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ABSTRACT

Two important problems involved in obtaining solutions of partial
wave dispersion relations (by the N/D method) are having 1) the correct
threshold behavior, and ii) an acceptable high energy behavior. Various
physical and numerical approximations have been made to insure i) and ii).
We numerically investigate the sensitivity of the solutions of the N/D
equations to these approximations. For this purpose, we consider J=1 T-T
scattering, employing elastic unitarity and assuming that the left hand
cut is dominated by the exchange of the p resonance. Two significant features
we find are: a) The values of the cutoffs needed to product a resonance are -
quite sensitive to the input "strength" of the left hand cut, e.g., a change
of the input width of the p by a factor of two changed the value for a "straight
cutoff" to produce a resonance at a given energy by a factor of ten. Due to
the results of a) we wish to emphasize the possible danger in employing a
single cutoff in the calculations of SUz multiplets. b) If one introduces
a pole on the left hand cut in order to insure the threshold behavior i),
then the ranges in values for the cutoffs [to insure ii)] for which any
resonance occurs are extremely narrow. On the other hand, a solution in which
the phase shift does not become large is insensitive to the position of this

pole.

ITP-122



I. INTRODUCTION

Obtaining solutions of partial wave dispersions relations using the N/D
formalism is of current interest. Given a partial wave 'generalized potential
term" B, or in other words specifying the discontinuities of the partial wave
emplitude A, in the unphysical region, the N/D formalism (1)-(3) permits one to
include the unitarity cut in the physical region and calculate the amplitude Al
by solving a linear integral equation. Two important difficulties enter into

the calculations: i) Insuring that A, have the correct threshold behavior.

2
ii) Obtaining an acceptable high energy or asymptotic behavior.
From general quantum mechanical considerations we know that near

threshold, a phase shift &, with orbital angular momentum ¢ should behave like

s o xoH1

L x50

where k is the momentum in the center of mass system. Hence we want to 1)
foreez Al to have the correct threshold behavior. For certain physical
problems, the "obvious" choice for Bl behaves badly at high energy so that
the resulting integral equation in the N/D formalism is not of the Fredholm
type. Now we want the solution Al for a given Bﬂ to be unique;l and thus

we want to ii) force the integral equation to be of the Fredholm type.
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The purpose of this paper is to numerically investigate the sensitivity
of the solutions to various approximations which have been made to insure the
desirable features i) and ii).

We consider numerically two types of cutoffs to insure ii); a straight

cutoff on all the integrals, and a "Regge" type cutoff on B To force i) we

.
consider £ subtractions for the integral equation, or we introduce an [th
order pole in the unphysical region. In order to concentrate on a problem
with relatively few purely kinematical complications, we discuss the elastic
scattering of T mesons. In particular we investigate the J=1 partial wave
and assume that the generalized potential B is dominated by the exchange of
the I=1l, J=1 p resonance.

3 The

Section IT is devoted to a review of the relevant formalism.
calculations and results are presented in Section IITI. The two most significant
features we find from our calculations are: a) The values of the cutoffs needed
to produce a resonance are quite sensitive to the input "strength" of the left
hand cut, e.g., a change of the input width of the p by a factor of two changed
the value for a "straight cutoff" to produce a resonance at a given energy by
a factor of ten. Due to the results of a) we wish to emphasize the possible
danger in employing a single cutoff in the calculations of an SUs multiplet.

b) If one introduces a pole on the left hand cut in order to insure the
threshold behavior i), then the ranges in values for the cutoffs [to insure ii)]
for which any resonance occurs are extremely narrow. On the other hand, a

solution in which the phase shift does not become large is insensitive to the

position of this pole.
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IT. REVIEW OF PARTIAL WAVE DISPERSION RELATIONS

A. Anelytic Properties of the Partial Wave Equations

Consider the system shown in Fig. 1. The usual scalar variables

s, t, u:
B 2
s =(p, + )"
2
&= (o, - p)2 (1)
_ _ 2
u=(p, —p,)
b
with
2 2 2 2
s+ t+u-= m + m, + m, + m:<
are used to denote the 3 processes or "channels"
s: a+b-c+d ,
t: a+cob+d , (2)

