting

HV, A

A
L = Ty = Ty T

the va and PR generate the same Lie algebra as before; however these new
operators have among them the usual commutation relations of the generators
of homogeneous Lorentz *transformations and translations, respectively,
that is, this change of basis has the virtue of supressing the "a" co-
efficients in the commutation relations (i) when they are written in terms
of Pl and va.

We have to make sure that our Lie algebra satisfies the Jacobi
identities:

Z Nuv’[NuV’NuV]zo
11 2 2 3 3

circular permutation of 1,2,3

This gives us a set of linear relations among the coefficients

a
v v ,A
Hl .’ HZ >’

In spite of the simplicity of the lemma the author was unable to find

a simpler proof than this rather lengthy one.
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a + a - a

Z (gp« V3 “1V1’v HB,}\ gv H Mlvl;u v, By v ulvl’p By A

circular permutation 2 2 23 23 > 23
of 1,2,3

-g a + g a -
v,V V ,A A v Vo,V
BoH, MYV Yy Bt RV oY

Our task now is to find the most general solution of these equations.
Let &,B,7,5 stand for 0,1,2,3 in any order. DBecause of the symmetry

properties of the a's we have only to compute the following quantities.

a M , a , a .
0B, 0,8’ Zap,ys,8° 0,0y, “0B,By,7y

The value of all aulvl’uzvz)k is then related to the preceding ones

using (2). Let us first write (3) for wo=Q, v o=y, u =B, v =D, p3=O;%;B and A=
1 2 2

€aor (aaa,as,y " 8067,[36,5"886,67,06> * 8pp By 5,00 = O (+)
Now we put in (3) Bo= ONl = B,pg = v2 =y p3 = V3 =B, =R
(goa %0p,78,8 * %oy,88,8 © %@,57,5) * Egp %0y 08,0 7 ° (5)
Let us add (4) and (5)
3gs,08,7 © %s0,7B,8 ~ “py,08,a T %y5,08,8 (6)

Call

B _
C,DE)CW - aB&)OﬂB’ * 8505’75)5
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Obviously

g B
Py T 7% vy ()

Equation (6) when translated in terms of ¢ reads

5 . B i
@ S0y ® y&Q (7")
@ . . . .
Hence @ 875 is invariant by a circular permutation of By® and changes
sign under an odd permutation. We will get a new equation for ¢ if we

write (3) with A LA v = B,and A=

a + a + -a -& -3 =0
oty ,08,P oD ,08,y aOéB,ay,é op,yd,a “Oy,5B,0 TB,By,
Using @ just defined we rewrite (8) as
64 o (04
+ + = 0
Payp t Paey TP s (9)
i
Comparing equations (7) and (9) we conclude that all three terms in
0
equation (9) are equal and thus ¢ 875 = 0 that means
+ =0 10
®0g,70,5 " “By,50,0 (10)
We now define fOB y through the following equation (3 being known as
J
soon as we have made a definite choice for & P and y):
8 = f ith f = f 11
op,75,8 g56 o8,y b o8,y pa, y ( )

With the help of (10) we find
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a(YR av.5 g()@{ f By,0 (12)

it It s

Using (M> we also get

%og,a7,a ~ Pony (fB%Oﬂ Flye T 068,7) (13)

So far we have only introduced fuv o for p % v % o with the property
b

of being antisymmetric with respect to its first two indices. We were

able to express in terms of these quantities ocur first three sets of

unknowns. We turn now to the last set. For that purpose we write

again (3) with p = Qv =B u =V = %4, = 6 v = 7,end & = Q

Using also (2) we get

%oy ,By,B  %0B,B,7 (14)

We make a final use of (3) by setting TR By - Vv, B = OV

3 3
and A = B.
- + o - a = 0
Eap %y5,00,0 "&yy%s, “o,8 “Boa *5,18,p (15)
We want to combine (14) and (15). Tet us call Yo ve = Py By.8
The last two equations read:
Vs,08 T 7 Y8 (141)
+ + = 0 !
g5 Vo,70 * Byy Yo,08 " B0 ¥ 5,8y (15")



Recause of the antisymmetry of W@ oB in its last two indices,as soon
as we choose & we are left with only three guantities linked by the

last equation. The most general solution is of the following form

Ve,08 = Badfs,p %s Us,c

with arbitrary hy 5. Indeed (14) and (15) are now identities. The
3

three h&,a,hé,ﬁ h6,7 only appear in the expression of the six w@,aﬁ

= -WS,BQ’ w&,ayz - w5,7a’¢5,57: - wb,yB and the conditions for

solving back for the hg, with one degree of arbitrariness, given the

Ygoer aTE precisely equations (14) and (15).

