
SIX-PUB-46 
August 1964 

Scattering of Polarized Light on Magnetically 

Aligned Particles in Multipole Magnetic'Fields" 

J. J. Muray 

Stanford Linear Accelerator Center, Stanford University, Stanford,' California i 
/i. 

;L' i. 
AEBTRACT 

i y, 

The theory of polarized light scattering on aligned colloidal 

magnetic particles (Fe,O+) in multipole magnetic fields is 

given., With the assumption of an anisotropic light scattering 

process, the azimuthal location of the observed scattering 

pattern can be explained. The observed eight-fold symmetry in 

the scattering pattern of a sextupoie magnetic field and the 

twelve-fold symmetry of an octupole field can be interpreted 

as consequences of the field configuration symmetry in a 

sextupole and an octupole, respectively. The temperature 

^, dependence of the scattering pattern intensity can be ex- 

plained as a change in the number of scattering centers. It 

is assumed that the number of aligned scattering centers is given 

by the Langevin function as a function of the temperature of 

the colloidal solution. Some applications of this theory, such 

as the magnetic center location in multipoles, are discussed. 

*Work supported by the U. S. Atomic Energy Commission. 
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I. INTRODUCTION 

The simplest case of light scattering is that by randomly distributed 

small particles which are nonconducting, opticallyXsotropic, and trans- 

parent. Each particle scatters the light as a linear electrical dipole. !; f 
I 

In dilute solutions of isotropic molecules the light scattering problem 

is simple when the dimensions of the molecules are considerably less than 

the wavelength of the light. In this case one can eliminate the scattering :" !.. 
' , 

on the solvent and there remains only the problem of light scattering by a ,.1 

perfect gas, which has been known since the work of Lord Rayleigh (l&B). i I 

If the nmber of scattering centers is N, the total intensity of scattered I,,' 
I ,' f, ,. L, 

unpolarized light is the sum of the scattered intensities of each of the 

N molecules, which can be written as 

4 871 
I =- lw2E?-(1 + cos2 0) 

x4 

where cx is the polarizability ($ = cZ~), X is the wavelength of the light, 
1 

1. 
8 is the angle between the incident and scattered beams and E is the 

electric field vector. 

When the size of the scattering centers is comparable in magnitude to 

1 

f 
i, I' t 
E 

the wavelength of the light, the scattering centers cannot be treated as t 

point dipoles. The emitted radiation from different parts of the'scatter- 1 
$ 

ing centers may not have the same phase, which will cause a dissymmetry of f. i. iti. 
the scattering pattern; thus the scattered intensity in this case will be 

a function of the geometry of the scatbering centers. 

The Mie2 theory gives a rigorous solution for this scattering problem 
I: 
1 
d 

when the scattering centers are spheres. The scattering theory must be i 
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modified when the scattering centers are optically anisotropic, or when 

there is some interaction between the scattering particles, or when the 

scattering particles interact with an applied electric or magnetic field. 

A very interesting consequence of this type of anisotropic scattering is 

the polarization of starlight by oriented nonspherical particles.3 The 

interstellar grains aligned with the direction of the magnetic field are 

the scattering centers of this anisotropic scattering process.* 

In this paper the measurement and the theory of'polarized light scatter- 

ing on aligned colloidal magnetic particles in multipole magnetic fields 

will be discussed. The symmetry properties of the magnetic multipoles 

allow a .large number of simplifications in the calculations and make it pos- 

sible,to use this effect for practical applications, which will be discussed 

i 

later. 

II. EXPERIMENTAL PROCEDURE 

The experimental setup to study the light scattering patterns is shown 

in Fig. 1. This technique has been used to locate the magnetic center of 

quadrupole fields'; similar experimental setup is used to study light scat& 
I 

tering by thin polymer films.6 ^ The polarized light beam passes through a 

colloidal solution, which is located in the multipole magnetic field, and 

is analyzed by the analyzer. When there is no magnetic field, one rotates 

the analyzer until the light is extinguished. If the multipole magnetic 

field is. turned on, the scattering pattern can be seen or photographed. 

Typical scattering patterns in multipole fields are shown in Fig. 2 for a 

quadrupole field, in Fig. 3 for a sextupole field, and in Fig. 4 for an 

,octupole field. The angle 0 is the angle between the direction of polar- 

ization and the Y axis. The asymmet~ af the pictures is caused by the 
* 

misalignment of the camera with the 2 axis. 
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In this experiment the scattering centers are Fe 0 34 
crystallites in 

a colloidal suspension. The preparation of such a colloidal solution is 

described by D. J. CraEk and P. M. Griffiths.7 The individual crystallites 

of the magnetite were measured using the electron microscope method,of Craik.8 

It was'found that the particles are of the order of 1OO'A. 