>

which are related by "crossing” or the substitution rule.” As we are interested
in a study of the sensitivity of the solutions of the N/D equations to various
physical assumptions and numerical approximations we shall concentrate on a
problem with relatively few purely kinematical complications. We analyse the
problem of two spinless bosons of egual mass scattering elastically. As
isotopic spin presents no major complications, we specifically discuss the

scattering of T mesons on T mesons (so that the processes (2) are all T-T

scattering).
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The Mandelstam representation for this scattering in a given isotopic

spin state I is

I
P (Srytr)
AI . L fds'dt’ st~ - 7
=3 (s"-5)( %)

I

A e (Syyu,>
. L \/,ds’du‘ Su (3)
™ (s'=s)(u'-u)
I 1 41
1 ' . . ptu_ (t u )
+ = ;/‘dt du (t’ft)(u‘-u)

The functions appearing in the integrands in (3) are the (real) double spectral
discontinuities which, in principle, determine the complete dynamics of the
system.

If we choose a particular channel, say s (where s is the center of mass
energy squared and * the invariant momentum transfer), then the relation (3)

can be written as

. LA (sen)ae! LA (sun)
= _— — e ———————— 1
A~ (s,t) = / rps at + = f ~ du (W)
where Ai(u) is the absorptive part of the amplitude in the t{u) channel.

In (%) and (4) we have neglected to write possible subtraction and single
integral terms as it 1s the purpose of the N/D method to determine these from

just the knowledge of the double spectral functions alone. Introducing the
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momentum k and the cosine of the scattering angle 2z for the s channel in

the center of mass system, we have

s = Wx®+1) ,
t = -2k3(1 - z) ,
u = ~2k3(1 + z)

Using (5) we may project out the partial waves from (4):

1

Al(s) = -%-f 2%(s,t) Py(2) dz

-1
1 I ' s-4 2t '
= -T—r\/’\At(S,“b ) (——2—) Qz(l + _S—:E-> dt

1 [T s-b\ 2u!
+ %l/ﬁAu(s,u’) (—5—) Q, (-1- E:E) du'

From (6) we read off the analytic properties of A‘E(s). Both Ai(s,t') and

L

A7 (s,u') have a cut along the positive real s axis for s> L, i.e.,
s',tt)
I N pst( ’ .
At(s,t ) = Wh/‘ s ds

The functions Qz introduce a cut along the negative s axis running from

0 to ~w
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Had we considered more complicated kinematics of unequal mass particles,
the analytic structure of the partial wave amplitudes would have acquired some
complications. We would still have the right hand cut discontinuities discussed
above. However, the cut due to the Qz functions would include detached segments
along the real axis and circular cuts in the complex s plane (é). If none of
the masses is too large compared to the others as well as to masses of possible
intermediate particles (which we shall consider later), the right hand cut is
disjoint from the cuts due to the QZ functions (which we shall from now'on call
the left hand cut). Then there exists a region of the real axis in which A%(s)

is analytic which permits analytic continuation between the upper and lower

regions of the complex s plane.
B. Determination of the Discontinuities

For s not in the interval (L4, «), Ai(s,t') is an analytic function

in s. The function Ql has a discontinuity (Z) such that

é% [él(l +'E%Eiig> - Ql<l + E%E%ggi} = g.P£<l + %%ﬁ) 6(—s—t'-h) . (8)

Then the left hand discontinuity depending on Ai(s,t“) is

O
(s-4)72 f Ai(s,t')Pz(l + %)dt' (9)
-(s-4)
1
= % :Z\ Ai(s,z') Pl(z‘) dz' E.Ai,z(s) s
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i.e., the fth partial wave in the s channel of the absorptive part of the ¢t

channel amplitude. Utilizing crossing symmetry we have, e.g.,

1 t
XII I

I
A (s,t) = A- (t,8)
t t,s s (10)
I I It
Au(s,u) = Xu,s A (u,s)
where X is a numerical isotopic spin crossing matrix (3).
To obtain the right hand discontinuities we employ unitarity. In the
physically accessible region for scattering in the s channel, i.e. s > h,
Ai(s) has the form
2151(5)
I )
Ty o - (11)
A (s =
1 2ip(s) ’
1
. [s=kY
P = s
where the factor nz(E e_2§£ with § the imaginary part of the phase shift)
determines the total inelastic cross section for the fth partial wave op
2
oxi(s) = meE(21 + 1)(1— (25=))%) - (12)
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The discontinuity of Ai(s) is equal to its imaginary part:

1 —(ni(s)°
%? [Ai(s+ie) - Ai(s-ie)] = {é(s)lA%(s)‘g + ———S%%(Z;Z— 6(s=-U4) . (13)

2
Hence with "proper asymptotic behavior" we have

[ I
Im A (s")
I I 1 )/
AZ(S) = BI(S)-J- '7—7_ f——é—’fs_—- ds? (lll-)
4
where
o]
T _ 1 dst? 1,I I
BJZ(S) h TF.f s'-s E\t,z(sl) * Au.,z(s’)] ) (15)

=00

Thus in principle if we kneW'ni(s) we would have an infinite system of integral
equations to determine the amplitude since, e.g., A%,I(S) as given by (9) is
related to the s channel amplitude by the crossing relations (10).

In practice some approximations are made about the "potential’ term
B%(s). We shall discuss these approximations in Section IT D; for now, we
assume that Bi(s) is known. The inelastic factor ni(s) mist also be approximated.
This function may be taken from experiment, or one may approximate inelastic
unitarity by considering many channel two-body scatterings, or (as is often done

when one is interested in relatively low energies) assume that elastic unitarity

holds out to infinity. It is this last approximation that we will make,i.e.,
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we take n(s) = 1 so that dropping the isotopic spin index we have for (1L),

(o]

J[\ p(s')]Az(s')l ds!

st-g

(16)

c. N/D Equations

Tt is possible to linearize (16) by the N/D method.

Define

A,(s) = W, (s) / Dy(s)

where Nﬂ(s) has cuts along the discontinuities of Bz(s), and Dﬂ(s) has the (elastic)

unitarity cut:

-

: [D£(5+i€) - Dﬂ(s—ie)] N, (s) Im(l/A!(s)) o (s-4)

= p(s) M,(s) 0 (s-b) | (18)

—%E\I(s-{-ie)—l\l(s-ie)} = Im (Bz(s)) D,(s).

These discontinuities do not specify N and D completéely as we do not know
their asymptotic behavior. This ambiguity is related to the possible existence
of elementary particles which communicate with the 7T-T system (§). The simplest
assumption to make is that N and D are sufficilently well behaved that no

subtractions are necessary and that a knowledge of BZ(S) determines the amplitude
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uniquely. We have however a freedom of multiplying btoth N and D by the
same non-zero constant and thus we may normalize D at any convenient point,
s, to unity (the ratio N/D being independent of so). Thus using (18), we

can write the coupled dispersion relations

as' (19)

where the integral in Eq. (19) for N runs over the cuts where Im BZ(S)’
Pole terms which may appear in (3), (4) or (16) are now automatically
taken care of, as they appear as zeroes of DZ<S). Thus the N/D method permits
one, in principle to calculate the positions of bound states from the knowledge
of the discontinuities of the amplitudes in the physical regions alone.

From general quantum mechanical principles, it is expected that the

threshold behavior of Al(s), see Eq. (11), will be

Had we put in the exact discontinuities and inelasticity, this behavior should

come out automatically. However, we still want to force the correct behavior (21)
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even with approximate input information. We do this by writing the dispersion

relation for NZ with £ subtractions:

ds' . (22)

2 Im B (s') D, (s')
Nz(s) (s-4) Jf i 1

T (s'-1)!(s"-s)

Note that the approximate forms of Bl(s) that we will be dealing with have the
correct threshold behavior by themselves.
Substituting Eq. (20) for D, into (22) we have a linear integral

equation for Nz:

ERY T po(s') N (s') {B,(s") B (s) /s-s4
(o) = 5y) + Ll [ (i'_u)f— (i-)-k)l<8'-s ) e ()

o}

It is the major purpose of this article to discuss the solution of this integral
equation. The only singularities (23) may have (for Bz(s) having the behavior (21))
come from the infinite ranges of integration. It is this singular behavior that
causes most of the difficulties and it is the purpose of this article to discuss
various methods which have been employed to overcome it; we require (23) to have

a unique solution and thus demand that it be an integral equation of the

Fredholm type.
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D. Approximations for Bl(s)

Several types of approximations have been utilized thus far in approxi-
mating Bz(s). In the case of complete ignorance about the singularities on the
left, this cut may be replaced by a sequence of poles whose position and residues
are adjusted to fit empirical data in the scattering region. With this approxi-
mation, Eq. (23) may be reduced to a system of linear algebraic equations. The
resulting amplitudes are of the effective range type (2).

