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ABSTRACT 

The left hand discontinuities in the partial wave 

amplitudes for TT-TT scattering are assumed to be dominated 

by the exchange of the p meson in a form suggested by the 

Regge representation for a resonance. This Regge behavior 

provides the necessary high energy cutoff and allows the 

N/D equations to be solved. The partial wave I =1 amplitudes 

are calculated for non-integer angular momenta R < 1 as well 

as R = 1. The trajectory up(s) as well as the residue @o(s) 

of the p meson Regge pole are evaluated. An attempt is 

made to obtain a self-consistent solution for the relevant 

parameters, namely the position and width of the p resonance 

and a,(O). The results of this calculation give ao(0) >, 0.9. 

The I = 0 vacuum trajectory is also discussed. 
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I. INTRODUCTION 

There have been a number of papers written on the problem of deter- 

mining the position and width of the p meson self-consistently. 1'2 In es- 

sence, these bootstrap calculations of the p used the exchange of this I =l, 

R = 1 resonance in the crossed channels to provide the force necessary to 

produce the p meson in the direct channel. The R = 1 part of the interaction 

is projected out and the partial wave dispersion relations are solved by the 

N/D method. The hope is that the solution yields a resonance having the same 

position and width as that of the exchanged one. 

A major difficulty is due to the divergence arising from the exchange 

of a massive vector particle, with sufficiently large coupling, which ne- 

cessitates the use of a cutoff. Instead of considering the p to be a vector 

particle even when the energy of the exchanged p is not close to the resonant 

energy, Wong2 employed a form suggested by the Regge representation for a 

resonance. This then provides a cutoff at high energy, the relevant parameter 

being the angular momentum of the p trajectory at zero energy, CX~ I"(o) . 

The purpose of this article is to carry Wang's p (bootstrap) calcu- 

lation with a "Regge cutoff" a step further. For R = 1 we carry out a 

calculation similar to his but then continue the N/D equations for non-integer 

angular momenta and calculate ap(s), comparing ap(0) with the input parameter 

apIn . In other words, this is an attempt to bootstrap not only the position 

and width of the p resonance' but the slope of its Regge trajectory. The 
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residue function S,(s) is also determined. The sensitivity of our results 

to some of the approximations made is examined. For example, the above 

calculation is compared to a similar one in which we take the exchanged p 

to have constant angular momentum and employ a straight cutoff. The I = 0 

vacuum trajectory is also calculated. 

Section II is devoted to a presentation of the relevant formalism. 

The results of the numerical calculations are given and discussed in 

Section III. 

The results may be summarized as follows: In the same sense that 

the usual bootstrap calculations of the p are not self-consistent, i.e., 

the output width of the p (for reasonable values of the position of the p) 

is larger than the input width of the exchanged p, 1’2 so the calculated 

a,(O) is larger than the input parameter (X 
P 
In(O). F or all cases, both 

ap(0) are 2 0.9, in agreement with the results of Foley et al? and the 

calculation of Chang and Sharp, 
4 however in disagreement with other deter- 

minations of a,(O) N 0.5. 5 The residue of the p Regge trajectory' after 

removal of a threshold factor, turns out to be nearly constant in the 

scattering region (s < 0) and very close to the input S. The calculations 

of the I = 0 vacuum pole trajectory give a small slope: c$,(O) 5 l/500. 
'5 
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II. FOFMJLATION OF THE INTEGRAL EQUATIONS 

We shall obtain amplitudes for pion-pion scattering by the familiar 

N/D solution' of the partial wave dispersion relations. The usual expressions 

for the scalar variables s,t, and u in terms of the momentum k and scattering 

angle 8 in the center of mass system of the direct or s channel are 6 

s = 4(k2+l), t = -2k2(1-cos0), and u = 4-s-t. The invariant partial 

wave amplitude A R is defined in terms of the S matrix by 

A&s) =& (SR-1) = B&s) + RA1(s) 

where 

p = Si4 C-3 
3 

and B R is regular for s > 0 and RA,(s) has only a right hand cut. The 

right hand discontinuity in Al(s) is given by unitarity: We make the 

approximation that elastic unitarity holds for all physical k2: 

AL(s) = B&s) + +j- & 

4 

(1) 

