Almost Monochromatic Photon Beams at the Stenford Linear Accelerator Center*

Joseph Dallar aná Zaven G.T. Guiragossián Stanford Linear Accelerator Center, Stanford University, Stanford, California

ABSTRACT

A method of ootaining almost monochromatic photon beams from well-colimated positrons is investioñeã. It is found that sucin photon beams are naturally suitable for use with a hydrogen bubble chamber. The main background is due to electron tracks from pair production and Compton effect \because inch iimit the number of acceptable photons/puise to about 400 .

A typical case has been caiculated with the result that for incoming 15 GeV positrons one obtains a 7.27 GeV photon beam with $\left|\frac{\Delta k}{k}\right|$ of 1% and a signai-tonoise ratio of 1:3.
*Work done under tine auspices of the U. S. Atomic Energy Commission.
(Submitted to International Conference on High-Energy Physics, Dubna, August 5-15, 1964.)

Recent experiments at the Cambridge Eiectron Acceierator have shown that photoproduction or strongiy interacting pariicles and their resonant
 photon spectrum used was a regular thin target oremsstrainiung.

A significant improvernent in the rate of production and analysis of photoproduction diata could come from ti... case of a monocinomatic ganma beam. Such a beam seems feasiole at SLAC because of the expectea kign intensity of positrons. The process considered here is $e^{+} e^{-}$cnrinilation in flight in:: two photons.

In this note we examine (i) a feasible way $0 \dot{0}$ obtainiag ainout morichromaic jhoton beams, (2) a proposei beam design, and (3) the maximum number of photors/pulse trat can be admitted into a hyarogen bubbie chamber.

II. PHOTON RATE CAICULATION

A. Photons from Positron Beams

The possibility of obtaining alrost monochromatic photon beams from electron-positron aminitation has been examine ${ }^{2}$ recently. In $e^{-}-e^{+}$ annihilation into two photons, an emerging photon at a fixed angular interval θ_{1} in $d \theta_{1}$ has a unique energy k_{1} in $d k_{1}$, related by

$$
\frac{k_{1}}{\mu}=\frac{1+\gamma}{1+\gamma(1-\beta y)}
$$

where, $y=\cos \theta_{1}, \beta=\frac{p_{0}}{E_{0}}$, and $\gamma=\frac{E_{0}}{\mu}$

The coos section oi pair-annihilation into two photons with the alectron st rest (Laboratory System), integrated over the variaine. of the second photon and the azimuthei angle of the first photon is given by:

$$
\begin{equation*}
\sigma_{\text {pair }}=2{\underset{o}{0}}_{2} \frac{d y}{\beta \gamma^{2}(1-\beta y)}\left\{(\gamma+3)-\frac{\left[1+\gamma(1-\beta y) j^{2}\right.}{\gamma(1+\gamma)(1-\beta y)}-\frac{2 \gamma(1+\gamma)(1-\beta y)}{\left[1+\gamma\left(1-\beta y^{\prime}\right) i^{2}\right.}\right\} \tag{2}
\end{equation*}
$$

In the small angle and extreme relativistic approximation, $\rho \approx 1$, $\gamma \pm I \approx \gamma$, and $I-\bar{F} y \approx \theta_{1}^{2} / 2$, Eqs. (1) and (2) reduce to:

$$
\left.\begin{array}{c}
\theta_{1}^{2}=\frac{2 \mu\left(E_{0}-k_{1}\right)}{k_{1} E_{0}} \\
\sigma_{\text {pair }}=z 2 \pi r_{0}^{2} \frac{d x}{x}\left\{\frac{1}{\gamma}+\frac{2}{\gamma^{2}}-\frac{4 x^{2}}{\left[2 \gamma+x^{2}\right]^{2}}-\frac{\left[2 \gamma \div x^{2}\right]^{2}}{2 x^{2} \gamma^{4}}\right\} \tag{3}
\end{array}\right\}
$$

and, $d x=\frac{x}{2} \frac{E_{0}}{k_{1}} \frac{d k_{1}}{\left(E_{0}-k_{1}\right)}, r_{0}=2.8178 \times 10^{-13} \mathrm{~cm}$.

