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ABSTRACT 

In this note we investigate the possibility that 

the inhomogeneous Lorentz group is only a subgroup of 

a larger Lie group G of symmetries for strong inter- 

action physics. The discussion is restricted to the 

Lie algebra 2 of G. We make the assumption that the 

remaining generators Ai of G commute with the gen- 

erators of translations P 
h 

which build the ideal CT 

in3 . It is then shown that the Ai generate an 

ideal in 3 modulo CT . If this ideal is semi-simple 

then2 breaks up in a direct sum cf=p@cA 

3 where2 is isomorphic with the Lie algebra of the 

inhomogeneous Lorentz group and&! is semi-simple. 
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1. INTRODUCTION 

It is interesting to discuss the various possibilities of mixing 

"internal symmetries" in strong interaction physics with Lorentz invari- 

ance. However this cannot be done in an arbitrary way as was recently 

shown by Mac-G1inn.l We take here a point of view closely related to 

Mac-Glinn's, by assuming that the inhomogeneous Lorentz group is only 

a subgroup of a larger Lie group G. This is not the only possibility 

as pointed out by Louis Miche12 who assumes t'ne inhomogeneous Lorentz 

group to be only a factor group of G. However, we do not discuss here 

these other ways of inter-relating internal symmetries and Lorentz in- 

variance. In fact we shall restrict our discussion to the Lie algebra 

of G, call it . Our main hypothesis will be that it is possible to 

choose a basis of this algebra in such a way that 

(i> The generators of the usual translations P', i _ 0 < 1 < 3 and 

homogeneous Lorentz transformations MizV = - qp,p,V = 0,1,2,3 

have their usual commutation relations (this being another 

way of describing the fact that the inhomogeneous Lorentz 

group is a subgroup of G), and that 
x 

(ii) The other generators Ai 1 <_ i <_ n commute with P . This 

assures that any irreducible representation of our group G 

will be characterized by a common mass so that we do not 

expect the relation of internal symmetries to Lorentz in- 

variance to account for the actual mass splitting within the 

same super-multiplet. Had we only assumed pi,Po] = 0, then 

Lorentz co-variance would require it to be true in any frame 
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SO that Ai,P~ r 1 = 0 whatever the index A. Now we will show the follow- 

ing: 

Theorem 

Under assumptions (i) and (ii), the Ph generate an ideal r in d . 

The images of the Ai under the application J! -+ 2 /r = J!.' 

generate aa ideal ~4' in 2'. If we assume that this algebra A' is 

semi-simple then 2 is equal to a direct sum of Lie algebras &! -- A @ 9 

where & is isomorphic to dz* and J is isomorphic to the usual Lie 0 

algebra of the inhomogeneous Lorentz group. 

This result is in some sense parallel to the one of Mac-Glinn's. 

The essential difference being here that in order to split 2 into this 

direct sum one may have to change the labels of the operators. Before 

proving the theorem in section 4 we recall in section 2 some definitions 

about Lie algebras and devote section 3 to the proof of two lemmas which 

will clear the way. Section 5 gives some comments on our result. 

For convenience we choose all our Lie algebras to be on the real 

numbers. In this way P" and M commutation relations of TV have the 

& and x a a 

p 32 
- respectively. - -xv axv 

The greek indices will always 

run from 0 to 3; gp = g 1J.V is the usual diagonal real Lorentz metric. 
* 

We use freely of gbv to raise or lower indices. 

