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ABSTRACT ' C :

The theofy of polarized light scattering on aligned colloidal

magnetic particles (Fe304) in multipole magnetic'fields is

given. With the assumption of an anisotropic light scatteringv
process, the azimuthal location of the observed scattering . %
pattern can be explained. The observed eight-fold symmetry in ‘ L
‘the scattering pattern of a seitupoie magﬂetic field and the
twelve-fold symmetry of an octupole field can be interpreted
as consequences of the field configuration symmetry in a

séxtupole and an oétupole, respectively..,The temperature

«vdependence of the scattering pattern intensity can be ex-
plaingd as a change in the number of scattering centers. It
is assumed that the number of aligned scattering centers is given '
by the Langevin function as a function of the temperature of g

the colloidal solution. Some applications of this theory, such

a8 the magnetic center location 1n multipoles, are discussed.

*Work supported by the U. S. Atomic Energy Gommission.
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I. INTRODUCTION

The éimplest case of light scattering is that by randomly distributed
small particles which are nonconducting, optically.i.isotropic, and trans-
parent. Bach particle scafters the light as a linear electrical dipole.
| In dilute solutions of isotroplc molecules the light scattering problem
_is simple when the dimensions of the molecules are considerably less than
the wavelength of the light. 1In this case one can eliminate the scattering
on the solvent and there remains only the problem of light scattering by a
perfect gas, which has been known since the work of Lord Rayleight (1899).
-If the number of scattering‘centers is N, the total intensity of scattered

unpolarized light is the sum of the scattered intensities of each of the

N molecules, which can be written as

8r* ~
I =— N2E2(1 + cos? @)
z® |
where Q is the pola.riza.b.ility (P = aE), A is the wavelength of the light,
$ 1s the angle between the incident and scattered beams and E 1s the
electric field vector.

When the size of the scattering centers 1s comparable in magnitude to
the wavelength of the lighi, the scattering centers cannot be treated as -
point dipoles. The emitted rediation from different parts of the scatter-
ing centers may not have‘the same phase, which wiilvcause g8 dissymmetry of -
the scattering pattern; thus the scattered intensity in this case will be

& function of the geometry of the scatbering centers; *

The Mie2 theory glves a rigorous solution for this scattering problem

when the scattering centers are spheres. The scattering theory must be
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modified when the scattering centers are optically anisotropic, or when
there is some interaction betﬁeen the scattering particles, or when the
scattering particles interact ﬁith an applied electric or magnetic‘field.‘
A very interesting consequence of this type of anisotropic scattering is
the polarization of starlight by oriented nonspherical‘particles.3 The
interstellar grains aligned with the direction of the magnetic field are
the scattering centers of this anisotropic scattering process.4

In this paper the measurement and the theory of polarized light scatter-
ing on aligned colloidal magnetic particles in multipole magnetic fields
will be discussed. The symmetry properties of the magnetic multipolgs'
allow a.largé number of simplifications in the calculations and make it pos~
sible to use this effect for practical spplications, which will be discussed

later.

I1I. EXPERIMENTAL PROCEDURE

The experimental setup to study the light scattering patterns is shown
in Fig. 1. This fechnique has been used to locate the magnetic center of
quadrupole fieldsﬁ; similar experimental setup is used to study light scat«
tering by fhin polymer filmé.6 The polarized light beam passes through a
colloidal solution, which is located in the multipole magnetic field, and
is analyzed by the analyzer. When there is no magnetic. field, one rotates
the analyzer until the light 1s extingulshed. If the multipole magnetic
field’is.turned on, the scattering pattern can be seén or photographed.
Typical scattering patterns in multipole fields are shown in Fig; 2 for a

quadrupole field, in Fig. 3 for a sextupole fleld, and in Fig. 4 for an

octupole field. The angle ® 1s the angle between the direction of polar-

ization and the Y axis. The asyrmetry of the pictures is caused by the
misalignment of the camers with the 2 axis.
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| In this experiment the scattering centers are Fe304 crystallites in

a colloidal suspension. The preparation of such a colloidal solution is
described by D. J. Craik and P. M. Griffiths.” The individusl crystallites

of the magnetite were measured using the electron microscope method of Craik.8

It was found that the particles are of the order of 100°A.

III. ALIGNMENT OF THE MAGNETIC PARTICLES IN A QUADRUPOLE FIELD

‘To study the alignment mechanisms of the Fe3O4 particles in multipolé
magnetic fields, a simple light Intensity measurement was cOnducﬁed at dif-
ferent solution temperatures. The experimental setup is shown in Fig. 5.

The magnetic field was measured with a gauss meter at the quadrupole pole face,
and light intensity was measﬁred with a linear light detector. .