III. ALIGNMENTOF IKE MAGNETIC PARTICWS INA QUADRUPOLE FfFlLD 

To study the alignment mechanisms of the Fe304 particles in multipole 

magnetic fields, a simple light intensity measurement was conducted at dif- 

ferent solution temperatures. The experimental setup is shown in Fig. 5. 

The magnetic field was measured with a gauss meter at the quadrupole pole face, 

and light intensity was measured with a linear light detector. I 

It was found that transmitted light intensity at low field values is pro- 

portional to the magnetic field; at higher field values, the transmitted in- 

tensity shows some saturation effect which is temperature dependent (see Fig. 6). 

This result might be explained using the theory of paramagnetism. The 

magnetite crystallites, having magnetic moment, align themselves preferen- 

tially with the direction of the magnetic field in the multipoles. If No 

is the number of crystallite6 per unit volume, the number of aligned scatter- 

ing centers is given by the following formula 

N = No L(a) = No cash $ - '2 1 mH ,. ; : “7s 
where L(a) is the well known Langevin function used in the classical theory 

of paramagnetism. 

In the case of very strong field or very low temperature the Langevin 

function becomes unity; thus 1 

N=N 0 = Nsat 
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If all of the dipoles are aligned with the field, the number of scattering 

centers is independent of the applied field, that is, the number of scatter- 

ing centers is saturated. 

It is interesting to note that if the colloid solution is frozen, it acts 

as a complete depolarizer. In this case the randomly oriented dipoles scatter 

the incoming poIarize& light into any direction with equal probability. 

Iv. TREORY OF ANISOTROPIC SCATIERl3G ? A 
i 

In order to explain':the, intensity distribution of the scattered polarized 

light on the aligned magnetite crystallites, one can assume anisotropy in the 

scattering process. One of the simplest assumptions is that the aligned mag- 

netite'has a different polarizability along the magnetic field than it does ' 

perpendicular to the field. The polarizability tensor in the coordinate sys- 

kern of the aligned particle (X'-Y') can then be written as 

In calculating the polarizability tensor in the X-Y coordinate system, it 

is desirable to use the symmetry properties of 

quadrupole field, any line passing through the 

cp with respect to the Y axis will cross the 

the multipole fields. In a 

center of symmetrywith:.an:angle 

field at an angle S, where 

Therefore, W,rp + @<is-the angle of polarization, the angle between the electri- 

cal vector 2 and the long axis of the aligned crystallite, or the magnetic 

field vector 2, is S, (See Fig. 7.) ,On e can find similar relationships f&r ._ 
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other multipole fields, as shown in Appendix A. In a sextupole field, a line 

passing through the center of symmetry with an angle cp with respect to the 

Y axis will cross the field at an angle B, which is given as 

8 = - 3q 
:: 

i: 

il 

for an octupole field the angle between a line passing through 
i,. 

and, similarly, 

the center of symmetry and the direction of the magnetic field vector can be 

written 

With these relationships, the polarizability tensor in the X-Y system can 

be expressed using a rotational transformation: :, / $1; :.t 
. 

i ‘7 
it 

7.: a. 

1 I lk XY 
= s(-rp6) 5 O B 

0 $- 
F,. 
[:. 
C’ 

where S(-q+) is the transformation matrix, i.e., 1 ;: 
>> 
F 

P ‘r 
Because all the quantities can be expressed in,the X-Y coordinate system, ,:, 

F' 
the scattering amplitude can be calculated easily. The size of the scattering p. v 

i 
centers are small as compared to the wavelength of the polarized light, so the 

Rayleigh, approximation can be used. The scattering amplitude by the .i-th i e' 
volume element of the system at the location of the observer is given' as 

'Ai = K($ - 6) cos k(E; . :) 
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% 
is the induced dipole in the I-th volume element, located a distance . 

r i from the origin k = F (A = wavelength in the medium); z = ;' - to 

where z' and 2, are unit vectors along the scattered and incident beams; 

6 is the unit vector perpendicular to the scattered light beam and along 

the polarization direction of the scattered light beam. 'K is a proportion- 
. 

ality constant. 

The dipole moment Pi is given by . 

In the,, X-Y coordinate system the components of $ are given as 

$ = E. 
t 

(sin 0) 1 f (co8 0) 3 
.I 

where 0 is the angle of polarization.be~~~~~t~e~~~~,~~ngi The. components 

0'f8 6 ~k$ti be expressed as 

‘if= (cos 0) I - (sin 0) 2 
I 

*. 
when observation is perpendicular to the X-Y plane and along the symmetry 

axis of the multipoles. In this case 

‘I + 
S =s and 0 cos k(fi 0 8) = 

The total amplitude of the scattered light from the X-Y plane can be written 

1 

R . 2il 

A=Z.Ai=K (6 * h) rdrdcp 

By squaring the total amplitude, the intensity is obtained. 
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We would now like to calculate the angle Cp relative to the Y axis at 

which the intensity is zero for a given polarization angle 0. This condi- 

tion is given by the following expression: 
L 

(5 l 6) = Px co6 0 - Py sin 0 = 0 

Scattering processes in different multipoles will now be considered. 

