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Abstract: The non-relativistic prediction of the n-p capture cross sec- -- 

tion at a neutron laboratory velocity of 2200 m/set is evaluated as 

302.5 + 4.0 mb assuming that 2: = 2.73 + 0.03 fm as predicted by charge 

independence, or 308.5 t 5.0 mb if 2: = 2.44 + 0.11 fm. The smaller 

value for r -F, derived from the two most recent n-p total cross section -- 

measurements, raises serious difficulties with the hypothesis of charge 

independence, which are discussed. The prediction includes corrections 

for the shape dependence of the triplet effective range, the deuteron 

D-state probability, and the intermediate range behaviour of the wave 

functions, which contribute half the quoted uncertainty; these correc- 

tions are model independent to within that uncertainty if the longest 

range part of the interaction is due to one pion exchange. The experi- 

mental value of 3342 It: 0.5 mb obtained by Cox, Wynchank, and Collie 

therefore shows an interaction effect of 9.5 k 1.2s (or 7.7+~5$). A 

recently proposed approximation based on dispersion theory which would, 

if accepted, explain two-thirds of the effect, is shown to be quanti- 

tatively inadequate. Hence covariant calculations which reduce to 

this approximation must be rejected, except for those parts of the cal- 

culation which give meson current corrections. G. Stsanahanpredicts 
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a 2.976 correction coming from the Z-N 33 resonance, while the calcu- -- 

lation of M. H. Skolnick, interpreted as indicated, gives a non- 

resonant contribution of 2.2%. Even if these effects could be added, 

a substantial part of t'ne meson current contribution remains unex- 

plained. It is suggested that at least part of this residual effect 

might be due to the large z-y-p coupling recently invoked by Adler --- 

and Drell to account for the static magnetic moment of the deuteron 

and the large forward photopion production cross section in the multi- 

GeV region. 

1. Introduction 

Although the n-p capture cross section near threshold can be mainly -- 

accounted for by an approximate evaluation of the magnetic dipole cap- 

ture matrix element, using oniy the static magnetic moments of neutron 

and proton and the n-p effective range expansion parameters 1) 
-- , there is 

a residual disagreement with experiment of about 10%. As has been em- 

phasized by Austern 2) , this effect provides a significant measure of the 

distortion of the electromagnetic properties of the free neutron and pro- 

ton by the nuclear interaction, which he calls the "interaction effect." 

Using data available up to 1959, Austern and Rost 3) found an interaction 

effect of 28 ? 12 mb, or 8.4 rf: 3.6% of the experimental cross section of 

331.5 t 1.7 mb. The high precision of the new measurement by Cox, 

Wynchank, and Collie') , who report a value of 334.2 k 0.5 mb, calls for 

a review of relevant experimental and theoretical developments which 

affect the comparison calculation. A critical re-examination of these 

developments is presented in this paper. 
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The parameter which has the largest uncertainty in the calculation of 

Austern and Rost 3) is the n-p 1 S& effective range, for which they adopt the -- 

value r np= 2.68 + 0.30 Rn obtained from p-p scattering and the hypothesis of -- 

charge independence. At first sight this uncertainty can be reduced by 

adopting the value r np = 2.51 -I 0.11 fm obtained in a recent analysis 5, of 

low energy n-p experiments. But this value raises difficulties with the hy- 

pothesis of charge independence 6) . These are discussed in detail in sec. 2, 
7 > making use of the singlet model given by Signell, Yoder and Heller' , and a 

new analysis of the low energy n-p data is presented. In sec. 3 we make use 

of these results to evaluate the non-relativistic prediction of the matrix 

element both in the shape-independent approximation and with the shape- 

dependent corrections. Detailed examination of the latter shows that they 

are reasonably well-determined by empirically established restrictions on 

the two-nucleon interaction. In sec. 4 we examine an alternative approach 

to the problem via non-relativistic dispersion theory, and covariant calcu- 

lations which reduce to the same result for the problem at hand. We also 

briefly review calculations of the interaction effect in terms of meson cur- 

rents. The conclusions reached are summarized in sec. 5. 

2. The 's effective range and charge independence 

The hypothesis of charge independence can be given verifiable content 

only to the extent deviations from the exact symmetry law are calculable. 

These effects fall into two classes: (a) direct electromagnetic effects, 

which include the electrostatic interaction between two protons, the finite 

size of the charge and magnetic moment distributions of the neutron and 

proton, and vacuum polarization, and (b) charge-dependent differences in 

the strong interactions which may be indirectly due to electromagnetic ef- 

fects, but which also could conceivably arise from other causes. The most 
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important of the direct effects is obviously the electrostatic potential 

e21x* Schwinger8) showed that a point magnetic dipole interaction has a 

significant effect on the singlet scattering length if the nuclear inter- 

action is due to a simple Yukawa potential, but this effect is consider- 

ably reduced if the nuclear interaction has a hard core, as shown by 

Salpeter'), or if the point magnetic dipole interaction is replaced by 

the actual extended magnetic moment distribution WO) , Because of the 

latter effect, this correction is quantitatively much less significant 

than effects of class (b). Unfortunatelyonly a few of the Latter are calcu- 

lable. One known effect which will result in charge dependence of the 

strong interactions 11) 2 is the JT- -2' mass difference. Even if the "bare" 

coupling constant is charge independent, this splitting can be expected 

to result in a splitting of the "renormalized" coupling constants. Esti- 

mates based on field theory show l&13) that this effect will be quantita- 

tively more important than the (finite radius) magnetic moment interactions. 