At last we set

These new f’s are obviously independent of the ones previously defined.

Together they build up T = f and we now have:
& v P uVyp T Vu,p

208,87,y Yo,8 ~ &y Tos,p788 T,y (16)

Using (2) we can unite equations (11), (12), (13} and (16) in a single

expression:

a =f g -f g -7 g + f g
Vo,V LK ey v voov B TTuv o Bua v,v. 8
RPN HoVoHs Y, oY% Hs HolotHy HovorVy ™y

(17)
-g f -g f +g { + g £
H1Ys vl“z’k Viks bV h THM, Vi Vgt ViV MM R

Equations (2) and (3) are now identities.
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We are now in position to return to our Lie algebra. We set

A

LHV = Npv - fwj}\ P (18)

with the same f's as the one's which appear in (17).
. A
It is clear that Luv = - va, and that va and P  generate
the same Lie algebra as the va and Px do. But in terms of these

new coperators the commutation relations now read (using (17) ):
A _p A oA A
[P ,P ] =0 [P ,va] = EH Pv - 6v PH

[LHV’LHV ]Zguv LVH
1 1 2 2 1 2

ey Ry b Bvy T8y Ty
12 12 1 1 1

which are the usual commutation relations for the generators of the

inhomogeneous Lorentz group. Hence our lemma is proved.

Lemma 2

Let éf be a Lie algebra over R which as vector space is the direct
sum of an ideal A and a subalgebra M; if A i1s a semi-simple Lie algebra
then there exists an ideal N in Je isomorphic to M and such that Je is

the direct sum of the Lie algebras N and A:
L=n @ A

Proof of Lemma 2

Since A is an ideal in éf if we choose a definite m in M, [m,a]
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belongs to A and the correspondence
a — [m,a]

defined for every a in A is linear. Because of Jacobi identity it is

even a derivation on A:

[p [m,a]] + [@ [a,b]] + [a [b,m]] =0
{}[&bﬂ==“maL'q+-%,[mbﬂ

We now combine this fact, our hypothesis of the semi-simplicity of A

can be read

—~
J
~

with the theorem quoted at the end of section 2 to conclude that the
derivation given by m is in fact an inner derivation of A; that means

there exists an element ®(m) belonging to A such that for any a € A.

[m,a] = [o(m),a] (2)

This element is unique for the equality [@l(m),a] = [@2(m),a] which
if valid for any a € A means that @l(m) - @z(m) belongs to the center
of A which for a semi-simple Lie algebra is reduced to zero. We now

have a correspondence

© M —A m.—+$(m)

We prove that @ i1s an homomorphism. Because of the unicity of @(m), it is

- 12 -



clear that ¢ 1s linear.

We use Jacobi identity and the fact that M is a subalgebra of L.

[ [ml,mg] ,a]

il

[ ¢ ( [mlmz 1), a] = [ m [m2,a] ]— [mg [ml,a] ]

(o) [0 )2l ]- [o@), [om)e]]

li

[lo(m), o )] e ]

The unicity of ¢ gives

o ( (mom ) )= (o), 9(x,)] (3)

This proves our statement that ¢ is indeed an homomorphism. Let us

further note that

[m, o)) = [o@), o(m,)] (%)

We define now the subset N of jﬁ . It is the image of the following

application:
y: u-ZF m—y(m) = m -p(m)
¥ is linear and moreover V¥ ( [ml,m2] ) = [W(ml), W(mz) ]

which turns N into a subalgebra of 45 homomorphic to M. This last equality
is a direct consequence of (3) and (4). It is also clear that Y¥(m) = O
implies m = O. Indeed W(m) = 0 means m = @(m) but m € M and @(m) € A

means that m = o(m) = 0 in virtue of our hypothesis that as a vector

- 13 -



space, ;f‘ is the direct sum of M and A. Hence N is isomorphic to M.
Further, any n in N is an image under ¥ of an element in M:n = W(m) SO
that [n,a] = (m-¢(m),a] = O because of (2).

