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ABSTRACT 

The low energy three nucleon problem with two particle 

separable potentials is solved. The formalism of Faddeev 

in recasting the three body equations into Fredholm form 

and subsequent angular momentum reductions are carried 

out. Upon searching for a bound state two poles of the 

amplitude are found. Upon further examination one of the 

poles is found to have a residue of the wrong sign. This 

difficulty is attributed to the separable nature of the 

potential. 
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INTRODUCTION 

Recently there has been extensive work on recasting the equations 

for three body problem into a form that is tractable by numerical corn-- 

putation. Faddeevl has obtained a set of equations for this problem 

that is analogous to the Lippmann-Schwinger equations for two body scat- 

tering, and whose kernel is such that standard Fredholm theory of integral 

equations may be applied. Weinberg2 has extended these results to the 

n body problem. 

For the three body case a further simplification has been obtained 

by Cm&s3 in performing an angular momentum separation which is symmetric 

in the three particles involved. 

If one were to take as the interaction between the particles a local 

potential, one would be faced with three coupled integral equations in 

two unknowns, which would have to be solved for a range of parameters. 

Although this problem is not insurmountable on present day computers, a 

further simplification maybe obtained by replacing the two particle local 

potentials by simple separable ones. For two body scattering separable 

potentials have been extensively discussed.* They have likewise been 

applied to the three body problem.5'6 

The specific problem treated in this article is the low energy three 

nucleon problem. Two body se-parable potentials maybe constructed which 

reproduce low energy scattering parameters, such as scattering length and 

effective range. They may involve spin-spin, spin-orbit or tensor forces. 

The physical transition matrix is the same as would be obtained from a 
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Bargmann7 potential; however off the energy-momentum shell the amplitudes 

in the separable and local case are different. Nevertheless, it was felt 

that one would obtain a solution to the three body problem not too dif- 

ferent from one obtained through the use of local potentials. 

Even further simplification may be obtained by restricting the spin 

dependence of the interaction to spin-spin forces, but not to include 

spin-orbit or tensor forces. In the latter case the z component of the 

spin is not a good quantum number, and one has to keep track of the 

helicities of a.11 the particles, making the problem quite complicated. 

If one treats the spin dependence by a spin-spin interaction, both the 

total spin and its z component are good quantum numbers and one may 

decouple the equations further. A formalism for projecting the Faddeev 

equations into states of total angular momentum, in the case of a general- 

ly spin dependent potential is presented in the Appendix, although no 

further use is made of it. 

Section II is devoted to a discussion of the two body potentials 

and Section III treats the integral equations for the three body problem. 

The results may be stated briefly as the problem presented an un- 

physical situation when a bound state search was made. The three body 

scattering amplitude was found to have two poles. One of these poles 

had a residue of the wrong sign and may be classified under the broad 

category of ghosts. It is felt that this situation is not due to the 

three body nature of the problem but to the nonlocality of the potentials 

employed. These states may even occur in two body scattering with 

separable potentials if the forces are strong enough to pull a bound 

state beyond the beginning of the left hand cut. They have been exten- 

sively discussed in connection with the N/D equations. To remove the 
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ghost the forces have to be made sufficiently weak as to produce the bound 

state with an energy of the order of 4 MeV as opposed to the experimental 

value of approximately 8.5 MeV. As this is a poor approximation to the 

triton, the calculation was not pursued further. 

A resume' of the results contained in this article has been presented 

previously.' 

TWO BODY POTENTIALS 

One of the purposes of this calculation was in its possible future 

comparison to a treatment of the three body problem using local inter- 

actions, which give the same two particle physical scattering. A con- 

venient set of local potentials whose S-wave part has an analytic solution 

are those of the Bargmann type.7 The simplest Bargmann potential yields 

a phase shift which may be expressed by an effective range formula valid 

at all energies, 

k cot 6 = - i + $ rk2 . 

Such a behavior of the phase shift may likewise be obtained from a 

separable potential of the form: 

(1) 

The resultant two body amplitude, T (which is a solution of the Lippmann- 

Schwinger equations), keeping both initial and final momenta and the ex- 

tended energy, Z, as independent variables is, 
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The physical T matrix is obtained by setting lkl = 1~1 =d/z ,' 

T(k) = 
h 

k2 + P2 + 2fi2 h (B+ik) 