Another approximation has been to keep only a few partial waves in the
direct channel and even though the partial wave diverges outside & small neighbor-
hood of the physical region it is assumed that a small number of these amplitudes
still dominate the crossed channels. One is thus faced with a finite set of
coupled integral equations; crossing symmetry is made full use of (9).

The approximation we shall consider has been called the single particle
exchange or resonance approximation (10). It consists of assuming that the
"orossed" t and u channels are dominated by a resonance Or resonances in
particular partial waves. In the language of Feynman dlagrams we consider the
exchange of elementary particles in the crossed channels. We then use crossing,
Eq. (10), to give the absorptive amplitudes in the direct channel and project
out the partial waves to give us Bz(s). The N/D equations simply enforce
unitarity in the physical region of the direct channel while leaving the left
hand singularities unchanged.

In the T-T problem, the example we will study in the remainder of this

paper, the scattering amplitude is assumed to be dominated by the p resonance
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in the I=1l, J=1 partisl wave so that, e.g.,

(t-1)T B, (1 + %)

AY(t,s) = e (2k)
tem 2 — i(&i:&l_)ﬁ
o) t
Hence, using (10),
1
2s =k 5)5
2
n U <l+t-E)( T
A, (s,t) X xT (25)
(t-m 2)2 + (=b)” e
P t
Further making the narrow width approximaticn, i.e., I' > 0 we have from (6),
2 2
T 1 6 (m =—k4 +2s) 2m ]
= e AT
B,(s) = X o o (1 5% ) |2+ ) (26)
where 1
I1
X o= % (27)
L
2

As will be discussed below this generalized potential term i1s just of such
a nature that the resulting integral equation (23) taken as it stands is not
of the Fredholm type. We shall discuss in detail how various modifications

of this discontinuity reflect themselves in the solutions.
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III. CALCULATIONS

A. High Energy Behavior

Let us now consider (26) for £ = I = 1 and use it to generate the kernel
of (23). It is an easy exercise to show that the resulting kernel is not 12 and
the integral equation is not of the Fredholm type. One means of modifying (26)
to Obtain a kernel which yields an integral equation of the Fredholm type is
to, in some manner, damp the high energy behavior of (26). The "physical
justification" consists of admitting ignorance of the very short range forces,
and hoping that the mechanics of an exact theory are such as to actually produce
damping. We wish to emphasize that this is at most an intuitive argument since

it is quite possible that the exact B,(s) has a strong oscillatory behavior for

)
large s and (23) may have a unique solution with such a kernel. Any approximate
demping is at best an average of what happens in the exact theory. Our cal-
culations will show that the solutions of (23) are not in general insensitive
to the cutoff.

A most naive cutoff procedure consists of replacing the upper infinite
limit of integration in (23) by a finite one, A. The integral equation (23)
may now be solved by standard numerical means. We solved (23) by matrix

inversion on the Stanford 7090 IBM computer. To show the sensitivity of the

solutions as A is varied, we plot in Fig. 2-3 Sps the position of the zero
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of the real part of D,(s), Eq. (20), i.e.

as a function of A for various positions and strengths of the input p force

(26). We observe the distrubing feature that the cutoffs needed to produce

a resonance at a given position are sensitive to the input "strength'" of the
left hand cut. For example, from Fig. 3, we see that for an input I' = 0.29

(mi = 29.0) we need a I' = 730 to get a resonance at s = 29.0, whereas for an
input T' = 0.145 the required A (= 7400) is 10 times larger.

Although the straight cutoff is simplest to apply, it has several bad
features. The analytic properties of the resulting amplitudes are mutilated
for large s, with at least one possible consequence at small energies. It is
found that for certain input parameters, a sought for zero of Re D occurs near
the value A. As D(s) has a logarithmic branch point at A, this function
undergoes unreasonable variation over small intervals and this makes the entire
procedure somewhat suspect.

