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I. INTRODUCTION 

Spectral representations for propagators and form factors have been con- 

structed in field theory starting either from the general axioms or from a 

Feynman graph series. However, their limiting behaviors for large momenta 

(subtraction constants) and the magnitudes of the renormalization constants 

are subjects of considerable conjecture. In this paper we construct several 

bounds on renormalization constants and on the asymptotic behavior of propa- 

gation functions and vertices. The inputs are experimental measurements and/or 

analyticity properties of vertex functions. 

The paper is organized as follows: In Section II we first consider the 

photon propagator and prove that if there is no subtraction term, then the 

Pauli form factor of the proton, F2(q2) must vanish more rapidly than (log q2)- 3 

for time-like q2 4~. The requirement of no subtractions is necessary if 

electrodynamics is to predict the observed vacuum polarization contribution 

to the Lamb shift and other precision measurements without requiring the in- 

troduction of new parameters. In Section III we extend techniques, developed 

by Meiman and Geshkenbein and Ioffe in a different but related study, to 

construct a lower bound rigorous to all orders of the strong interactions on 

the pionic contribution to the photon's vacuum polarization. With these same 

techniques a rigorous bound on the nucleon wave function renormalization due 

to strong interactions, Z2, and on the nucleon propagator for space-like 

momenta is constructed in Section IV. Bounds which can be constructed only 

after making assumptions on the continuation of amplitudes below physical 
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thresholds are also given for the pion propagator in Section V. Finally in 

Section VI, we discuss the connection between zeros in propagators, poles in 

vertex functions and values of coupling constants. This is the problem solved 

by Geshkenbein and Ioffe, and we discuss the possible physical significance of 

such zeros. An extension of the Lee model-to include in addition an unstable 

particle field provides a model in terms of which to illustrate these ideas. 

II. ASYMPTOTIC BEHAVIOR OF NUCLEON ELEXTROMAGNETIC FORM FACTORS 

The recently reported experiment1 on proton anti-proton annihilation to an 

electron positron pair focuses attention on the behavior of the nucleon erectro- 

magnetic form factors Flh2) and F2(q2) for time-like momentum transfers 

q2 > 4M2. - Previously electron scattering experiments have measured Fi and F2 

for increasingly large space-like momentum transfers q2 5 0. Analysis of these 

form factors with dispersion theory has related the observed structures to reso- 

nances in two and three pion systems (viz.,p,w,q) located in the unphysical region 

0 < q2 < 4M2 below the nucleon-anti nucleon threshold. Now with the success of - - 

the experimental study at CERN' and with the realistic prospect that electron- 

positron storage rings in the near future will permit study of F1 and F2 

for larger and larger q2 F 4M2 we look for the possibility of drawing general 

conclusions on the behavior,of these form factors from the structure of field 

theory. One such result, reported earlier2 was that a finite value for the 

charge renormalization constant Z;l = (eo/e12 requires both the Dirac form 

fa.ctor F1(q2) and the Pauli form factor F2(q2) to vanish at q2 = m. Zii 

is not a physical observable and this condition that Z-i is finite has no 
3 

direct experimental test. In this paper we derive a new conclusion on F2 
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from the observable vacuum polarization. We show below that FZ($) must 

vanish at q2= 00 if the excellent experimental agreement of the calculated 

vacuum polarization contributions to the Lamb shift and to the g-2 values 

for electrons and muons is to be a triumph of quantum electrodynamics, and 

not just an accident. Conditions on the asymptotic behavior of the form 

factors of the presumed charged vector bosons, W', as well as of other 

particles Or resonances aS q2+“' are also summarized. 

In reporting these results we recognize their limited value since the 

energy region which must be probed before "asymptotic conditions" prevail is 

almost always beyond the range of practicable experiments. Conclusions de- 

rived from such arguments are to 

ciple rather than in practice. 

In a different approach based 

formal theoretical basis, Sachs3 

be viewed primarily as of interest in prJn- 

only on physical arguments and without a 

has suggested stronger conditions on the 

asymptotic behaviors of F and F2 for large q2. 
1 

The photon spectral form was first constructed by K&11&* in 1952. We 

write it 
co 

f$(dpv= - gpv L+ fi(cr") da2 s2 s 
0 q' - a2 1 =+g TV DF(q2) 

, 

where is the complete renormalized propagator, except for irrelevant 

gauge terms proportional to'momentun q . The spectral amplitude ~(8) is a 
CL 

real , positive, gauge independent scalar, and related to the renormalized elec- 

tromagnetic current operator j by2 
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I 

c (zfl)3 &* (pn - q) < 0 12 ’ i(O) in Lb’ 
n 

1 
22 -- c (2743 lj* - q) < 0 > < n j'(O) 1 . (2) 

304 n 
(Pn /jp(0) In / 1'0 

In Eq. (2), the sum ; includes all physical eigenstates 1 n > of four t 

momentum $ = q', with qVq' = s2. The one photon state with s2 - 0 does 

not contribute in Eq. (2) and is explicitly separated in Eq. (1). 