From the point of view of dispersion theory, this effect can be calculated, 

so far as the one-pion-exchange part of the nuclear force is concerned, by 

using the physical pion masses, and the four physical coupling constants 

G, J-kn )- G G 
-P OP 'Gon ' Unfortunately, if this splitting is found to be sig- 

nificant, it can also be expected to have effects on the strong interaction 

at shorter range which are at present beyond the reach of reliable calcu- 

lation. Our procedure will therefore be to investigate what freedom these 

uncertainties allow in models constrained to fit the empirical nucleon- 

nucleon scattering lengths, and then investigate the effect of these un- 

certainties on the prediction of the n-p 
1 

-- So effective range. 
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Our problem can be considerably simplified if we separate the question 

of charge symmetry (i.e. the equality of n-n and p-p nuclear forces) from -- -- 

that of full charge independence (equality of these two forces with the 

corresponding states in the n-p system). We note that charge symmetry is -- 
t 

preserved (in a pion theory) even in the presence of I( -E' mass splitting, 

if we require in addition $ = G2 As is well known, 
-P 

= _Gzn and G2 
OP -On ' 

there is impressive evidence for exact charge symmetry from the coulomb 

energies of light mirror nuclei, but two recent measurements 1-4,15) of the 

final state interaction in the reaction r- + d -+2n + y which determine - - 

szn to be about -17 fm, provide useful direct evidence. This value is not 

in agreement with the Born approximation analysis of the breakup reaction 

2 + a -+a + 2, which gives 16,171 values of -22 to -24 fm, but this could 

easily be the result of distortion by three-body final state effects. Since 

Bander18) has shown that the theoretical uncertainty in the analysis of the 

L- capture reaction is only +l fm, we accept -17 fm as a reliable determi- 

nn 
nation of the value of s . 

Signell, Yoder, and Heller 7) have recently studied this question using 

an "updated Hamada-Johnston 19) model' for p-p singlet scattering of the form -- 

z $eo ,r < 0.48 fm 

/If”* = 135 /W/c;: k = /37.3$ MeV/c , 1. G2=lW 

-5- 



This model is fitted to and l$ 2-2 phase shifts up to 320 MeV 

and to two p-p phase shifts below 3 MeV by adjusting the parameters A - A6 -- 2 

to the values given in table 1. If we take e2 = 0, M = En = 939.550 MeV/c2, 

nn nn we find a = -16.96 fm, r = 
-S -S 

2.8455 fm, in agreement with ref. 7 and 

earlier results summarized there. We therefore interpret the measured 

value of a nn 
-s as strong evidence for exact charge symmetry, and in par- 

titular will assume that G2 = cf,, and G2 = C$, in what follows. --fp - -0P 
Since this result is in disagreement with the prediction of a 

nn Noyes 20) 
a 

S 
= -28 fm given by Wong and , we must investigate what went 

wrong with that calculation. The assumption made there was that if the p-p 

amplitude exp(iEpp) sin opp/% 2q has the discontinuity (2K/p-1) 
-Me2/K 

D(K*) 

for q" < -u*/4 (with q = iK), then the n-n amplitude exp(iCnn) sin 6,,/q 

has the discontinuity D(K2). The specific model presented used the OPE 

cut for D(K2) plus a single pole whose position and residue were adjusted 

to fit two low energy p-p phase shifts. As has been noted by Heller f , in 

f private communication 

changing variables to carry out the numerical work, the sign of the ex- 

ponent -Me2/K was inadvertently taken as positive. It was also assumed 

that the same factor modified the residue of the pole at q = ip. Since 

this pole represents the interaction due to physical processes distinct 

from OPE, it would be more consistent to assume that this pole is an 

approximation to a cut starting at q = iS/fi, and hence carries the fac- 

tor ($Z - 1) -Me2/B . Since it has been shown 6) that the effect of the 

OPE cut can be accurately reproduced by a second pole of residue $f2M at 

¶.=iclm-, we have recomputed the prediction for this two pole model 
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I 

using the correct prescription for the coulomb modification of both resi- 

dues, and find an n-n scattering length of about -20 fm, in reasonable 

agreement with experiment. In order to verify the accuracy of this ex- 

planation, we have fitted the Bargmann potential 21) (which g' lves a single 

pole in the n-n case) plus the e2/r coulomb term using the Schroedinger 

equation, nn and when the coulomb term is removed find as = -17.84 fh, 

nn r 
S 

= 2.78 fm. The corresponding one pole Wong-Noyes formula (with the 

above interpretation of the coulomb modification of the residue) predicts 

nn a = - 
S 

lg.76 ti, rrsn = 2.817 fm. Since the OPE effect is a small per- 

turbation if the pole position and residue are readjusted to the same 

data, we conclude that the Wong-Noyes approximation, if correctly applied, 

is good to about 2 f'm for the scattering length and 0.035 fm for the 

effective range. 

Since the p-p scattering length and effective range were fitted empiri- 

cally, the only effect this correction has on the analysis of the p-p 

22) experiments below 3 Mev previously presented is to increase the pre- 

dicted residue for the OPE pole by 13%. We have reanalyzed the data using - 

the corrected formula and find as anticipated that the scattering length 

and effective range change by less than the quoted uncertainty, while the 

shape parameter predicte'd for G2 = 14 becomes P = +0.030 (instead of 0.023) 

as compared with the empirical evaluation of +0.026 2 0.010. Hence the 

conclusion that the OPE effect has been observed in the 1 SO state remains 

valid. This is important in what follows, since this analysis is the only 
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direct evidence for the OPE interaction in the Ls state. Of course, the 

indirect evidence is in any case pretty overwhelming. In particular, the 

same analysis gives (incomplete) evidence for OPE in the central part of 

the 'p interaction, when due account is taken of well-established features 

of the shorter range parts of this interaction, and the quantitative agree- 

ment of the high partial waves with OPE is firmly established+. 

For a summary of this evidence and references to the literature, see ref. 23. 

If we accept the evidence for charge symmetry given above, the OPE 

interaction in the n-2 1 S+ state may be written as 

(2) 

Here M *p = 2!2&-J(~+~)> and we assume that24) M = 938.256 MeV/c2, h = 
-P 

139.60 MeV/c", ti = 135.01MeV/c2. If we keep g2 = 14.4 (and of course 

e 2 
- = 0), but leave the inner parts of the potential the same, this model 

predicts grsp = -19.07 fm, gp = 2.762 fm. If we had not put in the pion 

mass splitting, the prediction would be essentially the same as that given 

above for the n-n system, so comparison with the empirical values given 

below shows that the mass splitting moves the prediction in the right di- 

rection, but leaves a significant charge-dependent effect to be explained. 