It was found that transmitted light intensity at low field values is pro-
portioﬁal to the magnetic field; at higher field values, the transmitted in-
tensity shows some saturation effeét which is temperature dependent (see Fig. 6).

This result might be explained using the theory of paramagnetism. The
magnetite crystallites, having megnetic moment, align themselves preferen-
“tially w;th the direction of the magnetic field in the multipoles. If No

is the number of crystallites per unit volume, the number of aligned scatter- ‘

* ing centers is given by the following formula

mH kT
N =N L(a) = N, [cosh i ﬁﬁ] ;e s

Bl

. Where L(a) is the well known Langevin function used in the classical theory
of parasmagnetism.
In the case of very strong field or very low temperature the Langevin

function becomes unity; thus
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If all of the dipoles are aligned with the field, the number of scattering
centers is independent of the applied field, that is, the number of scatter-
ing centers is saturated.

It is interesting to note that if the colloid solution 1s frozen,vit acts
as a complete depolarizer. In this case the randomly oriented dipoles scatter

the incoming polarized light into any direction with equal probability.

IV. THEORY OF ANISOTROPIC SCATTERING

In order to explain: the intensity distribution of the scattered polarized
light on the‘aligned magnetite crystallites, one can éssume anisotropy in the
scattering process. One of the simplest assumptions 1s that the aligned mag-
netite has a different poiariz&bility along the magnetic field than it does
perpendicular to the field. The polarizability tensor in the coordinate sys-
tem of the aligned particle (X'-Y') can then be written as |

T
ik -
0 a||'
’In calculating the polarizability tensor in the X-Y coordinate system, it
is desirable to use the symmetry properties of the multipole fields. In a
‘ quadrupole field, any llne passing through the center of symmetry with-an:angle

¢ with respect to the Y axis will cross the field at an angle B, where

Therefore, 1f'@ = 6 'is the angle of polaiization, the angle between the electri-

cal vector E and the long axis of the aligned crystallite, or the magnetic

field vector H, is PB. (See Fig. 7.) One can find similar relationships for
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other multipole fields, as shown in Appendix A. In a sextupole field, a line

passing through the center of symmetry with an angle ¢ with respect to the

Y axis will cross the field at an angle P, which is glven as
B =- 3¢

and, similarly, for an octupole field the angle between a line passing through
the center of symmetry and the direction of the magnetic field vector can be

written
B =-lg

With these relastionships, the polarizability tensor in the X-Y sgystem can

be expressed using a rotatidnal transformation:

i, o 0
Ao, | =s(-ep)| T
1Kl xy 0 «

where S(-¢-8) is the transformation matrix, i.e.,

cos(-9-8)  -sin(-9-p)
s(-¢-8) = o ,
sin(-9-8) - cos(-9-8)
Beéause all the quantities can be expressed in-the X-Y coordinate system,
the scattering amplitude can be calculated easily. The size of the scattering
centers are small as compared to the wavelength of the polarized light, so the

Rayleigh approximation can be used. The scattering amplitude by the .i-th

volume element of the system at the location of the observer is given9 as

>

s)

. _ o2 -+
A = K(?i 0) cos k(ri .
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ii is the induced dipole'in the i-th volume element, located a distance
T, "from‘ the origin k = %\5 (A = wavelength in the medium); & = &' - 20
where &' and E are unit vectors slong the scattered and incident beams;
0 is the unit vector perpendicular to the scattered light beam and along
the polarization direction of the scattered light bean. 'K is a proportion-
ality constant.

‘The‘dipole @nment Pi is given by

In the X-Y coordinate system the components of E are given as
E = E, [ksin @) 1 + (cos @) j]

where © i1s the angle of polarization.beﬂbrevthelsmaiteringi' The. components

fofalJcan'be expressed as
[(cos 8) I - (sin @)‘3]

when observation is pérpendicular to the X-Y plane and along the symmetry

axis of the multipoles. In this case

s =8 and cos k(;i . 8) =1

The total amplitude of the scattered light from the X-Y plane can be written

R an
A:);Ai-:}{f f(a'—ls)rdrdcp
r=0 A¢=O ‘

By squaring‘the total amplitude, the intensity is obtained.
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We would now like to calculate the angle ¢ relative to the Y axis at
which the intensity is zero for a given polarization angle ®. This condi -

‘tion is given by the following expression:

> . _
(F . 3) = P, cos ® - Py 5in @ = 0

. Scattering processes in different multipoles will now be considered.