It remains to show that any {,belonging to & can be written in a
unique way as £ =n+awithne N and a € A.

By hypothesis we know that £ =m + a =m - ¢(m) + 2 = n + a and this

n is obviously unique. This concludes the proof of lemma 2.

L. PROOF OF THE THEOREM

We turn to the proof of the theorem. The assumptions made imply

that the commutation relations between our operators have the following form
- ) A A
| F ’Pu] =0 [P ’Muv] = SRR

M ~-g M -g
BV, TRop, YV, TVIVL Hg

M M =g M + g
v’ v v oY v
“1 1 Hz %] " H M2

B o]} ’F/ A
= + +
Ai,MHV] ai;u\’ MQU bi)“v A/& Ci: “v)}\P

i fole} L A
= + -+
A.,Aj] dij’ MOO eij Ap fij,KP

with obvious symmetry properties for the coefficients a, ., . First let

po
us prove that ai,pv

] P M s Bl

Because of (1) it reads

= 0 and dijpo = 0. We use the Jacobi identity



hence

po

a’. =0
1]
Again
A A A
Al, MpV’P + uy? P ,Ai + P, Al, L =0
pc _
i,V ’Mpo a
So also a?“ =0
i,pv

. by

It is clear Dby inspection of (1) that the P generate an ideal I in Jf

and so we can go to the factor Lie algebra gﬁ’ = gf/gt’ We denote by A:
1

and MLV the images of A; and Mpv under the mapping ;f — gf/57‘= fo.

Using the fact that the a's and d's are zero we get for the commutation

relations

1 1 H 1 1 1

M , M = g M +g M - g M - g M
LlJ_vl sza “1v2 vlpe Vlée Hlvz LJLJ.“a v Vz Vlvz p1“2
y 1 £ 1

A, M =D, 2
i Ty i,py L (@)
t ot L 1

A ’Aj = eij A&

Eq. (2) expresses the fact that the A; generate an ideal J{ lC Jf. We
thus have proved the first two statements of the theorem.
Not only do theA;L build up the ideal A ', but also the M;W generate a
subalgebra\/Kfand,as a vector space, Jf x is the direct sum of‘dﬁ?and.;/tx.
If we suppose that the algebra 04»g is semi-simple we can make use of lemma 2

which asserts that one can find real coefficients k;v = - ktu such that

defining:
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1 1 i 1 !

4
e MuV - kw A;, the N also generate an ideal in i and the

uv
1
commutation relations in ,;ﬁ are the same as in (2) with M;N replaced by

1
N

LV and the coefficients bi, Ly put equal to zero.

This means, going back to the initial Lie algebra,that by replacing
the MW by NHV = MW - kiv Ai we can manage to make the b coefficients

disappear. Since [Ai,P}\] = 0, va,P}\] = [MHV,P}\] ; on the other hand

[NHV,NHV =[MHV,MHV]moa_ulof.
11 2 2 11 22

Thig is the same statement as

1 7 1 1 . i?
[NpV’NuV ]—[Mpv ; M}.LV ] in
11 =22 11 22

A
In other words, the Lie algebra £ is also generated by P, NLW’ A; with

the commutation relations now reading
A
[P Pl=0

1. =P _ P
[PP,NW- o B, - 8.2,

[ pm—|
>
H\a
=
C_t
(I
i
(0]
}_Y
o
=
&5
+
=

i3,
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commutation relations are Jjust the ones discussed in lemma 1 where it was

proved that there exist linear combinations

N .
=N -4 Pr=M. -x A -4 P

I A
YRy 5n% BV, A uv uv i MV, A

A
such that P and va have the same commutation relations as the previous

A A
P°  and MHv had. Again P commutes with A, so that

"y "
= D =
[Ai,vaJ [Ai’Nué] and also [; ,Lpg] [% ,Nuv]

A
Hence our algebra jz is still generated by P, L and Ai but we now have

v

the commutation rules:

*, =s5"p -sPp
Y BV vV
=g L + g L - g L g (%)
hY \Y AY Vv 1% 2% vV v
BV Y, H Yo vlpz He HYs L SR 12 M
A
Bl T F
A A = A f PK
- T F I A R
We have not yet made full use of the Jacobil identities in i? . Indeed we
have to make sure that
Ai’va s Lpd + LuV’LDG s Ai + Lpg’Ai , Luv =0