(2) 

(3) 

The left hand discontinuity or generalized potential8 is derived from 

application of an approximate form of crossing symmetry. We will first 

determine BR(s) and then discuss the N/D equations and their solution. 
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Using crossing symmetry, B1(s) is calculated from the scattering 

amplitude in the crossedtand u channels. We will consider only the exchange 

of the I=1 p resonance in the t and u channels. Then in the s channel 

for I = 1 and I equal to an integer we obtain 

B;='(s) = +f Pp(cose) d cos0 [$A;='(t's)- +A;=l(uJsj-j 

-1 

which for R odd becomes 

B;(s) = (s;4) - ,f ,+- + 5) dt A; hJs> 

where Ai(t,s) is the part of the scattering amplitude in the t channel, 

Ai(t,s),which has no singularities for s > 0, i.e., t < 4. 

-(s-4) . 

Taking a Breit-Wigner form for the p resonance' we have 

Ai(t,s) = 3r(t-4) 
mp2-t- il?(t-4)s/t% 

Further making the narrow width approximation, so that Ai(t,s) = Ai(t,s), 

we have the simple form for R equal to an odd integer: 9 

B;(s) = $ (a;-4 + 2~) QR (1 + x) a 

(4) 

(5) 

(7) 
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Eq. (7) has an acceptable behavior in the R plane as I,!\ +OO and 

thus can be continued for non-integer I even though both (4) and (5) can- 

not. 10 . However BL(s) as given by (7) diverges like log (s) as s --fm and 

the resulting N/D equations do not have a unique solution, 

A mechanism that damps this singular high energy behavior is 

provided by the Regge motion of resonance poles. In the Regge description 

for the o resonance we take 

Ai(t,s) = bp(t) sinT: ap(t) 2 qap(t) (- 1 - +- PolJt) (1 ++I * 38) 

We are interested in B1 for s > 4 and hence in the region t < 0 where 
a,(t) - 

a,(t) is real and < 1. For large s, (8) is or order s and hence 

an acceptable input to the N/D equations. 

Since we do not know the behavior of bp(t) or ap(t) except in 

the immediate vicinity of the p resonance, we will take a very simple 

form for (8) which reduces to the correct Breit-Wigner form (6) near 

t=m2, 
P 

yields the same Bizl(s=4) as Eq. (7), and gives the same high 

energy behavior in s (for small t) as the Regge pole: 

qt,“) z 2&w+ Cl + 3) (;) aPo)ct-mp2) ; 

P 

(9) 
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With this approximation, AiZl(s) is readily calculated numerically. 11 However 

we are interested in continuing the partial wave amplitude for non-integer 1. 

Eq. (5) cannot be continued; there are alternate formulations for BR(s) which 

can be continued. 10 From the point of making the computations manageable' we 

again note that expression (7) can be continued in the R plane. Thus we are 

led to make the further approximation that using (5) in making the partial 

wave projection B;(s) of (9) we evaluate the last factor (s/4) 
apf(0)(t-mp2) 

at t = 0 (where it gives the maximum contribution). Hence our "Reggeized" 

B;(s) becomes 12 

B;(s) = cs$) (mp2 - - 4 + 2s) Ql(- +~(~)ap'o'-- . (10) 

This expression which is our approximate form for the left hand cut for 

the partial wave TT-7T amplitude in the I = 1 state and odd integer R has 

acceptable behavior for large R and can be continued in the 1 plane. 

Now in order to insure that A;(s) has the proper threshold behavior' 

i.e., (s-4)” and also remove this additional cut from B;(s) for non-integer R, 

we define new amplitudes 

where 

&i(s) =- 
(jt4)’ R - 1) = $(s) + R/L;(s) (11) 

b-4)’ J (12) 
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and 

B;(s) = 
( s-;,+l 

(mp2 - 4 + 2s) Qljl + ~)($)Ug:o)-l . 

Now define 

&i(s) = J~$(s)/De(s) ( 14) 

9 

03) 

where N has only a left hand cut and D has only a right hand cut. Then in 

terms of the generalized potential B_:(s) which is regular in the physical 

region, the N and D equations are 2,13 

03 

D&S) = 1 - (s-so) 4 
s I+') N&s') (,~&-s ) 

0 
4 

05) 

- i+) N&s) @b-4)J 

Ne( s) = X$(s) +$ 
(s-so> 

- (s/-s B'(s) ) -f p&s”) N&s’) gs - 06) 
0 

Note that the solutions k;(s) are independent of the subtraction point so. 