As remarked by Kalle/n4 and Lehmann' and particularly emphasized in 

Bogoliubov and Shirko@ 

lim 
u2 -302 fl(a') -30 (3) 

according to the usual assumptions in the renormalization program and indeed 

Eq. (3) must be satisfied and the integral 

must exist if the representation in Eq. (1) is valid; otherwi;? subtractions 

are required. If for example 

lim 
u2 --+Lm 7r(U") -+const > 0 

Eq. (1) would be replaced by 

I-- cc -! 
jl I+') do2 ; 
j-+ C + (q" + a') 
iq2 u2 + a2)(q2 - u2) 
L 1 

(5) 

(6) 

where C is a subtraction constant and the subtraction has been made at 

q” = - a2. 
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The significance of this change from Eq. (1) to Eq. (6) lies in the fact 

that the vacuum polarization contribution to the Lamb shift and to g - 2 is 

given by Eq. (4) if the integral exists and is thus a calculable prediction 

of the theory to be tested by experiment.7 On the other hand if the subtraction 

of Eq. (6) is required, a new arbitrary parameter, C, is introlduced into the 

theory to be determined by comparing 

c 2 - a 
s 

n(a) do* --- 
0 a2( u2 + a") 

with observation. In this latter case the very beautiful agreement of the 

measured and calculated Lamb shift in hydrogen, for example, would be lost as 

a major achievement for quantum electrodynamics. The measured and calculated 

shifts are 1057.77 t 0.10 mc and 1057.74 C 0.22 mc respectively. The calcu- 

lated value includes - 27.06 mc and - 0.24 me from second and fourth order 

vacuum polarization contributions computed according to Eq. (4) by keeping the 

electron-positron pair contribution plus radiative correction in Eq. (2) for 

We now show that Eq. (3) is violated and the subtraction in Eq. (6) must be 

made if the nucleon electromagnetic form factor F2(q2) does not vanish for 

2 q+m. To see this observe that according to Eq. (2), ,c(U2) is a sum of 

positive contributions N(2) f rom each phjrsical state I n > and is 

bounded from below, therefore, by the contribution from any one such state; 

in particular by the nucleon-antinucleon pair state (proton or neutron). For 

this pair state the matrix element in Eq. (2) is directly the electromagnetic 

current of the physical nucleon for q'? &ti, i.e., in the notation of Ref. 2 
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I 

< PP' 

A2)(u2) is readily computed from Eqs. (2) and (7) and is given i.n Ref. 2: 
7 

.(2)(,2) = ,l,r u2 F1 - !$ F2 1 . 
I 
4 

(9 

/ 

Evidently fl (2)( a') is positive and non-vanishing as o2 -+u3 in violation of 

Eq. (3) unless F2(a2) -+O as a2 +UO more rapidly than (log 8,-+. This 

establishes our c1aim.a 

This argument against a hard core' occurring in F2(q2) as q2 ++ m is 

more of interest in principle than in practice. This is because the vacuum 

polarization contribution to Eq. (1) has the dimensions of (mass)-2. The 

familiar Uehling term corresponds to FL = e and F2 = 0 'in Eq. (8) to 

lowest order in Q: = l/137, and to M +m, the electron mass. It contributes 

a/l5nm2 to the integral, Eq. (4), whereas a baryon pair contribution with 

F1 = e and F2 = 0 is reduced by (m/MB)2 < 3 X 10S7. The form factor F, 

would have to remain finite and comparable to its static limit F,(O) = - (e/bM)lc, 

with K the static moment in nucleon Bohr magnetons, up to a very high momentum 

P far beyond present or projected energies and such that 

2 
.-.. lo* 

before noticeably perturbing the beautiful successes of quantum electrodynamics, 

which confirms the Uehling term to N O.lmc/sec out of 27 mc/sec. 
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The above results for the nucleon form factors (which incidentally also 

apply to any baryon) can be re-expressed in terms of the "charge" and "magnetic" 

form factors emphasizedlO in recent analyses. Defining 

GEb2) s F&s) - (02/M)F2(02) ; Groton(0) = e 

(-@Ye) = Fl(u2) - 2M F2(u2) ; GEoton(0) = e(1 + 1.79) 

we rewrite Eq. (8) as 

from which ;t follows that, if Eq. (3 is valid, 

1 

U 
2 

1 GE(u2) 

GE and GM thus require at most one 

i 

as u2 + Co 

LO 
I 

subtraction each in a dispersion analysis. 

(9) 

(10) 

For a finite charge renormalization as discussed in Ref. 2, 7c(u2)du2 must 

exist and, by Eq. (lo), 

I I 
I 

GMb2) -+ 0 ; GE(u2)) + 0 as u2 + a. 
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This condition assures no subtraction for GM but still leaves the possi- 

bility of one subtraction for GE(z) in constructing dispersion relations. 

These weaker conditions on GE and GM result from the multiplying factor 

of u2 appearing in their definitionl' in Eq. (9). 

A similar conclusion is also true for the pion charge form factor. For 

the vacuum polarization contributions of a pair of the presumed charged vector 

bosons,12 W', ~(a~) m(FW(u2)1 2 as u2 -+M and if Eq. (1) is to be valid the 

charge form factor F,(a) must vanish as (r" --+m with no hard core or point 

charge contribution. 

In conclusion we compare this result to the earlier related papers of 

Lehmann, Symanzik and Zimmerman,13 and of Evans14 who showed that the irreduc- 

ible Dyson vertex, defined as in Eq. (7) (with however the important difference 

that the vacuum polarization contribution on the photon line is removed) must 

vanish for q" --fm. This is proved in Refs. 13 and 14 to be the necessary con- 

dition for the existence of Eq. (1) and hence, as remarked explicitly by Evans, 14 

the basis of the vacuum polarization fits. To go from their work to the conclu- 

sion drawn in this paper it is necessary to assume that Z is finite. 2,14 

3 

Our present argument avoids any such reference to an unobservable renormaliz- 

ation constant. 