Concentrating for the moment on the measured scattering length of -23.68 fm, 

we first ask if this can be accounted for by allowing a splitting between 

the charged and neutral coupling constants. The best value for gz 
P 
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undoubtedly comes from pion-nucleon scattering, for which Hamilton and 

Woolcock25) quote F = 0.081 + 0.002, - corresponding to Gz 
-P 

= 14.636. 

(We could carry through this discussion of the splitting in terms of f2 

rather than g2, but the use of s2 strikes us as slightly more natural.) 

Unfortunately, the value of G2 -0p is not nearly as well known; a recent ana- 

lysis of higher partial waves in p-p 26) scattering yields values in the 

range from 11.8 to 13.5 with uncertainties of 2 or greater. We therefore 

fix the charged coupling constant at the value given by Hamilton and 

Woolcock,and adjust G2 to fit gy = -23.68 fm. 
-0P 

This is achieved for 

$jp = 13.936, for which value zip falls to 2.741 fm. 

We must now ask if this small splitting of the coupling constants is 

consistent with other phenomena. If we use Q2 = 14 in the n-n model given -- 
nn above, we find that af? = -15.68 fm, xs = 2.853 fm; however, we have al- 

ready noted that if we allow the coupling constants to split, we can also 

expect small charge-dependent effects in the shorter range parts of the 

interaction, and we find that changing any one of the parameters A -2-4 

by an MeV or so (in more than 100 MeV) will restore $" to -17 fm. Such 

adjustments might interfere slightly with the fit of the model to the very 

precise p-p data at low energy. However, we have already seen that the 

choice of G' = 14.4 for the fit to the p-p experiments at higher energy - -- 

is not well supported experimentally, and it is obvious that recycling the 

adjustment would produce an exactly charge-symmetric model fitted to both 

p-p scattering and the q-a scattering length. At this level of sophisti- -- 

cation it would be necessary to include the finite charge and magnetic 

moment distributions and vacuum polarization, but we feel that such effects 

are clearly of the same magnitude as charge-dependent corrections to the 
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strong interactions at shorter range, which must be included for consis- 

tency once we allow split coupling constants. Hence we feel that this re- 

finement is somewhat pointless until we have some way of calculating the 

electromagnetic structure of boson systems heavier than the pion which are 

important in the nuclear force. We conclude that there is good evidence 

for exact charge symmetry, and that the small failure of charge indepen- 

dence indicated by the n-p scattering length can be equally well accounted -- 

for by a small splitting of the pion-nucleon coupling constants (for which 

there is even some very shaky evidence in the right direction), and/or 

connected (but currently incalculable) effects of the order of 1% at shorter 

range. These conclusions are comparable to those reached by Signell, et - 

al.7'. We note also that a measurement of the n-n effective range to - -- 

10.03 fm would provide a valuable test of charge symmetry. 

Having shown that once a small coupling constant splitting is allowed, 

the small discrepancy in the n-p scattering length is "down in the noise' -- 

generated by theoretical uncertainties at short range, we turn to the 

effective range. For this purpose, we can neglect the refinement of using 

the n' - r" mass splitting, and for convenience collapse the OPE term to 

a single contribution. As is shown in table 1, the scattering length can 

still be fitted by very small adjustments of A2 - Ae, and the predicted 

effective range always lies between 2.72 and 2.73 fm. Taken together 

with the result given above which used the observed pion masses, we see 

that the model-dependent uncertainty is less than 50.02 fm, and since the 

experimental error in the p-p effective range is only kO.014 fm, we con- -- 

elude that regardless of how we account for the observed scattering length, 

the n-p effective range is predicted by charge independence to be 2.7350.03 -- 

fm. We now compare this prediction with experiment. 
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As has been discussed in detail in a previous analysis 5) , the triplet 

scattering length and effective range, as well as the singlet scattering 

length, are almost completely determined by the binding energy of the 

deuteron, zB, the coherent neutron-hydrogen scattering length, %,, and 

the n-p total cross section for epithermal neutrons, ho*, fcr which -- 

we accept the values 27) 

fB = 2.22452 MeV, anH = $(as+3at)=-3.741&O. Ollfm, a,,( O)S036t5fm2 (3) 

Since higher partial waves give a calculable (and negligibly small) con- 

tribution to the total cross section below 5 MeV, 2s can then be directly 

determined from total cross section measurements in this energy range. It 

was found in the previous analysis 5) that this determination depended to 

some extent on the singlet and triplet shape parameters used. However, 

we have seen above that the p-p singlet shape parameter is correctly pre- 

dicted from OPE either by dispersion theory or by an appropriate potential 

model. Since this prediction has been quantitatively verified by experi- 

ment") , we feel fully justified in making use of the same prediction for 

both singlet and triplet ~-2s waves. For the singlet state, we use the 

approximate formula derived by Cini, Fubini and Stanghellini 2895) , which is 

quantitatively reliable in the energy range of interest 29) . Since we will 

require it in the next section we quote the corresponding approximation in 

the mixed triplet effective range expansion, which is 
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with 

= 3.861 fm’ (5) 

It may be noted that even though the analysis is slightly dependent on the 

singlet and triplet shape parameters if these are taken to be independent 

variables, if both are assumed given by OPE, the two corrections nearly 

cancel in this energy range, and we get practically the same result with 

G2 = 0 (that is, by ignoring the shape dependence completely). 