2. DEFINITIONS 

To make our language precise, we recall briefly some facts about 

Lie algebras. For details one can refer for instance to S. Helgasson's 

* 
Whenever two indices, one upper and one lower, appear in the same 

formula and are equal, they are meant to be summed over; the summing for 

greek indices to be from 0 to 3, the summing for latin indices to be from 

lto n. 
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book.3 By Lie algebra 2 over R, the real numbers, we mean a finite 

dimensional vector space over R with an internal bilinear product 

satisfying 

[X, xl = 0 

and the Jacobi identity 

k, [Y,Zl] f [Y, rZ,xl] + [$ hY( = 0 

A subalgebra of 2 is a vector subspace closed under the product. An 

ideal is a true vector subspace CdL if such that for any & 2 and 

ic$ , [&,i] belongs to $ *. The factor algebra 2 /& is the factor 

vector space with the inner product inherited from 2! . We shall say 

that a Lie algebra 2 is a direct sum of two ideals d1 and x2 and 

write 

-P/ ,d t" E 
1 1' 1 2 & g' i' E 

1' 2’2’2 
2 

2’ 
and if any element 4 in 2 can be 

uniquely written as I5 = ti f t2. Mathematicians often call 2 the 

direct product of 2, and 2 . 
2 

Given & 2 the linear correspondence x + [&,x1 = adj (t). x 

has the property adj &* adj c" - adj -e" adj &' = adj [&',&'I and defines 

the adjoint representation of 2 : adj ( 2 ). If the symmetric bi- 

linear from K(ti,t") = Trace adj &' adj d' is non-degenerate, the Lie 

algebra is called semi-simple. In this case 2 has no abelian ideal 

except zero and its center is also zero. Finally by derivation on a Lie 

algebra one means a linear correspondence: 
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with the property 

D [x,y] = [D x,yl + [ x,?Yl 

These derivations themselves build up a Lie algebraa ( Gf? ), with 

[D~,D"] = ~1 D" _ D" D'. It is easy to see that the adj ( d ) is an 

ideal in 9Lf) ( in this respect adj & is also called an inner 

derivation of 2 > with 

ID, adj &I = adj D (&) 

Now the main result we shall use is the following. 

Theorem 

For a semi-simple Lie algebra every derivation is an inner deriva- 

tion. In other words D ( 2 > = adj ( 2 ). The proof of this theorem 

is given on page 122 of reference 3. 

3. Two I4ENMAs 

In this sect ion we prove the following two lemmas: 

Lemma 1 

Suppose that we have a Lie algebra over R and that, in terms of a 

basis PA, N 

" 

, the following commutation relations hold: 

[P',Pp] = 0, k',Npd = Sf; PV - 8; PV 
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N =-N 
W VP 

and 

aP1vl, P2V2, 1 = -avlpl, p2v2, 2-L = -aPlvl, V2P2, 1 = 
-a 

p2v2, PIV1, 1 
(2) 

Then the Lie algebra just described is necessarily isomorphic to 

the one of the inhomogeneous Lorentz group. 
* 

Proof of Lemma 1 

The statement of the lemma can be rephrased in the following way. 

There exists a set of (real) coefficients f 
PV,h 

such that putting 

L =N -f PX 
P P CIv,h 

the Lpv and Px generate the same Lie algebra asbefore;however these new 

operators have among them the usual commutation relations of the generators 

of homogeneous Lorentz transformations and translations, respectively, 

that is, this change of basis has the virtue of supressing the "a" co- 

efficients in the commutation relations (1) when they are written in terms 

of Px and L l-w * 

We have to make sure that our Lie algebra satisfies the Jacobi 

identities: 

c 
circular permutation of 1,2,3 

This gives us a set of linear relations among the coefficients 

* 
In spite of the simplicity of the lemma the author was unable to find 

a simpler proof thanthis rather lengthy one. 
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gP2v3 aPlv,Y V*P3’ 1 t-g 
circular permutation 

V2P3 aP1vl, P2V3Y 1 - gv2v3 aP1vly P2P3Y A 
of 1,2,3 

(3) 

- gP2P3 aPl”l, v2v3, 1 + gly av2v2, P v ‘V1 - gvlh aP2v2y P3V3Y P1 1 = 0 
33 

Our task now is to find the most general solution of these e.quations. 

Let a,B,Y,~ stand for O,l,2,3 in any order. Because of the symmetry 

properties of the a's we have only to compute the following quantities. 