A. Light Scattering on Alighed Particles in a Quadrupole Field

In a quadrupole field, the dielectric tensor in the X-Y system can be
written as

1t . Tt

cos(® - 3) -sin(p - ;_f)

OCXY=

n Tt
sin(9 - 5) cos(P - 5)
and the induced dipole moment as

ql_sin @ sin 6 + al[ cos @ cos ©

-y cos P sin © + a'| sin @ cos 6
With the above, and using the condition for zero intensity,

+ * —
(%,- 0) = PX cos B - PY sin @ = 0

one obtains @ in terms of @:

fl

ql_ tan © 4{L tan @

and

It

al' tan ® al' cot @

From the experimental observation, the locations of the two dark lines as func-

tions of the polarization angle are found consistent within the experimental error
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with the following equations;

tan 6 ~tan @

]

tan 6

1]

cot ¢

The scattering intensity is proportional to the square of the amplitude;

consequently,

I, 0 A2 = K°(0 - )2

The numerical value for the constant K might be obtained from the

-Rayleigh formula, from which

K = — N,E
| where Ni is the density of scattering centers in volume element Vi’ and

‘ mH kT
Ni = NO [;osh W ﬁﬁ]

Along the Z axls, the scattered light intensity from volume element Vi

8r*N EP 2
I mi _ kT .
I-= " [cosh T mH] [é %%

B. Light Scattering on Aligned Particles in Sextupole and Octupole Fields

can be expressed as

In the sextupole and octupole fields, the magnetic field intensity changes
2\ 2 A3 at th
as .(Bo/Ro)r and (Bo/Rc)r , respectively, where B_ 1is the field at the

pole faces, R0 is the half aperture, and ¥ = X% + Y5
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Therefore, the magnetic field intensity is very low near the Z axis
and is not sufficient tovalign the scattering centers in the field direction.
This might be the reason for the unclear scattering picture near the Z axis
as seen in Figs. 3 and L.

In a sextupole fleld the dipole moment can be written as

cos 290 - -ein 29 ql 0 fsin ®
| E

o
sin 20 cos 29/ \O oy \cos @,

P = 'a‘XY E

Q) cos 29 sin 8 - ali sin 29 cos @

il

E
o]

aj_ sin 2¢ sin 6 + a‘l cos 29 cos @
when the angle of polarization is ®. The azimuth angle ¢ for zero inten-

sity lines was obtained from

> > :
(0 - Pp) = Py cos © - Py 5in © = 0,

and with this one finds that

@ tene o  cot 29

It

a‘l tan ©

-a(' tan 20

Quite'similarly, for an octupole field the dipole moment of the aligned
colloidal particles can be written as:
'qJ_ cos 39 sin @ =~ a‘i s8in 3¢ cos @

031 sin 39 sig e + ql‘ cos 39 ces ©

1]
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from which, using (6 . ?) = 0, one obtains

a_L tan @ = OI‘L cot 3¢9

all tan @ = -a" tan 39

In both cases the observed locations of dark lines characterized by the azi-
muth angle o agree with the calculated values for a given polarization
angle ®. At zero polarization angles, as shown in Figs. 3 and 4, the dark

lines passing through the center are located at

Q

¢ = 0°, 45°, 90°

, and 135°
for the sextupole field, and at
o = 0%, 30°, 60°, 120°, and 150°

for octupole fields. It is interesting to note that the angular separation
of the dark lines is M5O in a sextupocle field and 30O in the octupole field .
(seé Figs. 3 and #)o |

The cqlculated.wzimuthal location of the dark lines as a function of the

.polarization angle @ (OO‘S ® < 60°) 1is tebulated in Fig. 8.

V. APPLICATIONS

One of the most interesting applications of this light scattering effect
was proposed by R. M. Johson,5 who used the scattering pattern to locate the
vmagnetic center of a quadrupole. In this experimental setup the polarized
light was directed through the vial of colloidal solution from one end of
the quadrupole magnet. The observer at the opposite end of the magnet then
loocked at the vial through a plane-polarizing analyzer so aligned with the

polarizer of the incoming light that complete cancellation of light should
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occur. When the magnetic field was turned on, the center of the scattering
pattern coincided with the magnetic center éﬁ the.quadrupole. The accuracy

of this type of center determination is of the order of #0.001 inch. The

vial with the polarizer and analyzer can be mounted in a small carriage which
could be moved along the Z axis of the magnet. With this device the "average
magnetic center line" can be measured.

A typical measuring setup in a quadrupole magnet is shown in Fig. 9.
Using the orientation of the dark cross, one can use this device to find the
‘relation between the magnetic and mechanical axes in a quadrupole. Because
of the unclear center portion, this method probably cannot be used for center
location in higher poles.