The data selection has already been discussed in ref. 5, and we use 

the same values given there (Table r). The results of the new analysis 

are reported in table 2a. As can be seen from the x2 values, the data 
e 

are consistent in the sense of a x2 test, but only because the older 

data by themselves are internally more consistent than would be expected 

if the errors were purely random. We have therefore also performed the 

analysis subject to the constraint that rs = 2.73 + 0.03 fm. The results 

given in table 2b show that all but two of the measurements are consistent 

with this hypothesis, but that there is less than a 5% chance that the 

deviation of the cross sections at 0.4926 and 3.205 MeV as measured by 

Engelke, Benenson, Melkonian and Lebowitz 30) is due to a statistical fluc- 

tuation. 
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Since we need the results below to test model sensitivity of cor- 

rections, we have computed the changes in the coefficients 4 - 4 taken 

two at a time needed to fit the scattering length and 2: = 2.68 or 2.4465 

fm. The results tabulated in table 1 are not particularly transparent, 

so we have computed the corresponding changes in the potential energy as 

a function of distance. Since any simple picture of the two-nucleon 

interaction ascribes the attractive and repulsive parts to the exchanges 

of different systems of bosons, we feel it reasonable to refer these 

changes to the sum of the attractive plus repulsive contributions rather 

than to the net potential energy. The comparison curve is given in 

fig. 1, and the changes required to fit n-p low energy scattering in -- 

fig. 2. We see that even to fit an effective range of 2.68 fm it is neces- 

sary to reduce the attraction by at least 5% in the region between 2 and 

4 fm, and to increase the attraction near the core by a corresponding 

amount. For the shorter effective range indicated by the experiments of 

Engelke, et al. 30) , changes of more than 30% in both regions are required. -v 

Charge-dependent effects of the magnitude found by the above analysis 

would be very hard to understand on theoretical grounds 6) , and to reconcile 

with other experimental phenomena. In particular, D. H. Wilkinson 31) has - 

recently presented an analysis of isobaric triplets in light nuclei which 

shows that there are no observable deviations from charge independence in 

the 31 So state of magnitude greater than 1%. While charge dependent ef- 

fects in the spin-flip, isospin-flip OPE interactions will be to some ex- 

tent suppressed in nuclei by the fact that these interactions make no 

contribution to first-order in nuclear matter, I can think of no mechanism 

which would cause such a suppression in the shorter range parts of the 
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interaction. We conclude that the experimental results of Engelke et al. 30) 
-e 

are in clear conflict with p-p scattering below 3 MeV interpreted accor- -- 

ding to the requirements of charge independence, and because of the funda- 

mental importance of this conclusion for both nuclear and elementary par- 

ticle physics, urgently recommend that new n-p total cross section -- 

measurements below 5 MeV of at least comparable precision be attempted. 

3. Evaluation of the matrix element by wave function methods 

The non-relativistic formula for the n-p magnetic dipole capture cross 

section may be written (with ?3=r=l) as 

(6) 

where 1 is the laboratory velocity of the neutron (in our case 2200 m/see), 

r' = M E and (as above) M -np-B -np = 21$p/(_M, + ap)- Note that using the 

correct combination of nucleon masses in the denominator rather than, say, 

MS 
--d 

increases the predicted cross section by 0.42 mb, which is almost 

significant compared with the experimental accuracy quoted by Cox, et al. 4) 
-- 

of to.5 mb. Constants not given in the last section are also taken from 

24) Rosenfeld, et al. as -- 

C = 2.997925 X 1Q8 m/see, G = 0.0072g720, Tic= 197.322 MeV . fm 
(7) 

P+ = 2.79276, ,k-l = -1.9128 

transitions to the 3 gl state may be neglected. If the normalized ground 

state S and D wave functions are called u and w 
-35' 

and the wave functions 
-g 

which approach ex$ I( -p-l and ~(1 + 3/z’ + 3/12r2 ) exp (-yr) are called - 

All authors agree that near threshold electric dipole transitions and 
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U and W 
-55 -75' 

the constant*g is defined by 

Hence the percentage D state P, is given by 

If the singlet wave function at zero energy which approaches 1 - L/S, - - 

asymptotically is called g,, the matrix element A appearing in eq. (16)is 

A first approximation to this matrix element can be obtained, fol- 

lowing Bethe and Longmire 1) , from the algebraic identity 

by dropping the shape dependent correction 

In this same approximation it is consistent to take 

(8) 

(9) 

(10) 

(11) 

(12) 

03) 
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and to assume that the normalization of the ground state wave function is 

Hence the shape-independent approximation can be expressed directly in 

terms of experimental quantities as 

(14) 

(15) 

Making use of the results of the analysis presented in the last section, 

including the correlations in error, we obtain the results given in table 3. 

We note that using the smallest value of the effective range reduces the 

interaction effect by about 20$, but does not make it disappear, as was 

erroneously implied in ref. 5. We now examine the shape-dependent correc- 

tions to this prediction with an eye to making them as model-independent as 

possible. 

Even though the transitions to the 3 I+ state can be neglected, the 12 

state still gives a small correction to .A , as can be seen from the 

effective range theory with tensor forces 2) , because of the relation 

(16) 

obtained by using eqs. (8), (9), and (11). If we designate the difference 

between P(-E, -E) and the experimental [see eq. (13)] quantity ~(0, -E) - 
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by AJ-, the exact value for the matrix element is clearly given by 

We must also replace the shape independent approximation to the ground 

state normalization by 

Fortunately the correction term LQ can be directly evaluated from OPE - 

independent of the short-range behaviour of the wave functions by making 

use of the theoretical result quoted in the last section [eqs. (4) and 

(5)1. We find 

Af %f(-L,-E)--p(D,-E)= tpY" 1-y =0.0160fbl em_ -- - 

(1-7) 

(19) 

We might hesitate to use this model (which ignores tensor forces), were it 

not for the fact that model calculations including the long range OPE ten- 

sor force lead to the same result. For example, the nine deuteron models 

given by Glendenning and Kramer 32) predict values for L!Q lying between - 

0.006 fm and 0.017 fm. We therefore adopt the value 

Af 
= 0.0\5 * o.orofHL 

m - (20) 