The value of all aPlv,,P2V2,~ is then related to the preceding ones 

using (2). Let us first write (3) for pl=Q, v 
1 

=y, p =@, y 
2 2 

=6, p =q I'=@ and h=a: 
3 3 

4xX ( aB~,w,Y + aay,ps,pps,~y,a + gpi3 aq,6a,a - > 
0 . (4) 

NOW we put in (3) p1 = Wl = B,p 
2 

= Q V2 = 7 p3 = a V3 = 6,x. - @ 

( gml aw,Y$ B + aay,w,B + aQqY,B > + “pp acLy,cx5,cx = O 

Let us add (4) and (5) 

aBs,ag,Y + asa,yf3,p = aBy,s~,~ + aY~,~P,B 

(5) 

(6) 

Call 
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Obviousiy 

(7’ > 

Equation (6) when translated in terms of up reads 

(7”) 

Hence (FaPys is invariant by a circular permutation of By6 and changes 

sign under an odd permutation. We will get a new equation for q if we 

write (3) with p, = G$Vl= f3,p2= 01,V2= y,p3= a,V3= 6,and x = a 

aQ-Yr%B + aa+@,Y + acr@,ay,6 -ac@,y6,cx -acxy,6B,a -ac%BYYQ = o (8) 

Using cp just defined we rewrite (8) as 

(9) 

Comparing equations (7)H and (9) we conclude that all three terms in 

a 
equation (9) are equal and thus cp BYE 

= 0 that means 

a%Y%6 + agy,6cY.,cx = O (10) 

We now define f@,y through the following equation (6 being known as 

soon as we have made a definite choice for a B and y): 

aq3,y6,E = g&S f c@,y with f@,y = -fga,y 

With the help of (10) we find 

(11) 
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“c@,ay,s = gcYL2 f BY,& 

Using (4) we also get 

"c@,ay,a = gcKx ( f BY,U + fCwY,B -f *,r 

02) 

(13) 

So far we have only introduced f 
PV,P 

for P # V { p with the property 

of being antisymmetric with respect to its first two indices. We were 

able to express in terms of these quantLties our first three sets of 

unknowns. We turn now to the last set. For that purpose we write 

again (3) with p,= ol,V1= @,p2 = a,\',- y,p3= 6,V3= y,and X = a 

Using also (2) we get 

We make a final use of ('3) by setting I-',-. CX,V~: @,p, - y,V,- 6,~~~ a,v3= y 

and h = @. 

-gPP aYbaY,a +gyy%@, %,f3 -Q, ay&yg,@ .=- O 
05) 

We want to combine (14) and (13). T,et US call qir, yP -I aar Br B 
7 I , 

The last two equations read: 

(14’) 

(15’) 
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Because of the antisymmetry of qs ~ in its last two indices,as soon 
r 

as we choose 6 we are left with only three quantities linked by the 

last equation. The most general solution is of the following form 

with arbitrary hg,@. Indeed (14) and (13) are now identities. The 

three h 
S,a.Thg,B h6,Y 

only appear in the expression of the six q 
s,ol8 

= -\ii 
6, $c? %j,IXy= -4f 6,ya'%,By= - ?"'s,rB 

and the conditions for 

solving back for the h8, with one degree of arbitrariness, given the 

Q. * are precisely equations (14) and (15). 

At last we set 

fm,a= -faG a= h6 a , ) 

These new f's are obviously independent of the ones 

Together they build up f 
PV, P 

=f 
VP?P 

and we now have 

"~,BY,Y= *a,rB -= gYY fc4w-gBB f%r 

previously defined. 

(16) 

Using (2) we can unite equations (ll), (12), (13:) and (16) in a single 

expression: 

a zf 
cIl~1,1i2v2,~ cLIV1~P gv k -f 

Lyy 2 gcL 1 
-f i-f 

2 2 2 
ii2v2 t P, gVIX c12v2 t v1 g bp 

-gp v fv p A -gv p I^p v x +gp g 
12 12’ 12 12’ 12 

07) 

f v1v2,x -+ gv1v2 fl-l,",,h 

Equations (2) and (3) are now ident it i es. 
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We are now in position to return to our Lie algebra. We set 

