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Models are constructed with double poles in partial 

wave scattering amplitudes. The associated unstable 

particles have non-exponential decay laws which contain 

parameters dependent on the production and detection 
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INTRODUCTION 

Attention has been called recently1 to the possibility of multiple 

complex poles in partial wave scattering amplitudes and non-exponential 

decays of the associated unstable particles. Examples of this situation 

are presented. The first is a potential well with two regions of trap- 

ping; the second is a kind of Lee model with two unstable V particles. 

In bo+,h cases it is' shown that double poles can be contrived by suitably 

adjusting the parameters. The time dependence is considered, for the 

Lee model in some detail. It is found that the decay law is a contin- 

uously variable function of production and detection arrangements. This 

is in contrast with the conclusion of Ref. 1 that alternatives to the 

usual exponential law form a discrete set. 

FIRST EXAMPLE: DOUBLE POTENTIAL WELL 

One would expect that the required degeneracy can be contrived with 

a potential well that has two possible regions of trapping. To make the 

working as explicit as possible, we take the potential barriers to be 

delta functions. The S-wave radial Schrodinger equation is 

fi + k2q = 
dr2 I 0 $, S(r-a) + (1) 

In the various regions the wave function, normalized to unit slope at 

the origin, is as follows: 
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for 0 < r < a 

'p = k-lsin kr 

for a < r < a+b 

cp = k-lsin kr + k-l sin ka ,a-lk-'sin k(r-a) 

for b < r 

cp = k-'sin kr c k-l sin ka Jra-lk-lsin k(r-a) f- (k-isin k(a+b) 

+ k-'sin ka G-'k" sin kb) nB-'k-lsin k(r-a-b) 

The last expression can be written as a combination of an outgoing wave 

exp(ikr) and an incoming wave exp(-ikr). The coefficient of the latter 

is -f(-k)/2ik with 

f( -kJ! = g2 a-l pa1 k-’ e ik(a+b) F(k) 

F(k) = sin ka sin kb f rc-'ak sin k(a+b) 

1 

(3) 

i- Jc-lpk sin ka e -ikb -t Jrm2k2aS e -ik(a+b) 

The zeros of f, or F, give poles in the S-matrix. For a double pole 

we require that with some k 

F = &F/&k = 0 . 

It will be shown that this is possible for small f.3, with a and 

6 = (k-n) of order B2, E - Jr(b-1) of order B, and a = 1. From Eq. (3) 

F = g(&+e) + a(e+26) + @S(l-ie) + 0$5(1-i-E:) 4 O(P5) 



The vanishing of F' is given by 

and then the vanishing of imaginary and real parts of F by 

L + ;B = O(P3) 2 

a! = $2 + O(B3> 

So we can indeed arrange for a double pole. 

SECOND EXAMPLE: MODIFIED LEE MODEL 

The second example is particularly simple for the study of time 

dependence. It is a Lee-type mode12in which there are two unstable 

particles, a stable N particle, and a stable non-relativistic meson 

with allowed transitions 

v &V 
1 2 

v 2 + N+8 

v 

8, 

(4) 

Let I1 and jr2 be the probability amplitudes for V1 and V2, and 

jr(z) the probability amplitude for a meson at 3 and the N particle 

at the origin. The Schrodinger equation is 

dJll - =- 
dt i(MIJrl + q2) 

dq2 - =- 
dt j p24f2 + QVl f &Co)) 

(5) 

(6) 
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(7) 

where a and g are coupling constants for the above two processes. 

It is formally convenient to suppose that JI, and Jr2 are zero at large 

negative times; so to permit consideration of any desired initial con- 

ditions we add source terms fp and f (t) to the right-hand sides 
2 

of Eqs. (5) and (6). Then taking Fourier transforms 

2 i. i: , , we have 

The retarded solution of the last equation is 

Ti&) = - & 
ik I&l 

e , x, T, + G(L) 
- 

where cp is an incident meson wave, and k = 76 (the positive root 

for positive CL)). Eliminating Gcoj f rom the other equations then 

(fJ - Ml) ; 1 - G2 = iPl 

(8) 

m-M2 + ikg2/4fi > $ - Q$, = iP2 + gG(o) 
2 
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where a real (divergent) self-energy has been absorbed into M . This 
2 

yields 

M2 + ikg2/4") iyl + Q (i? + do))] /*w 

q = 
2 [(- - Ml) (i", N ) +gcp(o) -t-ai? li /A(m) (9) 

A(m) = (0 - MI) (UJ - M2 + ikg2/!tn) - 5 
/ 

To obtain a double pole A(U) and its derivative with respect to cu, 

Wd, must vanish together. From Eq. (9) 

A+$ = (U - M2 -I- ikg2/4n) f (m - MI> (1 f s g) 