The same models yield values of I,, lying between 0.0562 and 0.0742, consis- 

tent with other work, so we assume that 

PD = 0.07 * 0.015 !21) 
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It has been pointed out by Newton 33) in connection with the interpre- 

tation of electron-deuteron scattering that even if we knew the 3 S1 phase 

shift at all energies, the bound state wave function cannot be uniquely 

determined. t In the specific case where the phase shift is given exactly by 

t For a more detailed d-;scussion and references to the literature, see ref. 34. 

the shape independent approximation, one effect is to multiply the normaliza- 

tion constant Ij& by a factor 2/2, where z can have any value between 0 
- 

and X! -351 As has been pointed out by Austern , this is somewhat of a mathe- 

matical quibble; since the effective range expansion has a much more inti- 

mate connection with the wave functions than is implied by the usual deri- 

vation in terms of static. local potentials. In fact, if one looks at the 

family of phase-equivalent potentials given by Newton, one finds that for 

z f 2 they all have exponential tails which fall off exponentially with - 

half the deuteron radius, thus violating the firmly established result that 

the longest range part of the nuclear force is due to OPE. However, these 

tails go to zero smoothly as z approaches 2, and since a departure from 2 

by as little as 0.005 would introduce appreciable uncertainty in 2, we 

thought it worthwhile tc examine this question quantitatively. For example, 

the values of the 'I& phase predicted by these potentials at three energies 

are given in tabie 4, together with the dependence on z for z near 2. 

Since this phase shift is now known empirically to about lo or 2' at five 

energies in this range 26) , we see from these results that a potential 

fitted to n-p scattering data with z = 2 would already predict D phases in -- 

conflict with experiments at individual energies if 2 departed from 2 by 

as little as 0.05. Coupling this fact with the characteristically dif- 

ferent energy dependence of the D phase shifts for such potentials, we 
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see that the 3 D phase shifts alone are probably enough to bring the allowed 

uncertainty in z down into the range assigned above as tolerable. To - 

strengthen this conclusion further, we have computed the ratio of these 

potentials for z = 2 5 0.005 to OPE in the region between 5 and 10 fm, 

and find departures from OPE by as much as 5%. This is in direct con- 

flict with the well-established agreement between the predictions of OPE 

and the highest 4, phase shifts in nucleon-nucleon scattering 23) . We con- 

clude that the mathematical possibility raised by Newton can be completely 

ruled out on the basis of these experimental results. 

At first sight, the remaining correction term C will require explicit - 

assumptions about the wave functions, although Austern 2) has shown that 

it, comes mainly from the intermediate range part of the wave functions 

and can be expected to be reasonably small. A "shape independent" value 

of C can be obtained by using wave functions corresponding to the (unique) 

potentials which exactly reproduce the shape-independent approximation 

for the phase shifts (see discussion in the next section and table 6), 

but these models do not have the required OPE tail. Austern and Rost 3) 

use an analytic fit to the Gartenhaus 36) deuteron wave function given by 

Moravcsik37) and their own analytic fit to the Gammel-Thaler 38) singlet 

wave function. For this combination, the correct / value of C is + 0.022 fm. - 

/ The value of 0.048 fm quoted in ref. 3 is in error. I am indebted to 

N. Austern for an independent calculation confirming my value of 0.022 fm. 

Since the Gammel-Thaler potential does not have the required OPE tail, we 

prefer to use the various modifications of the Signell-Yoder-Heller 7) model 

discussed in the last section. To explore to some extent the dependence 
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on the triplet interaction, we have used, in addition to the Gartenhaus 

model, the analytic fit to the Yale 39) potential wave function given by 

Kottler and Kowalski 40) , and an analytic interpolation between ,tabulated 

values") of the wave function computed by Glendenning and 32) Kramer- for 

their model No, 8. The results collected in table 1 show that C is 

reasonably insensitive both to how we choose to adjust the SYH model to 

the n-p scattering length and effective range, and to which model we adopt 

for the deuteron, but does depend to a significant extent on the value of 

w 
r, which is assumed. We therefore adopt 

(22 > 
C z 0.028 2 0.020 fm (f-w ry: 2.Lgfm) 

and interpolate linearly for other values of the singlet effective range. 

The matrix element and cross section predicted by these parameters are 

given in table 3 for the three different selections of n-p total cross -- 

section data discussed above. In order to facilitate comparison with other 

calculations, we give results both for the shape-independent approximation 

and with the corrections included; for the same reason, we give results 

for r+ = 2.68 fm, assuming the same errors as in the data selection which 

comes closest to this value. If we accept the charge-independent pre- 

diction of r+ = 2.73 fm (which implies rejecting the experiments of Engelke, 

et al.30)) -- , the uncertainty in the prediction is seen to come almost en- 

tirely from the corrections. Comparison of these results with the measured 

value obtained by Cox, Wynchank and Collie 4) gives a discrepancy with the 

prediction of from 7.7% to 9.5%, depending on the value of the singlet ef- 

fective range assumed. Since the statistical error is only 1.5% we conclude 
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that the interaction effect is very firmly established, independent of the 

systematic uncertainty arising from the conflict between two measurements 

of the n-p total cross section and the hypothesis of charge independence. -- 

In order to allow ready adjustment of these predictions for new values 

of the parameters, and to exhibit the sensitivity explicitly, we write the 

prediction as 

(23) 

The quantities appearing here are given in table 5. 

4. Evaluation of the matrix element by dispersion theory 

Since the non-relativistic prediction clearly fails to account for the 

observed result, we are forced to conclude that physical effects which 

modify the static electromagnetic properties of the neutron and the proton 

exist in the overlap between the deuteron and the singlet scattering state 

even at threshold. The strong coupling of pions to nucleons certainly 

will produce such effects, and we would not be surprised by, say, a 3% 

discrepancy, but an effect of nearly 10% is rather startling. Three dif- 

ferent calculations of the cross section using dispersion theory have been 

published. Sakita and Goebel 42) start from the covariant S-matrix for 

the problem but show in an appendix that their final result can also be 
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derived from a non-relativistic dispersion theory. BOSCO, Ciocchetti, and 

Molinari43) provide a different derivation of the same non-relativistic 

formula which has the advantage of showing that, due to the equality of 

the OPE interaction in singlet and triplet S states, there is an exact 

cancellation of long-range effects which should increase the accuracy to 

be expected for this approximation. M. H. Skolnick44) gives a covariant 

S-matrix calculation which in his "Born Approximation" reduces to the same 

formula; he extends this calculation by a "pole approximation" to the 

first strip of the double spectral functions, giving a meson current con- 

tribution we will discuss below. Except for this last refinement we note 

that all three calculations make the same prediction for dt at threshold. 