A way of avoiding the above difficulties is to introduce a smooth
damping function. There exists such a scheme which has considerable physical
appeal. One uses an analoéy that may exist between potential and relativistic

scattering theories, and postulates that resonances lie on Regge trajectories

(11)-(12). For our case this amounts to replacing (2L) by

——— N

b (t) 1 2 2s
B (t8) = oo a(t) 2 [Pozp(t) ('l - E%I) - Pocp(t) (l " t—-ﬂ)] (29)
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where bp and ap are the residue and position of the p meson Regge pole. We
further approximate (29) in such & way as to make it correspond as closely
as possible to (26){13)-(15). (The details of this approximation are given in

Ref. 15.) The resulting Bz(s)v for odd integer £,

2
N _6r ‘ 2mp 5 ap(O) -1
Bis) = Sy (-be2s) q (1+of)(f) , (30)
a (0)-1
differs from (26) by the factor (s/b) P . As long as ap(O) < 1, the

resulting equations for f=1 are of the Fredholm type. An investigation of
the sensitivity of the position of the zero of Re D(s), Sps O ap(o) is shown

in Fig. 4-5.

B. Threshold Behavior

As ¢ increases, it may easily be seen that the kernel of (23) becomes
more and more singular, and the Regge type cutoff (or any smooth cutoff for
(26) is ineffective for { > 2. This behavior is due to the fact that we have
insisted on msking [ subtractions in‘Nz in order to insure the proper threshold
behavior (21). A scheme to bypass this difficulty has been suggested which -
consists of introducing extra poles in the amplitude in the unphysical region.

One introduces a function7

5=5 £
B(s) - (—ﬂ A, (s) (31)
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and writes X}(s) as NZ/DE' The equations (19) and (23) for D, and N, are

modified simply by replacing p by Pys

- (5 )ﬂ > 2

1

and not performing the threshold subtractions in N We present , in Fig. 6,

x
the results for various values of s. It should be noted that the region of
cutoffs for which a resonance occurs is highly reduced and is very sensitive
to the value sl

It is worthwhile to look at the situation in a case of weak coupling,
i.e., in a case of no resonances or bound states (for any value of Sl)' One
might expect the sensitivity to s to be small. Indeed, as may be seen from
Fig. 7 where we show the variation of the phase shift with sl, keeping other
parameters fixed, the dependence is small.

Althbugh the calculations of resonances are sensitive to almost all
parameters that may enter, we wish to stress that the solutions are not
unstable, i.e., small variations of the parameters lead to small variations
of the solutions. Specifically, the parameter one usually knows best is

the mass of the exchanged particle. Slight variations in this mass produce

correspondingly small variations in the output, as illustrated in Fig. 8.
C. Numerical Approximations

As a fully numerical solution of the integral equation (23) is

ften time consuming, certain mathematical approximations are frequently
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employed. The most common is the so-called determinental (16) method which

consists of agpproximating N, by B, and solving for D, by quadrature. One

) i )
striking disadvantage is that for the multichannel case, the resulting amplitude
is not symmetric (and thus violates time reversal invariance). Even in the

one channel case, there is a strong dependence on the choice of the subtraction
point 55 for normalizing D to unity. This dependence is illustrated in Fig. 9.

A different approximation has been proposed (%Z) which does not have this sub-
traction point dependence and is symmetric in the multichannel case. (See Ref. 17
for an investigation of this approximation.) We would like to emphasize that
although the various approximate solutions to (23) are much faster to use than
numerically solving the integral equation none is a reasonable substitute when

the actual solution yields a rescnance or bound state; this statement becomes

stronger and stronger as one deals with more complicated B, than (26). On the

yi
other hand, the determinental method has the decided advantage that in situations
(e.g. a sum of single particle exchanges) in which B, has the correct threshold

behavior (21), the partial wave amplitude A, automatically obeys (21).

D. Disucssion

In summary we make the following observations on the sensitivity of
the solutions to the N/D equations tc the approximations described above in
A, B and C. The values of cutoffs needed to produce a resonance are quite

sensitive to the input strength of the left hand cut. We saw, e.g., from
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Fig. 3 that for an input ' = 0.29 (and mz = 29.0) we needed a straight cutoff
A = 730 to get a resonance at s = 29.0 whereas for an input I' = 0.145 the
required cutoff was A = T400. This result has bearing on a number of different
types of problems, e.g. multichannel channel calculations, calculations of SUs
multiplets, and the N, N reciprocal bootstrap calculations. In each of these
problems there are a number of cutoffs required; we conciude from the above
sensitivity, that it may be dangerous to employ a single cutoff. On the
rositive side, we observe from Fig. 3 that there is a fairly large region of
A values for which a resonance can occur. The more physically motivated Regge
type cutoff (or any smocth cutoff) has the disadvantage that the threshold
tehavior (21) for the partial wave amplitude cannot be forced for / > 2 except
by introducing extra parameters. We see from Fig. 6 that the procedure of
introducing an extra pole in the unphysical region to force the behavior (21)
greatly increased the sensitivity of the solution to the cutoff parameter.
However for a weak solution, i.e., one for which the phase shift never becomes
large the extra pole procedure is a reasonable way to insure (21): as seen in
Fig. T, the solution is insensitive tc the pole positicn sl. Although the
calculations of strong or resomant solutions are sensitive to almost all the
input parameters, we find that the solutions sre not unstable, i.e., small
varistions of the parameters lead to smell variations of the solutions (see,
>.2., Mgl 8).