A. Light Scattering on Alighed Particles in a Quadrupole Field 

In a quadrupole field, the dielectric tensor in the X-Y system can be 

written as 

‘=* c 
. . cos(cp - ;, -sin Q, ( - ;, ixJ- 0 

an= 
I sin(cp - ,$) cos 07 >( ) 

- 2) 0 all,: 

and the induced dipole moment as 

if= aXy$' 

" ( 

aLsincpsinO+ajt coscPcos0 

a~ cos cp sin 0 f a 
II 

sin Cp cos > 0 

With the above, and using the condition for zero intensity, 

I 
(3,. 6) = Px cos 0 - Py sin 0 = 0 

one obtains 9 in terms of 0: 

I aL tan0 = 4~ tan9 
and I 

all tan0= atI cotcp 
I 

From the experimental observation, the locations of the two dark lines as func- 

tions of the polarization angle are found consistent within the experimental error 
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wi%h the following equations: 

tan 8 = -tan cp 

tan6= cotq 

The scattering intensity is proportional to the square of the amplitude; 

consequently, 

The numerical value for the constant K might be obtained from the 

.Rwle$gh formula, from which 

831~ ,- 

6 = - NiE2 
. 

A4 

where Ni is the density of scattering centers in volume element Vi, and 

Alongthe Z axis, the scattered light intensity from volume element Vi 

can be expressed as 
, 

B. Light Scattering on Aligned Particles in Sextupole and Octupole Fields 

In the sextupole and octupole fields, the magnetic field intensity changes 

as (Bo/R$$ and kdR$r", respectively, where B. is the field at the 

pole faces, R. is the half aperture, and r2 = 5 + 3. 

-9- 



Therefore, the magnetic field intensity is very low near the 2 axis 

and is not sufficient to align the scattering centers in the field direction. 

This might be the reason for the unclear scattering picture near the 2 axis 

as seen in Figs. 3 and 4. 

In a sextupole field the dipole moment can be written as 

cos 5 = cI xy 3 =, 
” ( 

* .’ -sin aJ 
sin 2Cp CO6 31:" :,)[:: JEo 

i 

when the angle of polarization is 0.' !l?he azimuth angle cp for zero inten- 

sity lines was obtained from 

(6 - S) = PX co6 0 - PY sin 0 = 0, 

and with this one finds that 

Quite similarly, for an octupole field the dipole 

colloitdal particles can be written as: 
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from which, using (6 l $) = 0, one obtains 

In both cases the observed locations of dark lines characterized by the azi- 

muth angle 'p agree with the calculated values for a given polarization 

angle 0. At zero polarization angles, as shown in Figs. 3 and 4, the dark 

lines passing through the center are located at 

rP = O", 45O, 90°, and 135' 

for the sextupole field, and at 

rp = O", 30°, 60°, DO', and 150' 

for octupole fields. It is interesting to note that the angular separation 

of the dark lines is 45' in a sextupole field and 30' in the octupole field 

(see Figs. 3 and 4). 

The calculated azimuthal location of the dark lines as a function of the 

polarization angle 0 (0' 5 0 5 60') is tabulated in Fig. 8. 

v. APPLICATIONS 

One of the most interesting applications of this light scattering effect 

5 was proposed by I?. M. Johson, who used the scattering pattern to locate the 

magnetic center of a 'quadrupole, In this experimental setup the polarized 

light was directed through the vial of colloidal solution from one end of 

the quadrupole magnet. The observer at the opposite end of the magnet then 

looked at the vial through a plane-polarizing analyzer so aligned with the 

polarizer of the incoming light that complete cancellation of light should 
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occur, When the magnetic field‘was turned on, the center of the scattering 

pattern coincided with the magnetic center 6f the quadrupole. 

of this type of center determination is of the order of +O.OOl 

vial with the polarizer and analyzer can be ,mounted in a small 

The accuracy 

inch. The 

carriage which 

could be moved along the Z axis of the magnet. .With this device the "average / 

magnetic center line" can be measured. 

A typical measuring setup in a quadrupole magnet is shown in Fig. 9. 

Using the orientation of the dark cross, one can use this device to find the 

relation between the magnetic and mechanical axes in a quadrupole. Because 

of the unclear center portion, this method probably cannot be used for center 

location in higher poles. 

It might be interesting to try light scattering in electrical.multipole 

fields, using electrical rather than magnetic alignment for the scattering 

centers. If the relaxation time of orientation of the scattering centers in 

the field direction is short, this effect might be useful for light modulation. 
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APPENDMA 

Table A-I lists the symmetry properties and the magnetic scalar potentials 

for quadrupole, sextupole and octupole fields. 