As this prediction is 321 mb (for rs = 2.68 fm) rather than the 304 mb 
- 

given by the comparable Bethe-Longmire approximation, and in particular 

since Skolnick claims that his final result is in agreement with experi- 

ment, we must obviously decide whether or not the formula derived from 

dispersion thepry should be used in place of the approach discussed in the 

last section. 

Since all three authors make use of the shape-independent approxima- 

tion to evaluate the formula, there is a straightforward way to evaluate 

the adequacy of the approximation as a calculation of the non-relativistic 

matrix element. As noted above, the potentials corresponding to this as- 

sumption can be explicitly constructed. In the language of dispersion 

theory, the assumption made is that the triplet scattering amplitude has 

a bound-state pole at k = +iy and an interaction pole at k = +i(p, while - - - 

the singlet amplitude has a virtual state pole at k = -ia and an interaction - 



pole at & = +_i& This leads immediately to the exact 

tive range expansion 

result for the effec- 

and allows us to compute the pole positions from the empirical effective 

range expansion parameters. The construction not only gives explicit ana- 

lytic forms for the potentials, but also for the wave functions 34) , namely 

u - 
@+ 5) mhfr + Q-OC~ ‘lZr (pr/nkfr+~m~p~) _ 

s - p cod\13 + cx slnhpr 

SO the precise value of J% in this "shape-independent" approximation is 

easily computed. Since the zero range result at threshold is 

we can clarify the 

by writing it as 

I ‘- -I 

content of the formula obtained by dispersion theory 

and comparing it with the &the-Longmire approximation, which in the same 

notation is given by 

(24) 

(25) 

(26) 

(28) 

VP - -- -- - -- -jV)(u+Y) + (cw+-?,y’) (P- #) ,’ 
y’(p-4 c+ +Y) -- LI- 
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We note that the range constant 9 for the triplet interaction enters the 

result obtained from dispersion theory only through the normalization 

constant l? and that the range correction to c/ii! comes only from the sing- 
A 

let final state interaction. In contrast, the Bethe-Longmire approxi- 

mation has a range correction which depends both on the singlet and the 

triplet interaction; further, s/LBL reduces to AnT if we let e = (p 

and neglect 22 compared to @. Since the Bethe-Longmire approximation 

apparently contains more detailed information, we are not surprised that 

the comparison of the two approximations with the exact result given in 

table 6 definitely favors the Bethe-Longmire approximation. 

This would settle the matter were it not for the argument of BOSCO, 

et al.43) that the cancellation between the singularities coming from -- 

OPE should improve the accuracy of the dispersion theory formula. While 

the above model does not have the OPE tail, all models quoted in table 2 

do, and are even closer to the Bethe-Longmire approximation than the 

model just given (and hence still farther from the dispersion theory for- 

mula). We believe this is decisive from a practical point of view, par- 

ticularly since we have seen in the last section that the correction 

terms AJ, PI, and C are needed for the level of precision required here, 
- 

and no one has yet succeeded in showing how to include these in the dis- 

persion theory calculation. 

It might still be objected that these hard core models fail to satis- 

fy the conditions of the derivation from dispersion theory because they 

have an essential singularity at infinity coming from the core. We have 

therefore fitted a three-Yukawa model to the same parameters and recomputed 

2. (The repulsive short range potential is required in order to allow the 

- 24 - 



intermediate range attraction to have a range shorter than (2%)-l.) The 
- 

results given in table 7 show that the Bethe-Longmire formula is superior 

in this case also. Further, they show that omitting the OPE tail has 

essentially no effect on the conclusion, contrary to the argument given 

by Bosco, et al. 43) 
-- , presumably because it, is quantitatively so weak com- 

pared to the intermediate range attraction. 

theory formula is good in the sense that it - 

the exact result. However, this produces a 

We note that the dispersion 

is only 23% different from 

5% error in the predicted 

cross section, which is not tolerable when the entire effect we are looking 

for is only a-10%, and is known experimentally to better than 2s. We con- 

clude that the dispersion theory calculation is, so far, not quantitatively 

adequate for the problem at hand, and that the agreement with experiment 

claimed by Skolnick 44) is spurious. 

Having rejected the claim that about 5% of the observed cross section 

can be accounted for by using %T instead of A,,, we are still left 

with an interaction effect of a-10$, and must ask whether this effect can 

be understood theoretically. G. Stranahan 45) has attempted to do this by 

introducing the pion-nucleon 33 resonance as an intermediate state (evalu- 

ated using the cutoff model) into a Heitler-London type calculation. The - 

three diagrams which he includes that go beyond the non-relativistic ap- 

proximation are given in fig. 3. The result of the calculation is to 

increase the cross section by 2.9%, so it accounts for about one-third of 

the observed effect. 

We have already seen that the covariant calculation of M. H. Skolnick 44) 

is unreliable considered as a calculation of the entire cross section, 

since the treatment of the two-nucleon final state interaction reduces to 
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the quantitatively inadequate dispersion-theoretic formula just discussed. 

