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ABSTRACT 

2 

TWO important problems involved in obtaining solutions of partial 

wave dispersion relations (by the N/D method) are having i) the correct 

threshold behavior, and ii) an acceptable high energy behavior. Various 

physical and numerical approximations have been made to insure i) and ii). 

We numerically investigate the sensitivity of the solutions of the N/D 

equations to these approximations. For this purpose, we consider J=l 7~-r 

scattering, employing elastic unitarity and assuming that the left hand 

cut is dominated by the exchange of the p resonance. Two significant features 

we find are: a) The values of the cutoffs needed to product a resonance are 

quite sensitive to the input "strength" of the left hand cut, e.g., a change 

of the input width of the p by a factor of two changed the value for a "straight 

cutoff" to produce a resonance at a given energy by a factor of ten. Due to 

the results of a) we wish to emphasize the possible danger in employing a 

single cutoff in the calculations of SUa multiplets. b) If one introduces 

a pole on the left hand cut in order to insure the threshold behavior i), 

then the ranges in values for the cutoffs [to insure ii)] for which any 

resonance occurs are extremely narrow. On the other hand, a solution in which 

the phase shift does not become large is insensitive to the position of this 

pole. 
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I. INTRODUCTION 

Obtaining solutions of partial wave dispersions relations using the N/D 

formalism is of current interest. Given a partial wave "generalized potential 

term" BR or in other words specifying the discontinuities of the partial wave 

amplitude AR in the unphysical region, the N/D formalism (L)-(z) permits one to 

include the unitarity cut in the physical region and calculate the amplitude Ap 

by solving a linear integral equation. Two important difficulties enter into 

the calculations: i) Insuring that AR have the correct threshold behavior. 

ii) Obtaining an accepta-ble high energy or asymptotic behavior. 

From general quantum mechanical considerations we know that near 

threshold, a phase shift EL with orbital angular momentum R should behave like 

6 w k2R+1 
R k+O 

where k is the momentum in the center of mass system. Hence we want to i) 

"qrnn A __ _ - \d -. a tn have %he rorrect t,h.reshold behavior. For certain physical 

problems, the "0'~~ ious" choice for ER behaves badly at high energy so that 

the resulting integral equation in the N/D formalism is not of the Fredholm 
1 

type. Now we want the solution AL for a given BL to be unique; and thus 

we want to ii) force the integral equation to be of the Fredholm type. 
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The purpose of this paper is to numerically investigate the sensitivity 

of the solutions to various approximations which have been made to insure the 

desirable features i) and ii).2 

We consider numerically two types of cutoffs to insure ii): a straight 

cutoff on all the integrals, and a "Regge" type cutoff on B I' To force i) we 

consider R subtractions for the integral equation, or we introduce an Rth 

order pole in the unphysical region. In order to concentrate on a problem 

. with relatively few purely kinematical complications, we discuss the elastic 

scattering of 7r mesons. In particular we investigate the J=l partial wave 

and assume that the generalized potential B is dominated by the exchange of 

the I=l, J=l p resonance. 

Section II is devoted to a review of the relevant formalism.3 The 

calculations and results are presented in Section III. The two most significant 

features we find from our calculations are: a) The values of the cutoffs needed 

to produce a resonance are quite sensitive to the input "strength" of the left 

hand cut, e.g., a change of the input width of the p by a factor of two changed 

the value for a "straight cutoff" to produce a resonance at a given energy by 

a factor of ten. Due to the results of a) we wish to emphasize the possible 

danger in employing a single cutoff in the calculations of an STJa multiplet. 

b) If one introduces a pole on the left hand cut in order to insure the 

threshold behavior i), then the ranges in values for the cutoffs [to insure ii)] 

for which any resonance occurs are extremely narrow. On the other hand, a 

solution in which the phase shift does not become large is insensitive to the 

position of this pole. 

ITP-122 



I 

5 

II. REVIEW OF PARTIAL WAVE DISPERSION 

A. Analytic Properties of the Partial Wave Equations 

RELATIONS 

Consider the system shown in Fig. 1. The usual scalar variables 

s, t, u: 

s = (Pi + P,)2 , 

t = (P, - PJ2 , 

u = (Pi - P,)2 

4 
with 

s+t+u=m2+ a % 2+m2+m2 c d' 

are used to denote the 3 processes or 'channels" 

s: a+b+c+d , 

t: a+c+G+d, 

u: a+Z+%+c 

which are related by 'crossing" or the substitution rule. 5 As we are interested 

in a study of the sensitivity of the solutions of the N/D equations to various 

physical assumptions and numerical approximations we shall concentrate on a 

problem with relatively few purely kinematical complications. We analyse the 

problem of two spinless 'bosons of equal mass scattering elastically. As 

isotopic spin presents no major complications, we specifically discuss the 

scattering of TT mesons on 7~ mesons (so that the processes (2) are all r-'/r 

scattering). 