III. PROPAGATOR BOUNDS WITH APPLICATION 

TO PIONIC CONTRIBUTION TO VACUUM POLARIZATION 

We have seen in the previous section that the finiteness of the vacuum polar- 

ization calculation and of renormalization constants is related to the behavior 

of form factors at large momentum transfer. In this section we give a concise 
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discussion of the method introduced by Meiman,l" and Geshkenbein and IOffe16J17J18 

for studying the occurrence of zeros in propagators, and apply it to construct 

bounds on renormalization constants and propagation functions in general. 

Referring back to the photon propagator for concreteness and assuming that 

Eq. (4) converges and the vacuum polarization is finite we have from Eq. (1) 

DF(q2) = - 5 + 
fl(a2) do2 

J (11) 
s2 0 

2 
0 - s2 

which is positive definite for spacelike q" = - 191 2 < 0 according to Eq. (2). 

In particular we have the inequality 

D&/q!*) - 
,$i: (02) do2 

(12) 

where IT b-d (0") represents the non-negative contribution to the positive 

definite spectral function of an arbitrary state (n) in the complete state sum 

in Eq. (2). Our aim in this section is to construct a non-zero lower bound for 

the right hand side of Eq. (12). As we see in Eqs. (8) and (10) the spectral 

function can be given as a square root factor for two particle phase space 

multiplied by form factors if we take a two particle state for n. We restrict 

ourselves to two body states here since the analyticity properties of these 

form factors, as established rigorously from formal field theory or to each 

order of a Feynman graph expansion, are essential ingredients in this'develop- 

ment. Suppressing inessential spin complications by considering the contribu- 

tion of say, a fi' - fl- or K+ - K- pair in Eq. (12) we find in place of Eq. (10) 
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p4 
1 

b2) = 48 2 u5 (8 - 4cb)3’2 j F,(a)/' 8(a2 - $zb) , 
fi 

(13) 

where s is the boson mass and F,(a) its electromagnetic form factor. 

Inserting Eq. (13) into Eq. (12) and introducing dimensionless units x = 02/%& ) 

Y = ( q)2/@b, we find 

$b DF(- @b y 

dx 
-) - $ 2 5 J x’/2(x + y) cx - l 

Kl 

.,3’2 !F (x) 2 i b 

The possibility of constructing a minimum 

0 = min 
Min(Q) >0 

was first shown by Geshkenbein and Ioffe16 and the present discussion is adapted 

from Meiman.15 A formal construction is presented in the Appendix. Here we out- 

line the method to illustrate the class of problems to which it is applicable and 

to give the essential ideas. 

In Eq. (14) the integrand is a product of a simple kinematic factor 

I 
p(x) = Y5 2 (x - 1)3 2 ' ( x + y>-J- 

and the squared modulus of a form factor analytic in the cut x-plane with a 

branch cut extending from, say, x = x0 to x = 03. We write then 

co 

Fb(x) =e +: 
s 

dx' Im Fb(x') 

xO 
x1(x' - x - ie) 

05) 
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assuming for simplicity that a once subtracted dispersion relation suffices and 

that normalization is to F(0) = e. The essential point is that F(x) is speci- 

fied and finite at some point to the left of the branch point at x = x0. The 

possibility of a finite minimum is suggested if we just look at Eqs. (14) and 

(15)- @ is clearly larger than zero in the absence of an absorptive part in 

Eq. (15) as Fb(x) +e everywhere. In order to decrease the real part of 

Fb (x> in Eq. (lb), th ere must be a finite imaginary part present and the most 

economical balance between real and imaginary parts yields 0 min' Evidently 

if the branch point x0 in Eq. (15) 1 ies to the left of the threshold of the 

integral in Eq. (lb), i.e., if x0 < 1, the most economical balance is achieved 

if we crowd the contribuC.ons to ~ Fb(x') into the integral x <x' <l in 0 

such a way that there is neither a real nor imaginary part of Fb(x) remaining 

for x >l. This is possible [in the sense of a Riemann-Lebesque integral in 

Eq. (14)) because the spectral function for the vertex is not positive definite 

but can oscillate at will. In this case Dmin -+O and no useful bound is 

obtained for x0 <l, as verified formally in the Appendix. Our considerations 

apply only to problems with x0 2 1. A second condition for a finite bound is 

that .Fb(x) be normalized at a point to the left of the branch point x = 1. 

If the normalization point approaches the branch point, an absorptive part of 

zero width can cancel Fb(x) for x ,> 1 without producing a contribution of 

finite weight to the integrand in Eq. (14). This is also verified explicitly 

in the Appendix. 

A practical deduction from this is that the present techniques are in- 

adequate for constructing general bounds in quantum electrodynamics valid to 
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all orders of the fine structure constant. This is a consequence of the mass- 

lessness of a photon which leads to the branch point at x0 = 0 in Eq. ,(15), 

arising from many photon states, which are coincident with the photon pole. 

Also in considering the electron propagator the cut for e -+e + y starts at 

the' location of the electron pole. 

As an example of a problem for which a bound can be constructed we consider 

the contribution of a fl+ X- pair state to the photon spectral function and 

find its minimum contribution to Z -1 and to vacuum polarization, to all orders 
3 

2 of strong coupling but to lowest order in e . To this order the many photon 

states coupling to a single photon via the scattering of light by light inter- 

action can be ignored. The propagator and vertex branch points then coincide 

at x = 
0 

1 (in units of $,) for a rl+ r(- pair state and,we can find a minimum. 