Thus, the number of photons/pulse from the pair-annihilation process, having energy k_{1} and emerging at an angle θ_{1} in $d \theta_{1}$ is:

$$
\begin{equation*}
N_{\text {Fir }}=\frac{N_{0}}{A} \cdot t \cdot I \sigma_{p u i r}\left(\theta_{1}, d k_{2}\right) \tag{4}
\end{equation*}
$$

where $N_{0}=$ Avogadro's number, $A=$ mass nuraber, $t=$ target thickness measured in $\mathrm{gm}_{\mathrm{mm}}{ }^{-2}$, and $I=$ number of beam positrons/pulse.
B. Direct Bremseirahlung

A cometing source or photons in such a bear is due to he direct bremsstitalung process of positroc: in the fieic of target nuclei and electrons, eratting ż: ztons \approx an angle $\bar{\sigma}$ in do having energy k in dk. The enersy-angle aisiribution of thin target electron breasstrainong tas been
 scattered electror angles taking screening effects irto corsieieration.

In the relativistic limit, the direct bremstrahling cross-section ine to electrons on target nuclei is given by:

$$
\sigma_{\text {brems }}^{\operatorname{airc}}(\theta, k)=\frac{8}{137} r_{0}^{2} \frac{d k}{k} \frac{\partial x}{x^{3}}\left\{-\left[1+(1-v)^{2}\right] \ln P^{\prime}(x, v)-(2-v)^{2}\right\}
$$

where

$$
\begin{equation*}
\left.P(x, v)=\frac{1}{M^{\prime}(x, v)}=\left[\frac{\mu}{2 E_{0}} \frac{v}{(1-v)}\right]^{2}+\frac{1}{11 x^{2}}\right]^{2 .} . \tag{5}
\end{equation*}
$$

$v=\frac{k}{E_{0}}$, and $x=\gamma \theta$, where we have chosen hydrogen as the target. Here, we have assumed that $e^{+} p$ and $e^{+} e^{-}$bremsstrahiung are roughly equal cecause their small angle scattering cross-sections are similar.

The number of photons/pulse from the direct bremstrahlung of positrons on hydrogen having energy k in ak and emergärs at an angie θ in $d \theta$ is:

$$
\begin{equation*}
\operatorname{sNo}_{\text {brems. }}^{\text {dirc }}(\theta, k)=\frac{8}{137} r_{0}^{2} N_{0} t I \frac{a k}{k} \frac{d x}{x^{3}}\{E q \cdot(5)\} \tag{6}
\end{equation*}
$$

whereas:

$$
N_{\text {pair }}(\theta, \because)=2 \pi r_{0}^{2} N_{o} t I \frac{\partial x}{x}\left\{\begin{array}{c}
o f \\
E q .(3)
\end{array}\right\}
$$

:omparing Eq. (6) with Eq. (7) we note that the murber of produced photons as a function of emission angle behaves as $\frac{d x}{x^{3}}$ from the uirect Dreasstrahiung process, and as $\frac{d x}{x}$ from pair-anminiatation; the ratio of pair-annihilation protue photons to that andmstraniunc increases with x as x^{2}. Hence, to obtain a desirable ratio it is necessary to collimate in the range of $x=200-300$. In cases to be considered θ is ai: $-\sqrt{0} \nless 1^{\circ}$.
C. Zairect Ezec...

As a scinad source of background photons we consider the inaitacu bremsstrahiung process, where the positron suffers a single large angle scatter θ in $d \theta$ and subsequentiy emits into $d \theta$ a bremsstrahlung photon having energy k in $d k$.