(2) 
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The Mandelstam representation for this scattering in a given isotopic 
6 

spin state I is 

+L 
, 

3' 
ds'du' 

(9 -s)(u'-u) 
(3) 

+ 1 I- 
Piu w ,a 

‘Wdd (t t)(u’-u) * ?F 1, 

The functions appearing in the integrands in (3) are the (real) double spectral 

discontinuities which, in principle, determine the complete dynamics of the 

system. 

If we choose a particular channel, say s (where s is the center of mass 

energy squared and t the invariant momentum transfer), then the relation (3) 

can be written as 

A'(s,t) = +- 
-5 .A; (s,t')dt' .A; (s,u’) 

'- ! du' 
t'-t 

dt + $ 
u*-u 

I where At(,-) is the a.bso:rptive part of the amplitude in the t(u) channel. 

In (3) and (4) we have neglected to write possible subtraction and single 

integral terms as it is the purpose of the N/D method to determine these from 

just the .knowledge of the double spectral functions alone. Introducing the 

(4) 
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momentum k and the cosine of the scattering angle z for the s channel in 

the center of mass system, we have 

S = 4(k2 + 1) , 

t = -2k2(1- z) , 

u = -2k2(1 + z) . 

Using (5) we may project out the partial waves from (4): 

1 

A:(s) = ;s AI(s$) P&z) dz 
-1 

1 
= 7 

\ 
AI,(s,t') ($$$- + s) dt' 

From (6) we read off the analytic properties of A:(s). Both At(s,t') and 

Ai(s,u') have a cut along the positive real s axis for s > 4, i.e., 

A;(+) = $ s P&“t’) 
s'-s 

ds' . 

(5) 

(6) 

(7) 

The functions QR introduce a cut along the negative s axis running from 

oto-m . 
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Had we considered more complicated kinematics of unequal mass particles, 

the analytic structure of the partial wave amplitudes would have acquired some 

complications. We would still have the right hand cut discontinuities discussed 

above. However, the cut due to the Ql functions would include detached segments 

along the real axis and circular cuts in the complex s plane (5). If none of 

the masses is too large compared to the others as well as to masses of possible 

intermediate particles (which we shall consider later), the right hand cut is 

disjoint from the cuts due to the Qe functions (which we shall from now on call 

the left hand cut). Then there exists a region of the real axis in which A:(s) 

is analytic which permits analytic continuation between the upper and lower 

regions of the complex s plane. 

B. Determination of the Discontinuities 

For s not in the interval (4, IX), Ai(s,t') is an analytic function 

in s. The function Qn has a discontinuity (1) such that 

1 + *$$&)j = $ P,(l + $J @(-s-t'-4) . (8) 

Then the left hand discontinuity depending on At(s,t'.) is 

(s-4)--l s A&t') P1(l + $dt' 

-(s-4) 

(9) 

1 =- 
2 s I1 

A&z') P&z') dz' ~At,~(s) ., 
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i.e., the Rth partial wave in the s channel of the absorptive part of the t 

channel amplitude. Utilizing crossing symmetry we have, e.g., 

A&t) = Xi'; A;'(t,s) , 
> 

A;b,u) = Xu s 
'I' A;&) 

7 

where X is a numerical isotopic spin crossing matrix (2). 

To obtain the right hand discontinuities we employ unitarity. In the 

physically accessible region for scattering in the s channel, i.e. s > 4, 

A:(s) has the form 

A;(S) = 
-i;(s) e 

%.6:(s) 
-1 

2id4 
f 

1; 
s-4 2 P = 

( 1 s 

where the factor vL(= e -2!?!. with h the imaginary part of the phase shift) 

determines the total inelastic cross section for the Bth partial wave uR 

u&s) = 7rk2(2R + l)(l- (Tj;(s))2) * 

(10) 

(11) 

(12) 
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The discontinuity of A:(s) is equal to its imaginary part: 

- A:(s-ie)] = {~(s)iAj(s)(~ + 1-'$i:~2 } 0(s-4) . (i3) 

Hence with "proper' asymptotic behavior" we have 

m ImA' 
A;(s) = B;(s) + $ 1 ,,", ds' 

4 

where 

(14) 

(15) 

Thus in principle if we knew q:(s) we would have an infinite system of integral 

equations to determine the amplitude since, e.g., At e(s) as given by (9) is 
3 

related to the s channel amplitude by the crossing relations (10). 

In practice some approximations are made about the "potential" term 

B;(s). We shall discu.ss these approximations in Section II D; for now, we 

assume that B:(s) is known. The inelastic factor v:(s) must also be approximated. 