This vanishes at CD = ar, with 

(rnr _ Ml) = (1 + $$ 2 M2 i M1 _ 

where k and dk/du, are evaluated at WY+. The requirement that A(w) 

vanishes at the same time gives 

' 2 dk 
l+ifi-zi 

M2 - M 1 Ct? +-=o 
a2 g4 

The imaginary part of this can be made to vanish by choice of M2 - M1, 

and then the real part by adjustment of O?. For small g2 
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(M2 _ Ml) /g2 = o 

ct+ = (kr g2/8z)2 

and in the neighborhood of the pole, ignoring an overall factor of order 

g* different from unity, 

\ 

[ 1 A(w) -l = (m - cuJ2 (11) 
Inverting the Fourier transform, and retaining only the pole con- 

tribution as in the study30f almost exponential decays, 

lp) = 

dgt) = 

d' -1ti 
ze 

I 
2 

I 
1 
1 i> r 

d -lch 
3ze 

I 

2: - 
2 G( 0)) -t.$5 

11 
(12) 

i 1 u.! r 

These are correct up to terms of order g2; kg2 has been replaced by 

4,g2, because differentiation of k would only give a term in g2 not 

multiplied by t. Any desired initial values of $i .and q2 may be 

obtained by taking for f,(t) and f2(t) suitable multiples of s(t): 

Then 'i: and 2: in Eq. (12) are constants. It is clear that there 
1 2 

is a continuous variety of 'decay laws' depending on these initial con- 

ditions and on whether Jil or q2 or some combination thereof is 

observed. Consider some special cases: 
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a) Suppose the system is started in the V1 state, i.e., 

2: (0) = G(o) = 0, fl = 1. Then from Eq. (10) 
2 

I I 
ql(t) = (1 + $ rt) e 

-+rt 

I I 
q2(t) = $ rt e 

-*r-t 

(13) 

(14) 

The first of these is the decay law of Goldberger and Watson.' Note 

that q(x), the probability amplitude for the decay products, is 

closely related by Eq. (8) to lf2. It is in fact proportional to it if 

i.e., if retardation effects are negligible. So for close-in observation 

of the decay products Eq. (14) rather than the, Goldberger-Watson (Eq. (13)) 

is appropriate. 

b). Suppose the system to be started in the state V, . Then 

2: 
2 

=l, " =0=6(o). One finds 

I I 
ql(t) = $ rt e 

--$rt 

I I 
q2(tj = (1 - f$ rt) e 

-$rt 

c> If If1 and q2 are initially equal but in quadrature, 

2: =iZ: ~1, 
1 2 

&d = 0, the decay is exponential: 

(15) 

(16) 

Ill( = IJZ(t) 1 = e-‘rt 
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d) Suppose the resonance is excited by the incidence of a wave 

packet in the decay channel. Then F1 = F2 = 0, but G(o) / 0. In 

working out Eq. (12) in this case one meets the derivative 

This could be made large by an inappropriate choice of time origin, for 

a shift of orig4n by T 
iun 

introduces into G a factor e . However a 

sensible choice of origin makes (17) zero or small. Then case d) reduces 

to b) with F(o) for w = mr replacing Fz. Thus the decay laws for 

excitation from the decay channel are Eqs. (15) and (16), and in partic- 

ular Eq. (16) is appropriate if the observations also are made in the 

decay channel close to the source. 

EXCITATION FROM THE DECAY CHANNEL 

The conclusion that Eq. (16) is the decay law for observation in the 

decay channel and excitation from the decay channel is of course more 

general than the above model. We can write in general for the S-wave 

dw ?& c(k) q:(r) eViwt 
0 

(1-W 

where the scattering states have the form, outside the interaction region, 

rqi(r) = eqikr - S(U) eikr (19) 
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The quantity c(k) is essentially the Fourier transform of the incoming 

wave packet3 and can be supposed to vary smoothly near the assumed double 

pole of the S-matrix. Near the singularity, because of unitarity, S can 

be represented by 

S= F(a) (20) 

where F is a smooth function, unimodular for real u). The pole contri- 

bution to Eq. (18), ignoring small terms of relative order F not 

multiplied by t or r, is proportional to 

& ( 2 .ikr-iti] 
0 r 

whence 

lJr(r)rl a ( 1 + $ r (v-5 - t)) X e 
--$-r< t-rv-l) 

(21) 

where v -l = dk/dw. This reduces to Eq. (16) for small r. 