As long as 0 < R < 2 - a,(O) < 2, these equations have unique solutions. 

The Fredholm integral equation (16) for Np(s) was solved by matrix inversion 

on the Stanford 7090 computer. 
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In 
For given input parameters mp J I? and GoIn( which determine 

B;(s) (apIn being fixed by the requirement that we get an 1=1 resonance 

at mpIn, i.e., Re Dpzl(s = (m,'")')= 0) we calculate the width of the %=l 

resonance. Then we solve (15) and (16) for non-integer I < 1 in order to 

determine the properties of the p trajectory. For a given R, we look for 

the value of s (Z sr) for which Re De(s) = 0: 

Re DI(sL) = 0 . 

For sR < 4 this gives directly the Regge trajectory up(s), whereas 

sB > 4, in the limit of a narrow resonance' it gives approximately 

(17) 

for 

Re a@(s). 

The residue bp(s) is determined as follows: Since Re D1(sl) = 0, in the 

vicinity of s & we have (for s 1 < 4) 

The residue is real since Ne(sl) is simply given by 

m 
P 

N&) = T s 
$s’) p(s’) Np(s’) $& . 

I 
4 

(18) 

(19) 

The partial wave projection of the p Regge pole of "odd j parity I,10 

divided by the threshold factor (~-4)~~ 
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b&s> 
sin?J a,(s) (s-4)l p"pc 4 

then must be compared with (18).14 Now 

1 
r 2 b 

p&cose) P (- 'OS') d '0s' Bp( S> 
cqs) + 1) 

sink ~ 
P 

( s) 
-1 

ap( 4 

BP(S) (ap(s) +l> B,(s,) 

= bp(s) - Na,b)+ 1 +l> s “, SR a~(sp-se) - 

Thus for a given 1, we find a'(~!) from a(s) (as found from (17)) and hence 

the residue is given by 

B,$) = 
i 

Nl 

III. RESULTS AND CONCLUSIONS 

As discussed earlier, in addition to evaluating the I&, R=l ~J-T 

scattering amplitude in an attempt to "bootstrap" the p meson, we calculate 

the p's Regge pole parameters for non-integer B < 1. We computed both the 

position, apJ and residue, S,, of the pole as functions of s. 

(21) 

(22) 
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We investigated the problem for several values of the input coupling 

constant I? (or input width of the p) and for several input masses(mp In 2 ) 

ranging from 10 to the experimental value of 29. No self-consistent solution 

was obtained. The procedure was to evaluate the I=l, 1=1 amplitude for many 

values of cUpI" until the mass of the input p was reproduced by a zero of 

Re DeZl(s) at s = (mpIn)', i.e., we always forced the mass of the produced 

p to be the same as that of the exchanged p. The output width could be deter- 

mined either by evaluating the quantity (N p=l( $/ aDr=1 (,)/as) at the position 

of the resonance (which is a correct procedure for a narrow resonance)' or 

by actually looking at the L=l phase shift as a function of s. In either the 

former case or the latter looking below the resonant energy the output width 

was larger than the input one by a factor of 3-6. Looking at the phase shift 

itself on the high energy side of the resonance the situation is even worse. 

The function ((s-~)~/s)* cot S1(s) is plotted in Fig. 1 together with the input 

value for this function. For energies larger than the position of the p 

resonance the function decreases too slowly for a resonant behavior. The 

input values for the exchanged p were (m p1n)2 = 29 and I+ = .145 (which 

corresponds to a full width at half maximum of 110 MeV). 

Hence for given mtn and I?, a:"(O) is determined from the self- 

consistency requirement on m P 
in the L=l calculation. Thus the generalized 

potential X$(s) is determined and we solve the full N1/Da equations (15) and 

(16) to determine the Regge trajectory and residue for the p. In Fig. 2 to 
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4 we present some of the results for (m p1n)2 = 29. As the width of the produced 

p meson is rather large, the imaginary parts of the p trajectory will be large 

above s=4. Since we have only looked for the zero of the real part of D,, 

we have obtained the actual trajectory only for s < 4. We emphasize this by 

plotting dashed curves for s > 4, e.g., the dashed ap(s) curves correspond to a> 

approximation to the real part of ap(s > 4). 