However, our discussion also shows that this formula is close enough to - 

the truth so that if the additional terms coming from mesonic effects 

are assumed to be corrections to the non-relativistic matrix element, 

this inaccuracy will have negligible effect on the magnitude of the cor- 

rections. Skolnick shows that the first strip of the double spectral 

functions contr ibutes only one such term, coming from the diagram given 

in fig. 1;. He shows that this term may be approximated by a single pole 

of residi.:e R = - 0.68 MeV at a position -?JR = - 50.5 MeV, which gives 

an additive correction to the matrix element 

(29) 

This formula differs from eq. 4.hl of ref. 44 in that a missing bracket 

and factors of Mnp (which are also missing in eqs. 4.33 and 4.39) have 

been supplied; these changes are needed to reproduce the numerical results 

given in ref. 44, and can be verified by referring to eq. 5.40 of the 

original preprint. This term increases the cross section by 2.2$, so 

if our arguments are accepted it again fails to account for the observed 

effect. 

Comparison of the diagrams given in figs. 3 and 4 show that these 

two calculations refer to rather distinct physical processes. The first 

comes from the direct excitation of a resonant state of the pion-nucleon 

system by the r ray, coupled with the modifications arising because this 

state interacts differently with the'remaining nucleon than does the 
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unexcited nucleon. The second calculation comes from the interaction of 

y ray with the pion being exchanged between the two nucleons, and takes - 

no account of the 33 resonance (which would enter the calculation only 

if more of the double spectral functions were included). One is tempted, 

therefore, to consider the two effects as additive, and say that together 

they account for over half the observed interaction effect. However, 

there is no guarantee that if both processes were considered together that 

they would not interfere, and the best we can say is that at most only 

5.1-S of the observed cross section can be accounted for in this way, leav- 

ing a sizable effect still to be explained. It has recently been shown 

by Adler and Drell 46) that the difference between the static magnetic mo- 

ment of the deuteron and the non-relativistic prediction of that quantity 

can be computed by using the same n-y-P coupling which is in agreement --- 

with the large photopion production cross section at forward angles ob- 

served in the multi-GeV region. We therefore suggest that at least part 

of the interaction effect observed in 2-p capture is due to the same cause. 

5. Conclusions 

We confirm the conclusion reached by Signell, Yoder, and Heller 7) 

- that the measured n-n scattering length of -17 fm is strong evidence for 

exact charge symmetry. If we use the same model for n-p scattering using -e 

(in OPE) the observed 5' - II' mass splitting, gzp = 14.636 from 5-N 

scattering, and adjust G2 
op 

to fit an ~-2 scattering length of -23.68 fm, 

we find sp = 13.936. If we allow such a splitting between the coupling 

constants (for which there is shaky evidence from 2-2 scattering), we can 

anticipate charge dependent effects of the order of 1% in the strong 

interactions at shorter range, which frustrate a more detailed .treatment 
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of the problem. However, within these theoretical uncertainties and the 

experimental uncertainty in the g-2 effective range, it is still possible 

to conclude that charge independence requires the n-p singlet effective -- 

range to be 2.73 t 0.03 fm. A new analysis of 2-p total cross sections 

below 5 MeV, taking advantage of the OPE shape dependence which has been 

empirically confirmed in 2-2 scattering, shows that all but two measure- 

ments are consistent with this prediction. The n-p total cross sections 

measured ijg Engelke, et al. 30; at 0.4926 and 3.205 MeV have less than a -- 

5% chance of being consistent with the charge-independent prediction 

given by the above analysis, w and by themselves would imply r, = 2.44 -t 0.11 

fm. In order to fit this value, the ~-2 singlet potential model would 

have to be more than 3076 less attractive in the region between 2 and 4 fm, 

and correspondingly more attractive near the core. The recent analysis 

of light nuclei by Wilkinson31' , which finds no charge-dependent effects 

in this state of magnitude greater than 15, makes charge dependent ef- 

fects in the two-nucleon system of this magnitude very hard to understand. 

We therefore strongly recommend that new high precision measurements of 

the n-2 total cross section below 5 MeV be attempted. 

We now make use of these parameters to evaluate the non-relativistic 

prediction of the 2-2 capture cross section, and corn-pare this prediction 

with the experimental value recently determined by Cox, Wynchank, and 

Collie4'. The discrepancy between the prediction and experiment is inter- 

preted as the departure of the electromagnetic properties of the neutron 

and proton in the overlap between the deuteron and singlet scattering 

states from those measured for the free particles, usually called the 

interaction effect. The corrections to the shape-independent Bethe- 

Longmire') approximation from the shape-dependence of the triplet 
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effective range and the 3Dl state probability in the deuteron are shown 

from published model calculations to be determined to reasonable pre- 

cision by the requirement that the long range part of the interaction is 

given by OPE. The third correction coming from the intermediate range 

part of ,the wave functions is also found to be reasonably model inserisitive, 

but to depend to some extent on the value chosen for rs in a direc-tion ti-iat 
- 

decreases the sensitivity of the prediction to this -parameter. Tne C..i:eo- 

retical ambiguity in the construction of the bound state wave function 

from the 3 S1 phase shift is eliminated by using experimental information 

from other angular momentum states. A recent claim that most of the inter- 

action effect can be accounted for by replacing the Bethe-Longmire for- 

mula by a dispersion-theory approximation is examined. We find by direct 

calculation, using models which satisfy the postulates of the dispersion- 

theory derivation, that it is not quantitatively adequate for the problem 

at hand, and therefore that this claim must be rejected as fallacious. 

Since the treatment of the final state interaction in covariant calcu- 

lations of the capture cross section reduces to this approximation at 

threshold, we also conclude that these calculations cannot be accepted 

as sufficiently accurate to predict the observed cross section. We 

conclude that the interaction effect is 9.5 * 1.2% of the observed cross 

section if we adopt the charge independent value of rs = 2.73 2 0.03 fm, 
- 

or 7.7 + 1.5% if we abandon charge independence and accept the value of 

*Et 
= 2.44 2 0.11 en implied by the measurements of Engelke, et al. 30). 

-- 

We therefore confirm the previous evaluation of Austern and Rost 3) , with 

improved precision. 
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Attempts to explain this effect are briefly examined. According to 

G. Stranahan45), including the excitation of the pion-nucleon 33 reso- 

nance in the calculation increases the predicted cross section by 2.9%. 