THE GOLDBERGER-WATSON APPROACH 

The approach of Goldberger and Watson, as applied to S-wave poten- 

tial scattering, is the following. The wave function is written as a 

superposition of outgoing wave scattering states 

Jr(r,t) = 
L 
1 (g) a(k) emiti q;(r) (22) 

0 
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where w is the energy corresponding to wave number k. The coefficients 

are determined by the initial wave function JI a : 

a(k) = ($i, Ifa) = if dr r2 [‘Y;(r)] *qa(r) 
0 

(23) 

The projection of $(r,t) on a state Ji, is 

A(t) = (@,,‘b) = /’ (g) a(k) b+(k) e-iwt c (24j 
\ 0 

where 

(‘(7 fb) = b(k) 

Actually the above authors take $a = 6, ; so we make a slight general- 

ization. They introduce a real solution cp of the radial Schrodinger 

equation normalized to unit slope at the origin: 

lim r -+o r-l v(k,r) = 1 
I I 

and outside the interaction 

cP(k,r) = T& f(k) eikr - f(-k) eWikr 

Thus 

r$+(k,r) = icp(k,r) 2k/f(-k) 

and 

a(k) = U(k)/(f(-k))*, b(k) = S(k)/(f(-k))* (25) 
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a(k) = ('Fk/', qa) (-Qik) 

B(k) = ((Pkh lfb) (+2ik) I 
(26) 

The S-matrix is f('d/f( -k), so that we are concerned with double zeros 

of f(-k). In the neighborhood of such a zero 

f(-k) = (u-u~)~ N 
. 

where N is a. smooth function. The contribution of the double pole to 

the integral (2;) is 

A(t) = -i -& 2 (NN*)- ' a(k) B*(k) ' e-lcot ( _ 
cuco 

x)2 

r 1 UFLU r 

In evaluating this,terms of relative order r not multiplied by t are 

dropped. Then 

d a(k) S*(k) .-imt 
A(t) a z 

( 
*2 w-u! r) 

Goldberger and Watson at this point ignore the derivative of w*, on 

the ground that cp(k,r) is an integral function of k, and that the 

states J, a and Jib are well localized, so that singularities of a 

and @ given by Eq. (26) are remote. Then 

A(t) a (-it - *) e-i%t 

(27) 

(28) 

a (-it f -&) emidrt 
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Normalizing at t = o, they have the unique decay law 

I*(t,l = ( l+$lY e ) -& (29) 

Now in fact one cannot in general ignore the variation with w 

of ag" in Eq. (25). Although cp(k,r) is for given r an integral 

function of k, it is one which, in the neighborhood of the resonance, 

varies increasingly violently with k as r is decreased. Consider 

for example a resonant state confined by a large potential barrier, as 

in example 1 above. If the radial wave equation is integrated outwards 

from a prescribed slope at the origin it will in general be very large 

in and beyond the barrier. Only near the resonant energy is a given 

wave inside compatible with a small one outside. There is, however, 

one case in which Q$3* may be regarded as slowly varying; that is when 

the wave packets qa and \irb are confined to the inner part of the 

potential well where cp is normalized. Thus the decay law Eq. (29), 

of Goldberger and Watson corresponds to creating the particle near the 

center of the well and observing the probability that it remains there. 

It is no surprise therefore that it agrees with Eq. (ll), obtained under 

analogous circumstances, since V is the "innermost state" of the model. 1 

Consider now, in this approach, the excitation of the resonance by 

a wavepacket incident in the decay channel. Then a(k) is essentially 

the Fourier transform of the incident wavepacket and has nothing to do 

with the singularities of the S-matrix. To cancel the vanishing f(-k) 

in Eq. (25) we must therefore take 

a(k) -(m-Ur*j2 
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If we observe at a point rb outside the interaction region 

Jib = s(r-rbl , 

so that 

a f(k) e ikrb - f(-k) esikrb . 

We are then led via Eq. (25) to 

A(t) a: Y& (f(k)) eikrbmiti 

Since on the real axis 

f(k) = [f(-k)]* 

we have f(k) "b-w-r*j2, and then Eq. (21) as before. 

CONCLUSION 

We have found that double poles can indeed occur in simple models. 

However they give rise to a continuously variable rather than to a unique 

decay law? Indeed the situation is quite analogous to that arising in 
6 

the classical theory of small vibrations of non-conservative systems. 

There it can happen that two (or more) of the characteristic frequencies 

are degenerate and associated with a single normal mode. Another in- 

dependent solution is required, and is obtained by a limiting process 

of subtracting one from another the almost identical normal modes before 

the degeneracy becomes complete with the variation of a parameter; the 

resulting "abnormay' mode may have as well as the exponential factor a 

factor linear in time - i.e., a non-exponential decay. However, the 
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non-exponential decay law is not unique. The double root is associated 

with an arbitrary combination of normal and 'abnormal" modes, determined', 

by initial conditions. In fact it is associated with two degrees of 

freedom, and not just one, of the system. 
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