The unitary amplitude, A(k), obtained from T(k) 

by -21t2 , may be written as 

. (4) 

by multiplying it 

1 
-1 

ik . (5) 

from which we note that the scattering length a = (@ + @2/2~2A)-1 and 

r=- l/7t2L 

The analytic structure of A(k) in the complex k plane consists 

of two poles. One is at k = if3 and is the fixed pole representing the 

potential. The other pole moves as we vary 1 ; it is located at 

k=-i(@+2f12X). As 1 is made more and more negative, i.e., the 

force becomes more attractive, the pole moves into the upper half plane 

and represents a bound state. For h < - f3/fi2 this pole crosses the 

fixed pole and its residue changes sign. In a formal sense it still 

represents a bound state as we may assign a normalizable wave function 

to it, and it has a positive norm in Hilbert space. However, if Tje try 

to interpret the scattering as an exchange of this 'bound state' between 

the incident and outgoing particles, as would be the case if we drew 

an analogy with field theory, we are forced to assign an imaginary 
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coupling constant to this interaction. These states are referred to as 

ghosts?' Although the potential parameters were kept below the limit 

for the appearance of a two body ghost, such a state did show up in the 

three body problem. 

In the three nucleon problem we know that the forces are not purely 

central, but that there are spin-spin, spin-orbit and tensor forces. As 

discussed in the introduction the inclusion at spin-orbit or tensor forces 

would complicate the calculation considerably. As a start only spin- 

spin forces were considered. The low energy two body scattering parameters 

may be represented with sufficient accuracy by such a potential. Restrict- 

ing ourselves to this case the formalism of Ref. 3 may be taken over with 

minor modifications. The complications that would be inherent in a treat- 

ment with general spin dependence are presented in the Appendix. 

The neutron-proton and neutron-neutron potentials are taken to be: 

where, 

Pt = 

f7) 

; triplet projection operator, 

Ps= 1-0 -0 /4 ; 
( 1 2 ) 

singlet projection operator. 

Xnp t and B were adjusted to give a triplet scattering length of 

5.397F and a deutron binding energy of 2.2245 MeV.ll Xin was chosen 
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to give a neutron-neutron scattering length of -17.5 F. To obtain 

considerable simplification in the three body problem, the range of 

the interactions, S , was taken the same in all cases. hnp was ad- 
S 

justed to reproduce the singlet n-p scattering length of -23.679 F, 

and as we had no more freedom in varying the singlet range the effective 

range turned out to be 2.257 F as opposed to the experimental 2.459 F. 

It was felt that these potentials were a reasonable approximation to the 

low energy two body problem. 

THREE BODY SCATTERING EQUATIONS 

Using the potentials discussed in the previous section the three body 

Hamiltonian is 

03) 

cc ) 2 

where the Vij have the form of Eq. (6). The total spin S" = ai/ 

and Sz = 
r , + commute with H. Three spin l/2 particles add up to 

one state of spin 312 and two states of spin l/2. From now on we shall 

only concern ourselves with the spin l/2 state. Let us denote by the 

subscripts 1,2 the two neutrons and by 3 the proton; If a(B) is the 

eigenstate of Is' with eigenvalue +1(-l) the two spin l/2 states with 

Sz = l/2 are: 

u= ( 2a1a B 
2 3 

-(a B i-p a)a 1 2 21 3 > /* 

v = (a1 B 2 - a2 Bl) q/G 
(9) 
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The total wave function of H has the form 

qf=cpu+xvJ (10) 

where cp and X are functions of the momenta of the particles and due 

to the Pauli principle cp is antisymmetric in the interchange of 1 and 2, 

while X is symmetric. Using u and v as basis spin-states the trans- 

ition amplitude restricted to S = l/2 is a 2 X 2 matrix. 

Following Faddee? we decouple the transition amplitude into a sum 

of terms, 

T=T1+T +T 
2 3 

(11) 

Let ;\Tij denote the two body scattering amplitude between particles i 

and j. The Ti satisfies the following set of equations 

Ti = ^T jk (1 + Go (Tj + Tk)) 

Let us remember that the Ti's and ~ijlS are matrices in both Hilbert 

space spanned, say by the free particle three body states, and likewise 

matrices in the two dimensional spin-space. They are also functions of 

the extended energy, Z. Go is the free particle Green's function. 

Writing Eq. (12) explicitly for say T, it is, 

(13) 

The superscript indicates spin space coordinates. 
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At this point the method of Ref. 3 may be applied. Specializing to 

states of orbital momentum zero, all operators leave invariant a subspace 

of the Hilbert space spanned by vectors which we may label by the energies 

of the three particles, Cui = k;/2. Eq. (13) reduced to this subspace and 

using the potentials defined in Eq. (6) is 

Tl(LJ &' Z) = s 
R23 (Z-y) s(cb - w’) 

1 1 

(0 4-W -$w +p 2 
f Lu' - -$ w + p2 

2 3 1 3 1 

(14) 

where the notation t; is-a shorthand for u! ,cu ,cD . The integration 
123 

over 3' is limited by the triangle inequality 
I 
P; + PjJ )P;;) 1P; - PiI J 

and 

R23(z) = t AZ"/ (1 + 28 $p (S-G) (@2+4 
[ 

+ 3x7 (1 + 23 $p (B-$Z) (Btzr’)] . 