The technique of Meiman is to map the cut x-plane into a unit circle with 

center at x = 0 (the normalization point of F,,(O) = e) and with the two sides 

of the cut forming the periphery of the circle as in Fig. 1. The relevant map- 

ping is 

33 (x - 1)' - i 
z=e = --I. 

(x - 1)' + i 

We ;t;hen write 

2-f 

s 
de p(8) lF(eie)j 2 

-rl 
(17) 

where P(0) includes the kinematic factors and the Jacobian of the transfcrma- 

tion Eq. (16). The behavior of the kinematic quantities and of the form factors 
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can be separated by using the inequality of the arithmetic and geometric means 

to write 

.- 
7-r 

Q 1 1 
exp 2~r 1 de & p(6)/ F(eie)i 2, I.. ., 

-II 

, 

08) 

!t%e first factor in Eq. (18) is integrated directly in terms of known functions. 

Using the known analytic properties of F and assuming that F(ele) vanishes 

at most at a finite number of points on the circle, the second factor is shown 

in the Appendix to be 1 F(O)2 = e2. 

The general discussion and formal numerical result in terms of mass param- 

eters is reproduced in the Appendix and here we simply quote the results. The 

coefficient of l/Y in Eq. (14) for y -+m defines the charge renormaliza- 

-I. 
tion Z - 1 due to the pionic contribution to vacuum polarization. For a 

3 

point pion Ffl = e and Z-’ diverges logarithmically. As a lower bound we 
3 -- 

find. 

Z -51+% . 
3 - 

Similarly a lower bound on pionic contribution to the Lamb shift is obtained 

by minimizing the integral in Eq. (4) and the result so obtained is 

(19) 

a 
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This is smaller than the present limit of error by two orders of magnitude. 

It is reduced by 51r/64 from the value obtained for a point pion and by a 

factor of w l/40 from the enhanced pionic contribution due to the 2~r 

p-wave resonance (or p meson). 19 

Iv. RIGOROUS BOUND ON NUCLEON PROPAGATOR AND Z-l 2 

.With the techniques discussed in the preceding section it is possible to 

bound from below the contributions of strong interactions to the nucleon propa- 

gator and wave function renormalization, Z;l. This result is rigorous to all 

orders of the strong interaction. 

The spectral representation for the complete renormalized Feynman propagator 

for the nucleon is, in momentum space, 

g;(P) = & + j do2 
j~P,b2) + P ca), 

p2 _ j , 
0 

Since the weight function pl(a2) is both real and non-negative we may analyze 

its contribution to the propagator, 

s; (p2) = Tr [$- 

m 
1 

- 0 
y, 5; (p)j 7 -I- 

s 

P b2> 
da2 we1 2 

-I 13 - p' o CT2 - p 

(21) 

(22) 

and through it 

51+ r 
d 

P,($) da2 (23) 

as done in Section III. p is expressed in terms of the nucleon field 
1 

operator by 

P,b2) = -f g (2703 s4(Pn - q) 
5 ! .a 

; < 0 i,j n >/ 
I , 0 C&l i j q%J2 

(24) 
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in analogy with Eq. (2). We construct our minimum as done earlier by keeping 

in Eq. (24) the lightest strongly interacting state, the one nucleon, one pion 

state with a threshold at a2 = (M + ~1)~. 

The matrix element < OI$\N TC > has the form 

1 M 1 
<o$plql >=---------r 7 - 

(2qlo)' (P~~)~ ti - M 
y5fl + (I$ - M) (25) 

where f and f are scalar functions of 0'. 1 2 
At 0" = $ and $ = M, i.e., 

for the nucleon line on the mass shell, the f term vanishes and the first one 
2 

is normalized to the pion nucleon coupling constant fl(My = g; g2/4fi = 14.4. 

The contribution of this state'to p1 is: 
. 

where Q is the barycentric three-momentum and E the nucleon energy of the 

I Nn > state. 

The contribution of the second term in the curly brackets is smaller by two 

orders of k than the first at s = M (where we know f ) so we retain only M 1 

the.first term and write: 

The vertex function G satisfies a dispersion relation, with a cut from 

a2 = (M + p)2 to m, and G(2) = 1. This is a rigorously established dis- 

persion relation since there is no unphysical region below the physical thresh- 

old (M + d2 into which the unitarity equation must be extended. 
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All the conditions are now met for applying the method t~f‘ "@i:nar; ar,d we 
u 2 

find for spacelike p', setting x = 
(M + P'> 

1 
l-2 

(29) ,- 
; (M+&, + I ;M-tp ]' , / p/ ")' : 

- 

i.e., 

i 

.49(M + p) + . ( 3'2 ) 

The lower bound on Zi' , the nucleon wave function renormalizatio?, Eq. :.2j)i 

is read off from Eq. (30) by going to the limit 1 pi2 = ma: 
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v. APPROXIKATE BOUNDS FOR PION PROPAGATOR, Z;', AND 6~~ 

Beyond this particular application we must make approximations due to the 

restriction that the branch point of the vertex function must not lie below 

that of the propagator, i.e., we require x0 2 1 in Eq. (15). For the r~ meson 

propagator, for example, the threshold for the lightest two particle state con- 

tribl-lting the weight function P in 

9 ,2) = 1 l- i‘ da2 P(U2> 
p2 - q2 L u 2 - q2 

is 4M2, corresponding to a c pair and we can write 

1 

p( u2) > pTJN(u2! = -A- 
cr2 

hl 2 (a2 - p2: 2 

(32) 

To each finite order in a perturbation calculation F,,(02) satisfies a 

dispersion relation in the variable (5' with the cut starting at u2 =A gp2< &?. 