The magnetic field intensity is given as a gradient of the scalar poten- 

tial u, 

and the field components can be written as 

In order to calculate the angle p between the direction of the magnetic 

field and any line passing through the center [with direction cosines 

Y X CO6 cp = --’ cos ($ - cp) = r = sin cp], one can use the definition of the 

scalar product: 

Hx sin rp + 3 CO6 cp 
CO6 p = 

IHI III 

With this formula, @ can be calculated in terms of 0. 

A. Calculation of B for a Quadrupole Field 

Using 

3 = - $ = -B,r cos 

Esr = - 2 = -B2r sin 

cp * 

g 
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APPENDIX A 

Table A-I lists the symmetry properties and the magnetic scalar potentials 

for quadrupole, sextupole and octupole fields. 

The magnetic field intensity is given as a gradient of the scalar poten- 

tial u, 

and the field components can be written as 

In order to calculate the angle @ between the direction of the magnetic 

field and any line passing through the center [with direction cosines 

cos cp = Y X ---cos (z-cp) =r=sinq], one can use the definition of the 

scalar product: 

Ek sin cp + yi cos cp 
cos p = 

IHI Pi 

With this formula, B can be calculated in terms of 'p. 

A. Calculation of 0 for a Quadrupole Field 

Using 

3 = - g = -B2r cos cp 

Ky = - $ = -B2r sin cp 
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and 

one obtains 

cos f3 = 
Bzr(cos cp sin cp + sin cp cos cp) 

= sin 2(p = cos (g - 20) 

B2r 

and 

When the particles are aligned opposite to the field direction, 

This particle alignment pattern can be 

of the poles in relation to the coordinate 

and A-2. 

c 

realized by changing the polarity 

axis, as is shown in Figs. A-l 

For quadrupole fields, both expressions for @ .result in the same inten- 

sity distribution in the scattering pattern. The only effect of the choice 
-+ 

of B is that it changes the sign of the dipole moment P, where 

but because the intensity is proportional to P', the sign of 5 is irrele- 

vant. In the case of higher order poles, the different /3 values result in 

different intensity distributions for the scattering pattern in a given co- 

ordinate system. However, because the scattering pattern does not change 
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with a change in polarity, it would seem that a particle aligned parallel 

with the magnetic field scatters the same way in the scattering process as 

does a particle that is aligned opposite to the field. Particles with induced 

magnetic moments are aligned along the field lines irrespective of the rela- 

tive directions of the magnetic field 5 and the moment "m. Therefore, the 

relative orientations of z and k are not taken into account in further 

calculations. 

B. Calculation of S for a Sextupole Field 

This calculation is similar to that for a quadrupole field. Using the 

follbwing relations: 

r(=-& 2B3 XY = Z3r2 cos cp sin cp 

Hy = - 2 = - B3(Y2 - X?) = - B3r2(cos2 tp - sin2 cp) 

and 

= B3r2 

yields 

cos p = 
B3r2[3 cos cp sin2 rP - Cos3 ~1 

= 
B3r2 

3 cos cp - 4 cosJ rp 

= - cos 3q = cos (7T c3cp) 

Then 

B = fl- 3v 
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+ 
and neglecting the relative orientation of m and $, one can write that 

C. Calculation of @ for an Octupole Field 

In the case of an octupole field, with 

yx = - 2 = -B (4X' - 12X3) 
4 

Hy = - 2 = - B4(4Y3 - 12 X2Y) 

and 

/Hi = 4B4r3 

one can write after a simple calculation that 

~0s B = - [8 cos4 cp - 8 cos2 cp + 13 = - cm4 cp = cos (R k4cp) 

Then @ can be expressed as 

-+ 
and again neglecting the relative orientations of m and ifH, one finds that 
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TABLE A-I 

Multipoles 

A \ \ 
/ / 

7 + 

Y 

9 % k 4 
\ \ l-9 / \ I/ / \ / 

NJ/ 
/II-\ ,X 

/ -\ / 
/ 

/i\ 

\ 
\ 

F 
+ 

+ * v 

Symmetry Properties 

ub-p) = -u(rlcp + z) 
= -u(r 1 -. cp) 

u(rld = -u(rp + :) 
= -u(y - d 

u(rp) = -by+ + $) 
= -ubl - 9) 

Magnetic Scalar Potential 
U(X,Y> and ub-, d 

u = Bzr2(cos '@) 

= 2B;XY =B,XY 

u = Btr3 (cos 39) 

= 3B', (r4' - 6Y) 

= B, ($? - ?Y) 

u = B4r4 ( *cos4 9) 

= B4(X4 + Y" - 6x57 
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Figure 2 



Figure 3 
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