( 15 > 

Analogous equations may be obtained for T, and T3. Due to the factor- 

izability of the two body amplitude we may read of from Eq. (14) the 

functional dependence of T1 on 'u2 and ~0~. If we let 

F$(o~~~~'~Z) = (16) 
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we obtain 

T,(&? ,Z) = 
2 + F1 bl J’; Jz) 

I 

(17) i 

Substituting expressions of the type of Eq. (17) for T2 and T in 
3 

terms of F2 and F3 into Eq. (16) we obtain six coupled integral 

equations in one variable. In searching for bound states we may set 

LD' = &)' = (JJ' 
1 

and due to the symmetry between 1 and 2 we may further 
2 3 

simplify the problem and are faced with three coupled equations. 

These equations were solved numerically on the Stanford 7090 computer 

by means of matrix inversion. Matrices up to orders of 100 x 100 were 

employed. 

The extended energy, Z, was varied below the n-d break-up energy. In 

this region all quantities are real. Two poles were found for the T-matrix. 

Upon setting all the ml and w' equal to 
1 

Z/3 the residues were 

determined. The residue of the less tightly bound pole was found to be 

negative, and in accordance with the discussion in the Introduction we 

refer to it as a ghost. One further check was made. It was observed that 

most of the three body state was in the space symmetric wave function 

(3% Eq. (10)). A problem where the antisymmetric wave function was 

ignored was solved and compared to the full solution. A&n two poles 

appeared at approximately the same position and one had a residue of 

the wrong sign. 

The results of Ref. 6(a) likewise showed two poles. The nature of 

the residues was not further discussed. 
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APPENDIX 

The three body problem, recast into the Faddeev form lends itself to 

a partial wave decomposition even in the presence of arbitrary spin particles 

and general spin dependent potentials. In the spinless case, as is shown 

in Ref. 3, through the use of linear and angular momentum intergrals of 

motion we may reduce the problem to one involving three continuous variables 

and one discrete one. In the spin problem involving particles of spin 

s,, s2>s,, we have to adjoin n(2Si + 1) discrete variables. The notation 

of this Appendix is that of Ref. 3. 

As a start we label each particle by its three momentum, ji: i , and 

helicity Xi . The nomalization is such that 

(A-1) 

A two body scattering matrix wili have the form 

Xi,Aj,Y,X! J = &(I: f ‘if 
i j 

- s; - p-. . 
iJ 

(pj; Sf-“pi; z> 
J 

Let us transform to the center of mass frame of the three particles; 

"p s T: 
1' 2’ 3 

form a triangle. To specify the system completely we introduce 

the three energies, LUG , corresponding to the s i , a space fixed set of 

axes and a body fixed set of axes, with the Z axis along some fixed 

direction in the plane of the triangle, conveniently along one of the 

momenta. As a complete set of variables we introduce the total momentum 
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3, w~,u~,u~ (which when no ambiguity arises we label by & ), the 

total angular momentum J, the projection of J along the space fixed 

axis, M , its projection along the body fixed axis, MI , and the helicities, 

Xi (which we likewise label x). The normalization is chosen as 

(A-3) 

with the following metric in Hilbert space. 

s d3 Pd;: (A-4) 

The & integration is limited by the triangle inequalitities satisfied 

by the momenta. The transformation law between the old and new states is 

d) < F,;?,J,M,M~,X 
I 

SL,i: ,S ,X1 
2 3 > 

3 
6(S) S(Sl + s2 f S3) II h' 1 ( A-‘, ) 

', 1i 
123 i-1 

X DJ M 
1' 

M (he/d ' 

$,e,cp are the Euler angles of the triangle. The coefficient in front 

of Eq. (A-5) insures the normalization condition with respect to the 

metric Eq. (A-4). From now on the procedure follows that of Ref. 3. 
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A word should be said about Eq. (A-2). In general a scattering 

amplitude is given in two particle center of mass system, and the helicities 

are taken along si - 5 and ?!i - $1. .I2 
J J 

If we denote by pi the 

helicity along Si - p' 
3 

and 8 the angle between Si - s. and d1 
J i - S!, 

J 
the amplitude is usually expressed as 

dJ 
I-yP., I.+! ' (a 

J J 

X e 
i(pi-pj-pi+pJ) cpi 

Let ai be the angle between and ? i - ?, then 
J 

T 
'i 

Xi'X.,Y,X! 
d 'i 

J J 
= d~.,CL (-ai) d~j ~ 

ii j' j 
(-aj) T PiJPj'P~'~! J 

,l,x"C$ dSt 'a;) 
i 'Ij,y . 
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