The branch point at o2 = 9p2 comes from the three pion state which is the 

lightest strongly interacting one which contributes. No exact proof of a dis- 

persion relation has been constructed for this case because of the necessity 

of analytically continuing the NG scattering amplitude below threshold down 

into the unphysical region starting at CT2 = 9$. This same problem stops 1:s 

here, as the cut in F IIN extends below the threshold of pNn in Eq., (32) a!!j. 

we can give no exact result. 

Although no rigorous conclusions can be drawn it is of interest to establish 

the approximate ones that can be obtained by keeping only the lightest "two 
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particle cuts' including the contributions of unstable vector resonances. 

Thus we approximate the 3 pion contribution to ~(0~) in Eq. (32) and 

FSN(cr2) in Eq. (33) by a two particle pn resonant state. The spectral 

weight function p(a2> in Eq. (33) is replaced by 

p($y > 2 c!z 1 
rn: (D2 - c12)2 jFPd u2) I2 (34) 

with Q the barycentric three momentum for the I flP > state. 

The pm form factor is normalized to the observed P --+;I37 decay width 

for a2 = P2, which gives2' 

Fpnx ( cr2 > = gpxnG( a2 ) 

with 

2 

gpJtJr 
-XT- N 1.8 and G(p2) = 1 . (35) 

If we neglect all but the lightest two particle Pfi intermediate state 

contribution to the absorptive part of F pm-i ' it is easy to see that the re- - 

duced graph, Fig. 2,21 contributes with branch point at q2 = (mp + ~1)~ and 

we can in this case once more apply the method of Meiman. 

We can write then for 'I,(q2) with spacelike q2 

(36) 
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+ Min da2 OQ3 
(a' - pq2 cl2 

(37) 

with 

or 

x= i:‘- (m~p)2)+~o.99 > 

and 

2 

Z -1 >l+ $/ 4.6 = 1.4 
'pion II 

Eq. (39) gives a lower limit, for the correction to the pion propagator as 

often introduced in peripheral analyses of JI-N interactions. 22 For space- 

like iqr< rnz N 30~~ this increase in the value of the propagator comes to 

less than 5% and is well within the uncertainties of such analyses. 

By a similar calculation we may put a lower bound on the pion self mass 

(40) 

‘7 

q12 = 
J 

u2 p(a2)do2 . 
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w2 is probably infinite, but again if we assume that the integral exists 

then it must be larger than 

Min 
ir 

u2 p(a2> au2 
I 

c 

or 

6p2 > (1 + 1)" (mo + P)2 kin ZS1 - 1) Z 66p2 . 

We note in passing that we may also approximate a lower bound on 8~~ 

by an entirely different 

essential assumption now 

technique similar to that used in Reference 2. The 

is that the form factor FnN( q2) associated with 

the flNi vertex satisfies an unsubtracted spectral representation 

m 

F(q2) = ; Ii F(q12) dqT2 ; 

q 12 - q2 - ie 

thus 

. 

(42) 

(43) 

As in Reference 2, we may use Schwarz' inequality to derive the following 

inequality for b F(q2) above the physical threshold for NF production, 

q" > 4M2 

b F(q'j/' <_ rc(q2 - ~1~)~ [q2 - 4M2)/q2] ' aT bq')') o(q2) ', (44) 

where aT 
i 1 
(q')+ is the total annihilation cross section for the 

1 So state 

of the Yi% system, and p(q2) is the weight function in the spectral representa- 

tion of the pion propagator, Eq. (32). 
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If we now write Eq. (43) in the form 

g-15 i,;[ dq2k(q2$ [(o_' - 4M.),q2]+ ~~~ i;q2+)]' J 
2 

where 

(46) 

is the contribution from below the physical IX% threshold, and observe that for 

q2 > 4M2 unitarity bounds aT by 

1611 
q2 - 4M2 

then 

g - I 5 4 r aq2 k(q"l' p(q2 - 4M2$ . 

4M2 

Applying now Schwartz* inequality once again we obtain 

q2 P(s2> dq2 

(47) 

(48) 

(49) 
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or 

sp2 > 80 M p2 
4I-l (50 

where g2/47f = 14.4. 

Any attempt to evaluate I, however, can only be very approximate, as the 
- 

integral is over a region unphysical for the NN process. In the two particle 

approximation we consider the pn state as the only one which couples to both 

the n and ?6 in the mass region gp2 <a2 <4MY Application of unitarity 

to the amplitude for pn t) N6 analytically continued below threshold into this 

23 region can then be made as shown by Mandelstam in order to approximate I in 

this region. We have not carried out this calculation. If it turns out that 

I <<g, then the bound Eq. (51) is much stronger than Eq. (42). 

VI. RELATION BETWEEN ZEROS IN PROPAGATORS, POLES IN IRREDUCIBLF, 
VERTEX FUNCTIONS AND UPPER BOUNDS ON COUPLING CONSTANTS 

In this section we discuss the connection between the occurrence of zeros 

in propagators, p oles in the Dyson irreducible (proper) vertex-parts, and upper 

bounds on the renormalized coupling constants. This is the original problem 

studied by Geshkenbein and Ioffe16 and Meirnan" who bounded coupling constants 

by the requirement that there be no poles in the proper vertex parts. We pre- - 

sent no new limits in this section but rather concern ourselves with the question 

of whether or not there is physical significance to be'attached to the appear- 

ance of vertex poles and propagator zeros. 