L =N -f PA 
PV w IIV,X 

with the same f's as the one's which appear in (17). 
A 

It is clear that LVv = - Lpv, and that Lclv and P generate 

the same Lie algebra as the NCLv and Ph do . But in terms of these 

new operators the commutation relations now read (using (17) ): 

[PJ-,PP] = 0 [Pl,LVV] = 6; P, - 6; Pp 

[ 
L 

PIVl 
,L 

kzV2 I 
L 

= gy2 V1J12 
L fgVp pv 

L L 
12 12 

- gp1p2 v1v2 - QV1V2 p1p2 

which are the usual commutation relations for the generators of the 

inhomogeneous Lorentz group. Hence our lemma is proved. 

Lemma 2 

Let ,$ be a Lie algebra over R which as vector space is the direct 

sum of an ideal A and a subalgebra M; if A is a semi-simple Lie algebra 

then there exists an ideal N in 2 isomorphic to M and such that 2 is 

the direct sum of the Lie algebras N and A: 

(18) 

Proof of Lemma 2 

Since A is an ideal in 8 if we choose a definite m in M, Cm,al 

- 11 - 



belongs to A and the correspondence 

a -+[m,al 

defined for every a in A is linear. Because of Jacobi identity it is 

even a derivation on A: 

[b [m,aj]+ [m [a,b]] + [a [b,mj] = 0 

can be read 

[m [a,bl] = i[m,aI, i] + k, [m,bl] w 

We now combine this fact, our hypothesis of the semi-simplicity of A 

with the theorem quoted at the end of section 2 to conclude that the 

derivation given by m is in fact an inner derivation of A; that means 

there exists an element cp(m) belonging to A such that for any a E A. 

Cm,aI = [cp(m),al (2) 

This element is unique for the equality [cpl(m),a] = [Ya(m),al which 

if valid for any a E A means that cpl(m) - cpa(m) belongs to the center 

of A which for a semi-simple Lie algebra is reduced to zero. We now 

have a correspondence 

cp :M+A m -+9(m) 

We prove that q is an homomorphism. Because of the unicity of cp(m), it is 
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clear that cp is linear. 

We use Jacobi identity and the fact that M is a subalgebra of L. 

[ 
[mL,m21 ,a 3 [ = Cp ( [mlm2 ] ), a] = [ml [n2,al ]- [m2 [mljal ] 

= [cp(m-) [cp(m2),a 1 ] - [OCm,), ['P(ml)jal] 

The unicity of cp gives 

cp ( [mp21 ) = [ob) , o(Ql 

This proves our statement that cp is indeed an homomorphism. Let us 

further note that 

(3) 

II ml, cp(m,)] = [Ok p(m2)] (4) 

We define now the subset N of $ . It is the image of the following 

application: 

$: M+ % m -+$(m) = m -P(m) 

$ is linear and moreover $ ( [m ,m 1 1 2 

which turns N into a subalgebra of &#? homomorphic to M. This last equality 

is a direct consequence of (3) and (4). It is also clear that Jr(m) = 0 

implies m = 0. Indeed $(m) = 0 means m = v(m) but m E M and cp(m) E A 

means that m = cp(m) = 0 in virtue of our hypothesis that as a vector 
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space, 2 is the direct sum of M and A. Hence N is isomorphic to M. 

Further, any n in N is an image under J, of an element in M: n = $(m) so 

that [n,a] = [m-cp(m),a] = 0 because of (2). 

It remains to show that any &belonging to 2 can be written in a 

unique way as & = n + a with n E N and a E A. 

By hypothesis we know that & = m t a = m - cp(m) + a = n f a and this 

n is obviously unique. This concludes the proof of lemma 2. 