We emprasize that approximate scluticus of the integral equation (23)

while quite time saving ars not very good substitutes for numerically solving
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the Fredholm equation (see,e.g.,the sensitivity of the determinental method

to the subtraction point 5, in D) in the case of strong solutions: the more

complicated Bl one uses, the stronger the statement becomes.

Finally, it seems worthwhile to make a few qualitative remarks concerning
how rescnances and bound states occur and how they vary as a function of the
coupling constant. We have in mind the situation of a simple "attractive' left
hand cut and a partial wave £ > 1 (no resonance can occur without some sort of
longer range repulsion). If we plot the real part of the D fuﬁction as s
varies, we observe that (for the single channel case) it starts positive for
large negative s, possibly crosses the zerc axis producing a bound state or
resonance, reaches a minimum and turns back up, crossing the real axis with a
wrong slope to produce a resonance. As the coupling constant 1s decreased,
the first crossing of the axis occurs further and further to the right, and
its minimum value gets less and less negative. At a critical coupling constant
the minimum occurs on the real axis, and for values of the coupling constant
smaller than the critical one, no resonance further appears. We have found it
as an empifical fact that the position of the minimum of real part of D iz a
constant over very large variations of the coupling constant. This fact may -
be useful as a guide to proper choices of coupling constants to produce desired

resonances once a bracketing has been obtained.
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FOOTNOTES
1. TFor one exceptional case there exists a unique solution of the N/D
equations with a non-Fredholm kermel. For details see Ref. L.

2. TFor a formal discussion of existence and unigueness see Ref. 5.

3. For a more extensive treatment and references the reader should consult

Ref'. 3.

b, Our units are such thet & = ¢ =m_ = 1.

5. The "TCP" processes are also linearly related to the same analytic functions.

For details consult Ref. 3, p. 11.

6. A superscript is used to denote isospin. In the amplitude, the first
variable is also used to denote the channel whereas in the absorptive parts

the channel is dencted by subscripts.

7. A. Scotti and D. Y. Wong (Ref. 1k4) introduce a pole of order f-1, and

make one subtrsction in N at threshcld.
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FIGURE CAPTIONS

Two particle scattering process.

‘Plots of sy (position of the zero of Re Dz_l(s) versus the straight cutoff
A for given input position and width of the exchanged p resonance. The
correct threshold behavior (21) for Al has been forced by making one sub-

traction at s = 4 in the integral equation for N, -
Same as Fig. 2.

Plots of s, versus the Regge cutoff parameter ap(O). Other features are

the same as Fig. 2.
Same as Fig. L.

Plots of sp Versus A with input parameters I' = 0.2 and mg = 29.0 for
various positions s_ of the extra pole, Eq. (31), which was introduced
(instead of the subtraction in Nl) in order to insure the correct threshold

behavior.

1
2

Plots of [(s-4)%/5]% cot & versus s with input parameters I = 0.145,

mg = 29.0 and A = 100.0 for "extra" pole positions s, = O and 100, and the
case of no extra pole but a subtraction in N at s=4. This graph demonstrates

the insensitivity of the solution of 5, for a weak solution, i.e., one for

which the phase shift never becomes large.
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FIGURE CAPTIONS (continued)

ol

Plots of [(s-4)3/s]2 cot & versus s with input parameters I' = 0.145 and

A = 9000 for mass values mg = 28.0 and 29.0. This graph demonstrates

the stability of the solution to small variations in mg

1
2 cot & versus s for the approximate '"determinental

Plots of [(s-4)3/s]
method" solutions (N, = By) for various values of s,, the subtraction
point in D. The "exact" solution i1s also shown for comparison. The

input parameters are A = T000, mg = 29,0 and I’ = 0.145.
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