Goebel and Sakita2* have already pointed out by considerations based on 

potential models that a pole in the proper vertex part has no direct physical 

significance and therefore cannot be excluded by general arguments. We present 

- 23 - 



here a further model in support of their argument and in answer to a subse- 

quent communication from Geshkenbein and 1offe.l' This is a generalized Lee 

model with an unstable W particle in addition to the stable V particle 

both of which couple to the N and 8. It contains a pole in the Dyson ir- 

reducible vertex I?, and a zero in the V particle propagator, but no pole 

in the scattering amplitude and, hence, no direct observable consequences. 

Before developing this model let us first review briefly the Geshkenbein- 

Ioffe argument. 

We consider the propagator of a boson with a Kallkn-Lehmann representa- 

tion of the form 

m 

D(x) = '_ x + dx' xr _ x , s 
PW > 

xP 1 
(52) 

Here we have introduced dimensionless variables as in previous sections. xP 

is the position of the pole. 

For x < x 
P' 

both terms are positive so that there can be no zero in this 

region. If p(x) does not vanish for x > 1 there will also be no zeros in 

the continuum. We assume this to be the case; i.e., there is always at least 

one open channel above threshold (no CDD poles). When xp < x < 1 the pole 

term is negative and the integral is positive leading to a possible zero as 

illustrated in Fig. 3. The spectral representation Eq. (52) allows at most 

one such zero. In fact, the necessary and sufficient condition for a zero 

to exist for xp < x < 1 is 

a3 

s dx dx) > 1 x - 1 -1-x ' 
1 P 

(53) 
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We now relate the existence of a zero to the value of the coupling 

constant. In the sum of states in p(x) we keep only the term correspond- 

ing to a two particle state which shall be the state of lowest mass in the 

SLUU. Then we have 

P(X) > pc2) b> 2 g2dx> IF( > - (54) 

where g2 measures the strength of the coupling to the two particie state, 

P(X) is a kinematical factor, and F(x) is the form factor normalized to 

unity at x and assumed to be analytic except for a cut starting at x = 1. 
P 

Using the inequality in Eq. (53), we see that if 

(1 - xp) s We PC2)b) > 1 
x-l- ' 

1 

it follows from p(x) 2 p (2)(x) that 

00 

0 - xp) s 
dx dx) > 1 ~ x-l- ; 

1 
(55) 

hence there will be a zero in D(x). 

Introducing Eq. (54) into Eq. (55) we see that if g2R > 1, where we 

define 03 .Q=(l-x) s p1 p(x) 5 IF( 

there will then be a zero in the propagator. Furthermore, if R has a minimum 

R min > 0, and if g2Rmin 2 1 there will be a zero. We must require then that 

g2; 
min 

(56) 
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Their result is logically equivalent to the statemer,t that if 

then I'(x) has a pole. However, it f3llows ti irectly from Eq. 

Appendix that 

L-2 = 
min I min ' 

,,- ._ 
- ‘J 

., ,. _’ 

Thus we have shown that for g2 > gz, where gz z $"ii, = Iiin, D(x) develops 

a zero and J?(x) develops a pole. The crucial assumption required to bo-dnd 

the coupling constant is the absence of a zero in D(x) a&,/or the absence 

of a pole in l?(x). 
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Even if there is a zero of D(x) at x - x0 we can still bound g2 in 

terms of the position of the zero as shown by Geshkenbein and Ioffe. T.et us 

assume that D(x) has a zero at x-x so that 
0 

1 
X -x = 

z p(x)dx 

0 J x-x * 
p 1 0 

Keeping only the two particle contribution to p(x) leads to the inequality 

m 

(62) 

(63) 

Using the result of Eq. (A.2) of the Appendix we have 

dx -ifkd- OFF 
x-x min 

fix P(X) ;F(x) j2' (64) 
0 

'-1 
jmin 

so that we have 

g2 ,- 
(x0 - x ) : : 

12 

(1 - xp)+ + (1 - xo)P 1 
J 

dx p(x) IF( _< 1 . 

_! L1 J min 
(65) 

If x > 1 so that there is no zero we obtain our previous result that 

g2R < 1. As x0 approaches xp, the bound on g2 approaches infinity. min - 

Since, in general, x can be anywhere in the range x <x <lno useful 
0 p- o- 

bound is obtained. 

This result was constructed with no further assumptions on the form factor 

than that it is analytic in the cut plane with the branch point at x = 1, and 

with F(xp) = 1, while 
xP <l. 

If we make the additional assumption that F(x) 
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does not have a pole at the zero of D(x) but has the very same analyticity 

properties assigned above to F(x), it follows from Eq. (57) that F(x) must 

have a zero at x = x0. 

Then we can obtain a stronger bound by writing 

x-x 
F(x) = O i(x) 

-x 
xP o 

where F(x) has no pole at x0. We then obtain the inequality 

J 

g2 

p - xp!l + (1 - x0)$’ 1 ; dx p( ) /& 

(x0 - xp) 
y x 9. 

min - 

For arbitrary x0 between x P 
and 1 we again obtain the result that g2QmilJ ( 1. 