4. PROOF OF THE THEOREM 

We turn to the proof of the theorem. The assumptions made imply 

that the commutation relations between our operators have the following form 

"M +b 
Pa i,cLV 

c I 
Ai,A. = d. 4/ oa Moo-l- e.. Ae f. Ph 

J lj' 1J lj,X 

(1) 

with obvious symmetry properties for the coefficients a, . . . . f. First let 

us prove that a. PO 
1,iJ.t' 

=Oandd.. . Pa =: 0 We use the Jacobi i.dentity 
1J 

[P"; [A+~] ]+[ Ai, [Aj,P*] I+[ Aj ['",Ai] ]= 0 

Because of (1) it reads 

d Pa 1 1 P' J M =o 
ij PO 
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hence 

Again 

h A E, 
A M i, ~vJp f M~VJ P JAi + ’ J AiJ”pv = O 

aPa Px M 
iJpv ’ pa = 

0 

So also apa = 0 
iJpv 

It is clear by inspection of (1) that the Px generate an ideal Fin ;;e 

and so we can go to the factor Lie algebra 2' = z/c We denote by Al 

and MI 
w 

the images of Ai and M 
W 

under the mapping B-cm=f- 

Using the fact that the a's and d's are zero we get for the commutation 

relations 

M' M' 
w' p2v2 

M' +g 
= 6p1v2 v1cL2 

M1 
1 

v1v2 PlV2 - gp p MI Y - gv v M 
12 12 1 2 p1p2 

A;, M' 
AL 

=b 
PV iJw 

(2 

Ai,A: 
3 

' Ai = eij 

t 
Eq. (2) expresses the fact that the Ai generate an ideal A ' c 2. We 

thus have proved the first two statements of the theorem. 
1 

Not onlydot?e$ build up the ideal & ,but also the Mtv generate a 

subalgebra IJ K' and,as a vector space, if' is the direct sum of Jc and A'. 

If we suppose that the algebra 04' is semi-simple we can make use of lemma 2 

which asserts that one can find real coefficients k1 = - k' such that 
I-W VP 

defining: 
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9 

NPv = Miv - kiv A;, the Niv also generate an ideal in d' and the 

commutation relations in k ' are the same as in (2) with MLv replaced by 

N' 
4 

W 
and the coefficients bi clv put equal to zero. 

J 

This means, going back to the initial Lie algebra,that by replacing 

the MCIV by N,v = Mpy - khv Ai we can manage to make the b coefficients 

disappear. Since ~i;P"] = o,[N~~,P'] = [Ml"v,~h] ; on the other hand 

N 
plvlJ p2v2 

=M 1 [ M 
plvlJ p2v2 1 mod.ulo CT. 

This is the same statement as 

1 1 = M’ MY 
plv1J p2v2 1 in at' . 

h 
In other words,the Lie algebra 2 is also generated by P , NWv, Ai with 

the commutation relations now reading 

[ 1 PX,pP = 0 

N 

[ 
JN 

% I-r2v2 1 N 
= gl-i1v2 V1P2 + gv p 

N 
1 2 Np1v2 - gplp2 v1v2 

- Qv v 
1 2 Nplp2 

+m PP 
~lvlJ p2v2J p 

(3) 

[ 1 t A.,A. = e.. At -I- f.. 8 
1 J iJ 1J? 

- 16 - 



We now observe that 
IJ PV 

and N generate a subalgebra in cf and the 

commutation relations are just the ones discussed in lemma 1 where it was 

proved that there exist linear Combinations 

L =N 
P - 

4 
PV cLv,x 

PA = M pV -kiA -e 
pV i - PV,h 

PX 

such that Ph and L py have the same commutation relations as the previous 

PX and M cIy ha.d. Again Px commutes with Ai so that 

pi,Lpv] = [Ai,~pV] and also [P',Liiy] = P,N~~] 

Hence our algebra % is still generated by P', Lliv and A i but we now have 

the commutation rules: 

PXpP = 0 

PP,L 
PV 

= 6; Pv - EP P 
v CL 

AL =c i' cLV i, 0, A 
PA 

Ai,A. -fL 
J 

= e.. At + fii 1 'A 
I-J 0' 