It might be interesting to try light scattering in electrical multipole
fields, ﬁsing electrical rather than magnetic alignment for the scattering
centers. If the relaxation time of orientétion of the scattering centers in

‘the field direction is short, this effect might be useful for light modulation.
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APPENDIX A

Teble A-I lists the symmetry properties and the magnetic scalar potentials
for quadrupole, sextupole and octupole fields.
The megnetic field intensity is given as a gradient of the scalar poten-

tial |,

and the field compohents can be written as

du
B = -
du
h=-%

‘In order to calculate the angle B between the direction of the magnetic
field and any line passing through the center [with direction cosines

cos @ = %, cos (g - Q) = % = éin ¢), one can use the definition of the
scalar product:

HX sin ¢ + HY cos @
[ |zl

cos B =

With this formula, B can be calculated in terms of .

A. Calculation of B for a Quadrupole Field

Using
ou
=5 = -Bzr cos @
ou .
=- 5" -Bzr sin @



APPENDIX A

Table A-I lists the symmetry properties and the magnetic scalar potentials
for gquadrupole, sextupole and octupole fields.
The magnetic field intensity is given as a gradient of the scalar poten-

tial u,

and the field components can be written as

iy

<

/

g - -

In order to calculate the angle B between the direction of the magnetic

field and any line passing through the center [with direction cosines

Y Tt X . . »
cos @ =, cos (5 - Q) = - =sin ©), one can use the definition of the
scalar product:
sin ¢ + cos @
cos B = HX HY

laf |z
With this formula, B can be calculated in terms of o.

A. Calculation of P for a Quadrupole Field

Using



and

one obtains

B r(cos ® sin ¢ + sin ¢ cos ®) x
cos B = = ' = sin 2¢ = cos (5 - 20)

Br
2

and

When the particles are aligned opposite to the field direction,

This particle alignment pattern can be realized by changing the polarity
of the poles in relation to the coordinate axis, as is shown in Figs. A-1
and A-2.

For quadrupole fields, both expressions for £ result in the same inten-
sity distribution in the scattering pattern. The only effect of the choice

-
of B is that it changes the sign of the dipole moment P, where

f”i“x'r‘ﬁ

2

but because the intensity 1s proportional to P , the sign of % is irrele-
vant. In the case of higher order poles, the different £ values result in
different intensity distributions for the scattering pattern in a given co-

ordinate system. However, because the scattering pattern does not change
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with a change in polarity, it would seem that a particle aligned parallel
with the magnetic field scatters the same way in the scattering process as
does a particle that is aligned opposite to the field. Particles with induced
magnetic moments are aligned along the field lines irrespective of the rela-
tive directions of the magnetic field ﬁ and fhe moment E. Therefore, the
relative orientations of ; and T are not taken into account in further

calculations.

B. Calculation of B for a Sextupole Field

This calculation is similar to that for a quadrupcle field. Using the

folldwing relations:

. du _ _ 2 .
HX ="K = 2B3 XY = 2B3r cos @ sin @
L B (Y2 - X)) = - B r (cos® @ - si 2 9)
R AR - - Byf(eos® 9 - ot
and
- / i N 2
H = \L]§+}§——B3r
yields
B r°[3 cos ¢ sin” @ - cos” @]
3 3
cos B = S =3 cos © - 4 cos” o
B r
3
= - cos 3¢ = cos (7 *30)
Then

B =m - 30
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&>
and neglecting the relative orientation of E and H, one can write that

| o
B,

C. Calculation of B for an Octupole Field

In the case of an octupole field, with

o
=1

- B, (W - 12 XY")

= - 3,4 - 12X°Y)

g
]

and

| = 4B ro
4

one can write after a simple calculation that
4 2 4
cos B ==~ [8cos®™ 9 -8cos” 9+ 1] =-cos® ¢ =cos (x £ho)

Then B can be expressed as

p=m - Lo

and again neglecting the relative orientations of E and E) one finds that

| B=-lko|
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TABLE A-I

Multipoles

136-11-A

Symmetry Properties

u(r,®) = u(ro + 3

i}

“u(r, - 9)

u(r 9) = -u(rlQ + %)

-u(r, - 9)

u(r. 9) ~(r @ + %)

-u(r, - 9)

Magnetic Scalar Potential
u(xly) and u(rlw)

Bfrz(cos 20)

1
2B2XY = BZXY

I

c
I

B;r3 (cos 39)
= 38 (%¥3 - XY)

B, (%¥3 - X3Y)

u = B4r4 (cos™ @)

=B, (x* + Y* - 6XY)
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Figure 2
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LIGHT INTENSITY ( ARBITRARY SCALE )

MAGNETIC FIELD ( kG )
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