With this assumption that F(x) has a zero at x = x0 and I'(x) has no pole 

where D(x) has a zero the bound on g2 becomes stronger as x0 approaches 

xP' 
This is the case considered by Geshkenbein and Ioffe in Reference 17. 

We now argue that there is no compelling physical argument in support of 

the bound Eq. (58) by considering a generalized Lee model with two fields $,, 

and JI w, representing fermions with the same ';:+:-;*;TI numbers, in addition to 

the N and 0 to which they couple. The Hamiltonian is written as 

d3k 
H = Mv 

0 
qvt TV + so qwt qw + j‘ - 

(2703 
"1-, akf ak + s(Gvt qw + $t $v) 

We have set the mass of the N particle to zero for simplicity and the 8 

field is written 

s 

d3k u(k) 
A= (69) 
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We assume the commutation rules 

and all other anticommutators are zero. The ?k satisfy the usual canonical 
1 

commutation rules jak , a,tJ = 6(k - k'). We further restrict the parameters 
i 

in the Hamiltonian so that there is only one stable single particle state de- 

noted by IV > plus the continuum of N8 scattering states. The W field 

introduces an unstable particle resonance and is of importance here because 

the mass operator now becomes an infinite series of terms as illustrated in 

Fig. 4 instead of a single term as in the Lee model, and we therefore have the 

possibilities of a pole in I'(x) and a zero in D(x). 

Furthermore we impose the asymptotic conditions that 

< Ol$VJV > = Zv = constant 

and 

< o(qrwpJ > = 0. (70) 

This'requires that only the I$ field will asymptotically generate a stable 

V state. 

We now define the V-propagator by 

D”Jt - t’) - < OJT (qv(t) .$,i(i’)) lo > (71) 

and the Dyson vertex and scattering amplitude in the conventional ,manner. A 

direct summation of the graphical series gives for the Fourier transforms of 
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the propagator, p roper vertex and transition amplitude 

(73) 

T(m) = I$) D,(u) i'+) + 
(w - uJo) [l +O$ 

(74) / 

0 
Cl b-we! 

where I$? has been eliminated in terms of w. which is the position of the 

zero in 'EV(o) and the pole in Ud '5 has been eliminated in terms of the 
0 

stable particle mass Mv' and B was determined by the asymptotic condition 

<o +'v>=O. 
I Wl 

The residue of the pole at UJ = % of the scattering amplitude 

is defined to be $ and is related to the bare coupling constant by 

We have also introduced 

(75) 

(76) 
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which are positive for w<M t* We assume that the cutoff U(U) falls off 

sufficiently rapidly for large u) to make Cl(~L,~2) convergent and the 

theory finite at each step. The coupling constant $ is restricted by its 

definition and the requirement that ?$ >O to satisfy 
0- 

(77) 

It can be shown that 2 +d and 
0 G can be chosen so that there is only 

one stable state. We have already assumed this in our discussion since the 

physical V state and the N8 continuum were taken to form a complete spectrum 

of states. Consistency of this assumption is then established by showing that 

these states do in fact satisfy the completeness condition 

p > <VI + C NQk > < Nek = 1 
k I I (7% 

with appropriate choice of and of satisfying restriction 

Eq. (77). More intuitively we see this by observing that the V propagator 

Eq. (72) has only one pole at the physical mass MV of the stable V particle, 

and that the W propagator 

and the 'mixing" off diagonal propagator 

‘kwt(t’) 10 > 
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have no poles. According to Eq. (72) this condition is satisfied if 

(Mt - M-$ cl (Mt+) ’ i- >l. (79) 

(Mt - mo) X1(Mt,mo) I 
I 

Since the first two factors are arbitrarily close to unity for large values of 

go and Go, and the third factor is larger than unity for Mt > "0 > % 

according to the defining Eq. (76) for C we see that our model with one 
1 

bound state is consistent. We notice, however, that Dv has a zero and I7 

a pole located at u o between the pole and the continuum of Dv. These are 

not present in the scattering amplitude, however, because the pole at w = m. 

in the first term of Eq. (74), i.e., 

is cancelled by the pole of the last term leading to a finite T(coo). There 

is thus no observable effect of the zero in D 
?i 

or pole in I?. Hence there 

are no physical grounds for ruling out the possibility of zeros in propagators 

or poles in vertex functions and so the techniques used in this paper lead to 

no bounds on coupling constants 

In conclusion, we note that 

in our VW model we obtain the 

if we apply the method of Meiman to bound 7$ 

inequality 
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where 

3-l 

1 
r 

ku2(w) dw 

2n d6 
-"r( 2Jr(o - MJ' dB 

RE (80 

'Ihe inequality of the arithmetic and geometric means implies that 

R>l 

If we do not assume that the position of the zero in D,(w) is known but merely 

that MV ,< a0 5 Mt then the factor 
(“0 

- q-l may be infinite and we obtain 

no bound. If there were no zero so that w. zMt then we would obtain 

(82) 

which by Eq. (81) is consistent with the known bound in that $C1(Mv,%) ,< 1. 