We interpret the calculation of M. H. Skolnick 44) as giving the correction, 

due to the non-resonant interaction of the L-ray with a single pion ex- 

changed between the two nucleons, which increases the cross section by 

only 2.2%. Even if we made the dubious assumption that these different 

physical effects are strictly additive, a substantial proportion of the 

observed interaction effect is still unaccounted for. We suggest that 

this residual effect might be due to the strong z-y-~ coupling which has --- 

been shown by Adler and Crell 46’1 to offer an explanation of the static 

magnetic moment of the deuteron, and which is also consistent with the 

large cross section for the photoproduction of pions at forward angles 

observed in the multi-GeV region. 

We are indebted to Cox, Wynchank, and Collie') for discussion of 

their measurement prior to publication, and for allowing us to present 

this theoretical discussion in conjunction with their work. We are 

grateful to N. Austern, D. H. Wilkinson, C. Goebel, B. BOSCO, and M. H. 

Skolnick for comments on and criticisms of earlier versions of this 

paper, and to P. Signell for informing us of the results of Signell, 

Yoder and Hellerr prior to publication. We wish to thank T. Osborn 

for the calculation of phase shifts for the Newton potential, and C. 

Moore for the least-squares code used in the n-2 analysis. 
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Tab1r L. Changes in the parameters of the Signeli-Yoder-Keller p-p potential model required to fit an n-p 

scattering length of -23.68 fm and two values of the n-p effective range, and corresponding values of the 

correction C (eq. (11)) to the magnetic dipole capture matrix element. The potential is of the form 

V(T)= +-, r 5 o.wfm j V(r)= 2:., A,,Lexp(-~~/x]~, r>o.Lt6+M 

and initial values of the parameters (in MeV) 

A; = -k&76, A”, = 120.69, A; = -577.01, A”, - - X26.05, A;= -7.9366 

The triplet models used for computing C are: G(M), the Gartenhaus36) model as fitted by Moravcsik 37); 

Y(KK), the Yale3') model as fitted by Kottler and Kowalski 40) ; f&(N), the author's analytic interpolation 

between tabulated 41) values of Model No. 8 given by Glendenning and Kramer 32). 

vaiue of C for 
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I 

Table 4. Bpendence of the 'Dl phase on the parameter z. 

Lab Energy 6. 271 
z=1 Z=2 z=3 

100 MeV la.6150 7.372O -1.64p" -10.44O 

200 MeV 19. OOlO 13.2870 7.324' -5.96' 

300 MeV 18.8520 15.713' 12~Y+1~ -3.46' 
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Table 5. Sensitivity of the non-relativistic prediction to the parameters using 

the definition given by eq. 23. 

UO 

ato 

sat 

t 

&S 
0 

&a, 

S 

r" 
S 

r 

308.47 mb 306.73 303.81 302. a5 302.51 

5.399 fm 5.399 5.399 5.399 5.40386 

0.01088 fm 0.01083 0.01085 0.01085 0.0079419 

1.1522 mb 1.1340 1.1149 1.1080 0.8077 

-23.678 fm -23.679 -23.678 -23.678 -23.6879 

0.02767 fm 0.02756 O-02757 0.02757 0.023502 

-0.5901 mb -0.5ala -0.5721 -0.5689 -0.4%3 

2.4427 fm 2.5166 2.6393 2. 68 2.7251 

0.1122 fm 0.1036 0.1259 0.1259 0.029131 

-4.3127 mb -3a 9650 -4. 7784 -4.7663 -1.1080 

4o” 
6P 

P 

pD" 

6P 

0.015 fm 

0.010 fm 

1.5aap mb 

0.07 

0.015 

1.53 10 1.5678 1.5635 

P 

CO 

SC! 

C 

-1.4796 mb 

0.0054 fm 

0.020 fm 

3.0781 mb 

-1.4754 

0.0125 

3.0694 

-1.4654 

0.0241 

3.0549 

-1.4660 

0.028 

3.0501 

1.5654 

-1.4640 

0.03223 

3.0533 
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Table 6. Comparison of the exact value of the matrix element with the Bethe- 

Longmire and the Dispersion Theory approximations using 'Ishape-independent" 

wave functions. 

Triplet parameters: 

LB = 2.22432 MeV at = 5.39992 fm r = 0.231608 fm-l 2 = 0.923931 fm-' 

Singlet parameters: 

a 
S 

= -23.6809 fm rs = 2.68 fm CX = 0.040076 fm-' - e = 0.806899 fm-1 

= 2.4465 = 0.040247 = 0.857741 

r c "K"4$L Jtl 
S 

Jwtm 

2.68 fm 0.04865 fm 4.05084 fm -0.07166 fm 

2.4465 0.01731 fm 4.08752 fm -0.09937 fm 
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Figure captions 

1. The Signell-Yoder-Heller potential, and the ratio of the net poten- 

tial energy to the sum of the (absolute value of) the attractive 

and repulsive contributions as a function of radial distance. 

2. Changes in the Signell-Yoder-Heller potential needed to fit 

np 
% 

= -23.68 fm and two different values of r 9 
-S 

, referred to the 

sum of the (absolute value of) the attractive and repulsive parts 

of the original potential. The sequence indicated by the arrow 

corresponds to the (pairwise) choice of the two adjusted parameters 

which will modify the potential at successively shorter distances. 

3. Diagrams included by G. Stranahan 45) which contribute to the mag- 

netic dipole capture matrix element due to the excitation of the 

pion-nucleon 33 resonance by the l-ray. 

4. The only diagram which contributes to the first strip of the double 

spectral function in the magnetic dipole capture matrix element, 

according to M.H. Skolnick 44) . 
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r np = 2.4465 fm 

SEQUENCE A,, Ay 
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x, Y 
2, 3 
2,4 
295 
2.6 
3,4 
315 
396 
4,5 
4,6 
5,6 

I I 1 
I I I I 

5 6 2 3 4 
-3.90 

RADIAL DISTANCE IN fm 
1s2-2-e. 
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