We have not yet made full use of the Jacobi -identities in 2 . Indeed we 

have to make sure that 

Ai,L 
IJ-V 

, L -+ L 
PO pv' IJpu ' Ai t L A. ,L PO' 1 =o 

w 

Using (4) we get 

C 
i, P, P guh - 'i, 1.121,~ gpX - c 

i,Po,p gvh * ‘i,po,v gp.h 
(5) 

= c 
i,vP,h gpo f c. l,IJ.U,~ gvp - c 

i,pP,h gv~ - ‘i,vcr,X gpp 
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We now try to find the most general solution of (5). Let us put in (3) 

p = p f V # 0 and A = V. The result is 

g VY ci,~o,~= gpp ‘i,VU,V 

Hence 

where the p i,O 
are some real numbers. 

Again let us write (5) withp=p#V#o{h which i.s possible since 

we have four values at our disposal. The result is 

ci Va A= 0 if X is different from Y and 0. Combining this 
Y Y 

result with the previous one we get 

C. 
1, PV, 0 ‘gV5pi, p -gp5pi, V 

(6) 

In writing (6) we have also made use of the fact that c 
i,PV, 0 

= -c 
i,Vp,O * 

Using (6) one can now check that (5) is an identity. We set Bi=Ai-pi v$ 
Y 

Now Bi,L 
c I PV 

= 0 and since[P',Ad = 0 and [P";Poj = 0 we also have 

& = e.. B-t-f Px 
1J t ij,X 

with f = f fe 
-e 

ij,A iJ,h ij p&,X 
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The last Jacobi identity namely 

tells us 

that is 

f ij,X [ 3 
PX,L p.v = 0 

f = 
ij,h 0 

Our proof is now complete since using the assumptions of the theorem 

we were able to show that starting with a set of PA, M 
PV 

and A. 1 

satisfying (I) there exists a set of numbers k PV 
i, tpv h,pi IJ- such that 

> 7 

setting 

(7) 

Bi=Ai-p. $ 
lY!J 

the Px L 
PV' 

Bi generate the same Lie algebra as before but their commutation 

relations now read 

[Pl,P;I = 0 [$,Lpv] = 8~PV45hyP~ 

= 0 (8) 
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Hence we have succeeded in splitting our Lie algebra into a direct sum 

of two algebras, one generated by the PA and L 
I-iv ' 

call it9 , iso- 

morphic to the one of the generators of the inhomogeneous Lorentz group, 

the second generated by the Bi, call it A with CR semi-simple. CRis 

clearly isomorphic with &A3 t introduced earlier. The theorem is proved. 

The crucial point in section 4 was in assuming that i& is semi- 

simple. This of course has not much to do with any kind of physical as- 

sumption. However, as our discussion shows, if we keep the hypothesis 

that Ai , P* = 0, the only way to get a final answer different from 

the one given in the theorem is to find a Lie algebra A such that it 
1 

should be impossible to interpret the derivations A' + MCLV,Ai as 

inner derivations. A typical case would be the following. Call 9 the 

Lie algebra of derivations on 4' and 9' the Lie algebra of inner 

derivations on CA'. If there exists a nontrivial homomorphism of the 

Lie algebra 5t of the homogeneous Lorentz group in $) /D ', then the 

last conclusion of the theorem would be false. By non-trivial homo- 

morphism, we mean any homomorphism except the one which sends &on 

ofB/D'* In our previous considerations we made the assumption of 

semi-simplicity in order to assure swD'= 0 which forced the homo- 

morphism &+ 9 /D ' = 0 to be the trivial one. We see that the 

theorem extends to the case where $I has zero center and d--+D/D * 

has to be the trivial homomorphism. 

In conclusion one can point out the parallelism of this result with 

Mac-Glinn's theorem which assumed that CAi>Mpv] = 0. The outcome was 

then that the Ai generate a sub-algebra Aof $ ; if this subalgebra 
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was supposed to be semi-simple (or more generally to have no abelian 

factor algebra*) then Ai,PX = 0 and2 splits into rA.09. 

It is a great pleasure to thank Doctor W.K.H. Panofsky for his 

hospitality at SLAC and Dr. S. M. Berman for useful discussions. 
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