An alteration of the VW model to one in which both the V and the W appear 

as stable particles, 25 as studied by Srivastava , no longer yields a zero in 

DV or a pole in I?. This model gives the same equations discussed in a recent - 

paper by Geshkenbein and Ioffe" who appealed to this result to support their 

coupling constant limit and to refute the earlier criticism of Goebel and 

Sakita.24 The point is simply that one has additional constraints upon the 

coupling constants and mass parameters %o' bo' By Mv, in order to,make the 

two stable V and W particle states mutually orthogonal. The construction of 
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states and propagators in this case has been given by Srivastava as well as by 

Geshkenbein and Ioffe and we do not repeat it here. The resulting model is 

thus too restrictive to enable any general conclusions to be drawn. 
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APPENDIX 

In this appendix we give a simplified resume of the mathematical pro- 

cedures introduced by Meiman for constructing the limits obtained in this 

paper. 

We prove the following theorem: 

Given an integral of the form 

dx(x + al.fQ (x + a2)a2 . . . (X + an)% IG(x)12 (A-1) 

satisfying: 

(1) 1 exists 

(2) the integrand is positive 

(3) G(x) is a function which is 

(i> analytic in x except for a cut from 1 to co 

(ii) unity at x = c (c real and < 1) 

(iii) bounded at CO by some power of x+ 

(iv> non-zero on the cut except at a finite number of discrete 

points, 

then 

I > 4?i2 + (1 + a2)q zx2 . . , [?I + (1 + ln)'] aan (A.3 

with 

A = (1 - c) 3 (A-3) 
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Proof: In terms of the variables defined by 

t -i z=-- t-t-1 

13 
tan e/2 = t = Z& 

( > 

I may be written 

If 
dW,(l + t2) + a1 + (1 - c)t2 1 Ql 

.:. 

Equation (A.4) defines a mapping of the cut x-plane into a unit circle as 

shown in Fig. 1. 

Setting - 
f(e) = It I(1 + t2) 1 1 + a1 + (1 - c)t; 

3 ’ c J% 
. . . 1 + an + (1 - c)t J 

and 

i(e) = IG(e@)/” , 

the inequality of the arithmetic and geometric means26 gives 

II ?T 
bf(ehde) lde 1 em s 1% [f(e)g(e)lde 1 . 

1 -K 1 
L ,: 

so 

(A-4) 

(A-5) 

(A-6) 

(A-7) 
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with 

Now 

5 = exp de log f(0); 

c 
-?I i 

'I 

I2 = exp .dd log'G(e 

. . 

= exp il 3 x Re 

! 

de log G(eie) . 

i _e 

! 
I 
I 

log I2 = 2Re i; 1 
izG 2 log G(z) > . 

1 
' 

j 

If G(z) has no zeros within the circle, then its known properties and 

Cauchy's theorem imply that 

I2 
= exp [2Re log G 4m = 1. 

On the other hand, if G(z) has zeros at points 

z1 
irp =rle 1 , .z2 = rneiv2 . . . zn = me i'pn (r 

j 
< 1) 

we can write 

(z 
G(z) = 

(z - rnei%) 

iTn w 
-'ne 

where i?(z) h as no zeros and 

E(o) = 1 . 

(A.8) 

(A- 9) 

(A.10) 

(A.11) 

(A.12) 
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Hence ,- r 
log I2 = 2Re ( & 

I 

f 2 .f \;&l de log / ' - ',',:'" 
j=l i -r.e J 

= 2Re log m , 
r . . 1 rn 

or 

I 

I2 = 
r2r2 2 * 

1 2 ** rn 

So for all allowed G(z) we have2? 

12>1 . 

Observing now that 

co dt 

1 + t2 
log 11 + a2t2 1 = log ) 1 + al 

and 

log t = 0 , (~.16) 

11 may be readily evaluated to give 

(A.13) 

(a.14) 

b-5) 

log I, = 2 log 
i - 

l- 2,A + (1 + al) 3 1 a1 
. . . j (A-17) 



So, finally,' 

- 
L 

11 20, I- 
’ 2an 

I > 4h2 A + (1 + al)Fj . . . h + (1 + an)*' 

which proves the result. 

We note that it has not been necessary to make any assumptions on the 

existence of 
\ i' 

fb)d0. 

Let us now consider the case in which the cut in G extends below 

x=1 toapoint x=@>c. I1 remains the same as previously but I2 

must now be evaluated by applying Cauchy's theorem to an integration around 

a contour I? as shown in Fig. 5. Then 

0 = log G(0) 

1 
=Fx s 

1% G(z) dz 
Z 

1 

1 
=2x 

log G(z) dz + 1 disc log G(z) dz 
Z 2Jri J 

Z 

where disc w(z) = w(z + ie) - w(z - ie) . 

so 

and 

disc log G(z) dz 1, 
Z 

B i 1 

7 
f 1 I I 

1 
1-w, 1 

53.n = exp 
I s -YE 

disc 1% G(Z) dz 'j ,!+7,2[~ + (1 + a )F, . . . :?I+ (1 
Z 1 ._ 

I B a' 

(A.18) 

(A.191 

(A.20) 

(A21) 

l'j2an 
t an)2 

(A.23 

The bound now depends on the unknown function disc log G(z) and so it 

cannot be fixed in the same precise manner as previously. 
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FIGURE CAPTIONS 

(x-1)$ - i 
The transformation z = - I . The lettered points transform 

(~-1)~ + i 
as shown. 

1. 

2. 

3. 

4. 

5. 

A reduced graph for the process 7r -+plc. 

Possible occurrence of a zero in the propagator D(x 

The Dyson expansion for the mass operator C of the 

extended Lee model described in Sec. VI. 

> in Eq. (52). 

V field in the 

The integration contour for'the integral I, as given in the Appendix 

when the form factor has a cut starting at a point x = f3 to the left 

of the propagator cut. 
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