Using (&) we get

ci,uv,p €an ~ %i,mwv,0 Epd T i,po,u Evr * i,p0,v Bux

(5)

Ci;Vp;}‘ gHO * Ci)“G)}“ gvp ) Ci)}-lp)}" Evg ~ cing’)\ gp‘p
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We now try to find the most general solution of (5). Let us put in (5)

LW=p#V#o and A = V. The result is

Cyv %4 po,n” Bup i,vo,v

Hence

C. = = .
1,051 g“uplyg

where the . are some real numbers.
J

Again let us write (5) with p = p # v % o} % A which is possible since

we have four values at our disposal. The result is

c. = if A is different from vV and o. Combining this
i,Va, A

result with the previous one we get

©uv,0 “BvePiy T8uoPi,v (6)

iti 6 , . = -c, .
In writing (6) we have also made use of the fact that Cl,uV,O Cl,Vu,G

Using (6) one can now check that (5) is an identity. We set B,=A,-p, HPH
2

Now [?i’LpV] = 0 and since [IJQAi] = 0 and [PK,PD] = 0 we also have

2]

2 A
= e, + f
[Ai,AJ] ey Ay lJ’)\P

e e e P
i3 L Tign
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The last Jacobli identity namely

{[ B3] ’Luv] : [[BJ,LW] Bi] ; [[LW ] Bj] .

tells us
A
fij,}\[P ’Luv] =0

that is f.. =0
ij,2

Our proof is now complete since using the assumptions of the theorem

we were able to show that starting with a set of Pk, M

" and Ai

satisfying (1) there exists a set of numbers kuvl’ L such that

HY, }\',piJ H
setting

i )
Loy = My Ky Ay )E/uv))\P

(7)

A .
the P va’ Bi generate the same Lie algebra as before but their commutation

relations now read

) £ R A
[P,P] =0 [P ,Lw] = 8" B0 VPLl

1

» L = L +g L ~g L -g
HYy “2”2} HiVo TV Mo Vi, TV Thgkg ViV TVRVS, o Ep

= [Bi,Lw] 0 (8)

- £
Bi)B‘{I = e, By

I_i
o
|_J.
av]
o
——
|
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Hence we have succeeded in splitting our Lie algebra into a direct sum
A D .

of two algebras, one generated by the P~ and va , call 1tcf , 1iso-

morphic to the one of the generators of the inhomogeneous Lorentz group,

the second generated by the Bi’ call it UQ, with c/z; semi-simple. cAais

clearly isomorphic with eAa' introduced earlier. The theorem is proved.

5. REMARKS

The crucial point in section 4 was in assuming that Uaa’ is semi-
simple. This of course has not much to do with any kind of physical as-
sumption. However, as our discussion shows, if we keep the hypothesis
that Ay , P}\ = 0, +the only way to get a final answer different from
the one given in the theorem is to find a Lie algebra aA; such that it
should be impossible to interpret the derivations R MHV,A; as
inner derivations. A typical case would be the following. Call P the
Lie algebra of derivations on cAaY and ‘D' the Lie algebra of inner
derivations on cﬂ;i . If there exists a nontrivial homomorphism of the
Lie algebra c/}lof the homogeneous Lorentz group in SO /:D x’ then the
last conclusion of the theorem would be false. By non-trivial homo-
morphism, we mean any homomorphism except the one which sends c/)(,on
0 € S(.) /SO . In our previous considerations we made the assumption of
semi-simplicity in order to assure @ /@ ''= 0 which forced the homo-
morphism cﬂ(—* ﬁ) /SD "= 0 +to be the trivial one. We see that the
theorem extends to the case where cA,has zero cenber and Jl,—*j:) /D x
has to be the trivial homomorphism.

In conclusion one can point out the parallelism of this result with
Mac-Glinn's theorem which assumed that [Ai:Muv] = 0. The outcome was

then that the A; generate a sub-algebra 04, of i ;3 1f this subalgebra
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was supposed to be semi-simple (or more generally to have no abelian
A
factor algebra®) then A;,P =0 and ;e splits into A ®P .
It is a great pleasure to thank Doctor W.K.H. Panofsky for his

hospitality at SLAC and Dr. S. M. Berman for useful discussions.
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