From elementary considerations, the probability of seattering ${ }^{5} e^{ \pm}$ at an angle θ in $d \theta$ on a proton, for the relativistic case, is ziven by:

$$
P_{s c}=8 \pi N_{0} r_{0}^{2} t\left(\frac{\mu}{E_{0}}\right)^{2} \frac{d \theta}{\theta^{3}}
$$

Since $e^{-}-e^{+}$scatterire at small momentum transfers is similar to $e^{+}-p$ scattering, the probability for a positron to scatter on hydrogen ($\left.e^{-}, P\right)$ can be approximated to be $\exp _{\text {sc }}\left(e^{+}-P\right)$. Hence,

$$
\begin{equation*}
P_{s c}\left(e^{+}-H\right)=16 \pi \mathbb{N}_{0} r_{0}^{2} t \frac{d x}{x^{3}} \tag{8}
\end{equation*}
$$

where $x=\gamma \theta$ and t is measured in $g r m-c m^{-2}$.

The probability for a positron of energy \mathbb{I}_{0} to exit a photon of energy i in ch, in tie field or a proton is:

$$
\begin{equation*}
r_{\text {rai }} \cdot\left(e^{+}-\pi\right)=\frac{5}{13 i} n_{0} r_{0}^{2} \frac{d k}{k} F\left(E_{0}, v\right) \tag{9}
\end{equation*}
$$

\therefore are, in the case of complete screenin, the function $P\left(S_{0}, v\right)$ is oivons. by:

$$
\Xi(1)=\left[1+(1-v)^{2}-\frac{2}{3}(1-v) \ln ^{\top}(183) \cdots \frac{\pi}{9}(1-v), v=\frac{k}{2_{0}} .\right.
$$

Tins, the nw: of photons/pulse from the indirect bremsstriniung of positrons on hydrozen is expressed as:

$$
\begin{equation*}
\text { indir. }(\theta, k)=\frac{\bar{y}}{2}\left(\frac{8}{137} \mathbb{N}_{0} r_{0}^{2}\right)\left(16 \pi N_{0} r_{0}^{2}\right) t^{2} I \frac{d k}{k} \frac{d x}{x^{3}} I_{0}\left(E_{0}, v\right) \tag{io}
\end{equation*}
$$

Comparing Eqs. (6) and (7) with (IO), we note that the number of photons/pulse as a function of target thickness behaves as $t\left(\mathrm{crm}_{\mathrm{m}}-\mathrm{cm}^{2}\right)$ from pair-annihiiation and direct bremsstrahlung, anc as t^{2} from indirect bremsstrahiung. So that, in order to suppress this competing source of indirect bremsstrahlung photons it is not oniy necessary to collimate at large values of x but also to use a hydrogen target of thickness $t \lesssim 0.5 \mathrm{gm}_{\mathrm{man}}{ }^{-2}$. This thickness has not been optimized but is a useful value in that it yields an indirect brerasstrahlung background which is avout 8% of the direci bremsstranlung.
D. Computational Results

To obtain the photons/puise total spectrum for ixixed values of x, $d x$ and \because intezration of Eqs. (6) and (10) was persomad orer the
photon enersies．A lower Iimit of photon enerey $k_{\min }=0.020 \mathrm{GeV}$ was taken，assuming that only bremsstraniung photons of energy greater than 20 MeV wouin be transmittea by a one radiation lengich Iiquid hyarogen photon ざざも，

It turns oit that the best results are achieved for tiee highest ener－ G positrons．Accordinzly te hore chosen as two typical ciamples the case of 7.27 GeV and 4.86 GeV photons produced Gy 15 GeV そositrons．The results are shown in Fig^{2} ．I（a）and（b）．Results for 10 CeV positrons aine shown in Fig．2．All these cases have been calculated based on a positron intensity of $4 \times 10^{10} \mathrm{e}^{+} /$Mulse ana a liquid hydrogen target inicisess of $0.50 \mathrm{gm}_{\mathrm{gm}} \mathrm{cm}^{-2}$ ．We have investigated the effects of multiple scattering and $\therefore \ldots$, them to be negligiole．For example，in the case of Fig．$I(a)$ ，the ratio $\theta_{\text {m．s．}} / \theta_{\text {annin }}<10^{-2}$ ．