For I? = ,145 we show in Fig. 3 a comparison of a for a calculation 
P 

as mentioned above to one in which a pure R=l p exchange (as given by Eq. (7)) 

was considered as a straight cutoff used in solving equations (15) and (16) 

(again the self-consistency requirement of the output p position equaling 

m In determined the value of the cutoff). We see that although there is some 
P 

quantitative difference' both trajectories have arp(0) larger than 0.9. These 

calculations with the straight cutoff and other calculations specifically for 

A;,lb) J e.g., using (9) to calculate B1 +;(") J= all gave very similar results 

for the R =l partial wave. We felt this was a fairly good test of a number 

of the approximations made in obtaining Eq. (10). 

In addition to obtaining the output width larger than the input one, 

the output crp(0) was larger than a pln( 0) .12 The two discrepancies are corre- 

lated. Near the resonance, we have from (21)' (tip/ds) = (BP/P) so that a 

large I' corresponds to a small slope for a and thus a 
P 

(0) is larger at s =0 

than cx p1n(o) - It is interesting to note that the output S 
P’ 

as shown in 

Fig. 4, is almost constant in the relevant scattering region (s < 0) and is 

very close in magnitude to S 
P 
In = (dfxpln/ds)rln. 
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We have also calculated the scattering amplitude in I=0 channel again 

using only p exchange in the crossed channels. If we use the same parameters 

as for the I=1 calculation' we find that there is a vacuum trajectory but 

that for s=O it hasan! > 1; specifically for R=l the pole occurs for a very 

large negative s. Therefore we adjusted the cutoff parameters to force the 

I=0 trajectory to cross 1 at s=O 15 and calculated the vacuum trajectory 

arp(4 ’ A typical curve is shown in Fig. 5. Note that the slope is quite 

small; (do!p(s)/ds)s=o = 1O-3 and hence our results would not be consistent 

with the f" l6 being on the vacuum trajectory. We also calculated the 

residue of the vacuum pole at s=O. The residue corresponding to the trajectory 

shown in Fig. 5 gave an asymptotic total T-T cross section of 3mb as compared 

17 to a value of the 15mb obtained using the factorization theorem and the 

asymptotic TN and NN cross sections. 

We feel that both the problem a) that the output p width is larger 

than the input p width and the problem b) that using the input p parameters 

which yield a p resonance to calculate the (I=O) vacuum trajectory give 

a,(O) > 1 are largely due to the one channel approximation. The effect of 

an inelastic channel below its threshold is to, i) always act as an attraction' 

and ii) tend to narrow a resonance. Hence if we include the inelastic effects 

in the I=1 channel, which we expect to be due largely to the 7JU channel, this 

would narrow the output p width, and increase the attraction so that a somewhat 

smaller a pln(0) would be required. 18 On the other hand, the TTU, channel does 

not couple to the I=0 channel so that this additional attraction would not be 

present and hence we would have a smaller a,(O). 
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FIGURE CAPTIONS 

Fig. 1 Phase shift for I =l, R =l amplitude versus s. The solid curve 

corresponds to the output, whereas the dashed curve comes from 

our input Breit-Wigner form. I? = .145 and a In(O) 
P 

= .949. 

For Fig. 1) - 4), (m,I")' = 29 and the "cutoff parameter," i.e., 

a,""( 0) is adjusted to force and L=l resonance at mp In. 

Fig. 2 CXo(s) for various input parameters. The dashed lines for s > 4 

in Fig. 2-4 emphasize that we only investigated the vanishing of 

the real part of De(s). 

Fig. 3 Comparison of a,(s) for a "straight cutoff" and a "Regge cutoff." 

Fig. 4 The residue p,(s) for various input parameters. The arrows indicate 

the input So In = (&xpln/ds)I'ln. 

Fig. 5 The I=0 vacuum trajectory CX~(S) which has been adjusted to cross 

s=OatR=l. 
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