This function may be taken from experiment, or one may approximate inelastic 

unitarity by considering many channel two-body scatterings, or (as is often done 

when one is interested in relatively low energies) assume that elastic unitarity 

holds out to infinity. It is this last approximation that we will make,i.e., 
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we take v(s) = 1 so that dropping the isotopic spin index we have for (lb), 

A&s) = B&s) + + 
M p(~~)/A~(s')/~ ds' 

,!‘ . 
St-s 

4 

C. N/D Equations 

It is possible to linearize (16) by the N/D method. 

Define 
- 

Al(s) f N&s) / D&s) 

where N R b ) has cuts along the discontinuities of B R (4, and D,(s) has the 

& D!(s+ 
c 

.ie) - De(s-ie) 
I 

= N&s) ~(l/A&s)) @ (s-4) 

= - p(s) Ni(s) 0 (s-4) 

& N(s+ie) L - N(s-ie)] = Im (B1(s)) D1(s). 

O-6) 

(elastic) 

unitarity cut: 

im 

These discontinuities do not specify N and D completely as we do not know 

their asymptotic behavior. This ambiguity is related to the possible existence 

of elementary particles which communicate with the T-TT system (5). The simplest 

assumption to make is that N and D are sufficiently well behaved that no 

subtractions are necessary and that a knowledge of B1(s) determines the amplitude 
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uniquely. We have however a freedom of multiplying both N and D by the 

same non-zero eonstant and thus we may normalize D at any convenient point, 

S o, to unity (the ratio N/D being independent of so). Thus using (la), we 

can write the coupled dispersion relations 

N&s) = $- 
/ 

.j Im Bg(s') DR(s') 

s'-s 
ds' , 

D&s) = l- (';O) 
i 

9” P(s’> N&s’) 
ds' 

'.4 (s '-s)( s"so) 

09) 

(20) 

where the integral in Eq. (19) f or N runs over the cuts where Im B1(s) f 0. 

Pole terms which may appear in (3), (4) or (16) are now automatically 

taken care of, as they appear as zeroes of De(s). Thus the N/D method permits 

one, in principle to calculate the positions of bound states from the knowledge 

of the discontinuities of the amplitudes in the physical regions alone. 

From general quantum mechanical principles, it is expected that the 

threshold behavior of Al(s), see Eq. (ll), will be 

Al(s) s:4 (s-4? - (21) 

Had we put in the exact discontinuities and inelasticity, this behavior should 

come out automatically. However, we still want to force the correct behavior (21) 
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even with approximate input information. We do this by writing the dispersion 

relation for NR with I subtractions: 

Nl(S) = (74)” 1 Irn BP’) DP) ds’ . 
(+4)+-s) 

Note that the approximate forms of B1(s) that we will be dealing with have the 

correct threshold behavior by themselves. 

Substituting Eq. (20) for DL into (22) we have a linear integral 

equation for N R : 

O3 ds’ > N (s’ > N&s) = B&s) f + [ ,,-,’ as’ . (23) 
4 

it is the major purpose of this article to discuss the solution of this integral 

equation. The only singularities (23) may have (for B1(s) having the behavior (21)) 

come from the infinite ranges of integration. It is this singular behavior that 

causes most of the difficulties and it is the purpose of this article to discuss 

various methods which have been employed to overcome it; we require (23) to have 

a unique solution and thus demand that it be an integral equation of the 

Fredholm type. 
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D. Approximations for B!(s) 

Several types of approximations have been utilized thus far in approxi- 

mating BR(s). In the case of complete ignorance about the singularities on the 

left, this cut may be replaced by a sequence of poles whose position and residues 

are adjusted to fit empirical data in the scattering region. With this approxi- 

mation, Eq. (23) may be reduced to a system of linear algebraic equations. The 

resulting amplitudes are of the effective range type (2). 

Another approximation has been to keep only a few partial waves in the 

direct channel and even though the partial wave diverges outside a small neighbor- 

hood of the physical region it is assumed that a small number of these amplitudes 

still dominate the crossed channels. One is thus faced with a finite set of 

coupled integral equations; crossing symmetry is made full use of (2). 

The approximation we shall consider has been called the single particle 

exchange or resonance approximation (10). It consists of assuming that the - 

"crossed" t and u channels are dominated by a resonance or resonances in 

particular partial waves. In the language of Feynman diagrams we consider the 

exchange of elementary particles in the crossed channels. We then use crossing, 

Eq. (lo), to give the absorptive amplitudes in the direct channel and project 

out the partial waves to give us BI(s). The N/D equations simply enforce 

unitarity in the physical region of the direct channel while leaving the left 

hand singularities unchanged. 

In the T-?J problem, the example we will study in the remainder of this 

paper, the scattering amplitude is assumed to be dominated by the p resonance 
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