The total number of photons stated on the figures do not take into account the absorption of photons in the beam hardner nor any reduction due to azimuthal collimation（see Fig．4）．We estimate these effects to be on the order of a factor of 10 reduction for practical cases．

III．BEAM DESIGN

A positron source for the 25 GeV Staniord Linear Accelerator has been designed by Drs．F．C．DeStaebler，Jr．，of SLAC and J．Pine of the Cali－ fornia Institute of Technology．The sownee is shown schematically in Fig．3．Electrons are accelerated to approximately 5 GeV down the first tiird of the acceierator．At this point they impinge on a high Z con－ verter，producing pairs．Low energy positrons in the range of $3-30 \mathrm{MeV}$ are captured in a tapered solenoid with a maximum magnetic field of 20 inlogauss，foinowed by a uniform field solenoid placed over the first
foilowing accelerator tube section. The accelerator is reverse phased after the converter and the captured positrons are accelerated for the remaining two-thirds of the machine. Quadrupoie triplets are spaced more or less uniformly down the remaining lengtin of the accelerator in order to maintain the phase space.

For Stage I accelerator cyeration this would correspond to 15 GeV positrons. For a power of 50 aissipated in the converter calculations indicat that a beam intersity or $4 \times 10^{20} \mathrm{e}^{+} /$pulse is feasible.

Fioure 4 shows the proposea beam layout. A well-collimated positron beam $C_{i}\left|\frac{\Delta p}{p}\right|=1 \%$ and $\Delta \theta \approx 10^{-4}$ rad. passes through a steering magnet H onto the target T. This steering riagnet allows one to change the observea anninilation angle without noving the collimators. A sweeping magnet $H 2$, placed far enc... so as not to interfere with the primary beam deflects non-interaceing-; ceV positrons. The photons are hardened by a one radiation length of liquid hydrogen surroundea by a weak magnetic Zield. This is followed by a high Z circular slit $S I$. A second sweeping magnet $H 4$ clears the defined photon channels from any created pairs at the ifilter or siit. A second derining circular slit 52 is placed $2 / 3$ downstream from the target witi an aperture slightly larger than required by a line through T, $S 1$, and $S 2$; the purpose of $S 2$ is to absorb second generation photcin From Sl.

Assuming a characteristic collimation angle of $\theta=8 \times 10^{-3}$ rad., the photon beam after a drift length of 60 m will be localized in a circular ring of $r=48 \mathrm{~cm}$ in $d r=1.2 \mathrm{~cm}$. To accept $1 / 3$ of this bean into the hydrogen bubble chamber requires a bean thin window of dimensions $25 \times 70 \mathrm{~cm}$. This thin window shoule ce made o. a low Z material, prefeaibly a beryllium alloy.
IV. BACKGROUND ELECTRONAGNETIC INTERACTIONS IN THE HBC

The background electromagnetic interactions in the hydrogen bubble chamber are pair-production and Compton scattering. As such these interactions set a tolerance limit on the number of beam photons entering the chamber. The proposed beam design assures that such interactions within the chamber will take place in a spread-out fashion. This requirement is essential for easy scanning and measurement of interesting events. The probability for these reactions to occur in a 1.0 m HBC is shown in Fig. 5. In such a chamber we estimate that a total of 400 incident photons will produce a maximum tolerable background of 27 electromagnetic interactions.

UIST OF REFERENCES

1. Bull. Amer. Phys. Soc. 9, 409 (1964).
2. D. M. Binnie, Nucl. Inst. and Methods 10, 212 (1961).
3. J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Adđison-Wesley, Cambridge, Nass. (1959); p. 268.
4. L. Schiff, Phys. Rev. 83, 252 (1951).
5. B. Rossi, High Energy Particles, Prentice-Hall (1952); p. 65 .
6. Ibid., p. 49.
T. The integration was performed numerically, executed on the Stanford University IBM 7090 computer.

FIGURE Ib

FIGURE 2

POSITRON ACCELERATION

FIGURE 3

FIGURE 4
figure 5

