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ABSTRACT

An iterative scheme is presented for solving the N/D equations in
the case the left-hand cut consists entirely as a sum of poles. At no
step 1s recourse to a matrix inversion of an algebraic system reguired.
A scheme for approximating arbitrary cuts by seguences of poles is algo

presented.



I. INTRODUCTION

In many applications of the partial wave dispersion relations one is
faced with nonlinear integral equations which may be linearized by the N/D
method.t left-hand cut discontinuity for the amplitude is assumed to be
of some given form, and likewise some assumptions are made about the uni-
tarity on the right-hand cut; usually elastic unitarity is assumed or the
inelastic chtributions are approximated by several two-body channels.2
The resulting integral equations are either of the Fredholm type or have
a kernel which is singular due only to infinite integration ranges. This
ficulty is usually overcome by the introduction of a cutoff and tﬁe re-
sulting equations lend themselves to standard numerical solutions, which
in practice usually require the use of a high-speed computer.

Often a more drastic assumption is made abcut the left-hand cut, and

3  The integral eguations are then re-

it is replaged by a series of poles.
ducible to a linear algebraic system. If the number of poles is large, we
are then faced with the inversion of matrices of large order, which, even
if the problems are solved with the aid of computers, it is the matrix in-
version which consumes most of the time.

In this article an iterative method is presented by which we may go
from an n pole to an n+l pole problem directly without ever introducing
the necessity of matrix inversion. This method is also applicable to the
following case. Suppose that we have the solution for a certain left-hand
sut, then we may immediately obtain the solution for a new cut which is
vequal to the old one plus a finite number of pole terms. This method is

possible due to the fact that we have a freedom of choosing arbitrarily a

subtraction point where the D function is normalized to unity.



Section II is devoted to the derivation of the iteration scheme
starting from a general left-hand cut, and adding an arbitrary number of
poles. In Section IIT this scheme is specialized to the left-hand cut
consisting entirely of poles. In Section IV a discussion is given on how
to obtain a sequence of poles approximation to any cut. ALl the results
are given Tor a single channel case, although they may easily be genera-

lized to a many channel problem.

II. ITERATION ON THE RESOLVENT KERNELS

In the N/D method we write the amplitude as a ratio of two functions
N and D which have discontinuities on the left, respectively right-hand
cuts only. We choose to write an integral equation for N and express D

in terms of N.
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wrnere B(z) is a known function with only left-hand discontinuities and
p(z) is a phase space factor, which is a known kinematical function. The
integrals in the above equation run over only the positive real axis from
the start of the elastic cut. xp is an arbitrary point at which we may
normalize D(x;xp) to unity. The ratio N(x;xp)/D(x;xp) is independent

of xp,4 and in terms of the function p(x) equals exp[id(x)/p(z) .



Instead of IT.1 let us consider an eguation with the inhomogeneous

term B(x) replaced by an arbitrary function, f(x) .
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We assume that the above integral equation has a solution; namely, there

exists a resolvent kernel, G(x,y;xp) such that

nGx) = [ Slryi)e (11.4)

The first step in this iteration procedure 1s to find the transfor-
mation between a resolvent kernel G(x,y;xp) for a subtraction point at
X and the resclvent kernel G(X,Y3xq) for another subtraction point Xq

&~

Adding and subtracting to Eq.(II.3)
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we obtain:
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As the last term of Eq.(II.6)is CB(x), wvhere C is independent of x, we

may write

Nlix) = [ cloyix )G + () lay (12.7)

o



where

p(2)Np (25 ) o (11.8)

c-2 g
B Jf (z—xq)(z—xp)

Substituting Eq. (II.7) into Eq. (II.8) we obtain C.

Jﬁ H(y;x ,xq)f(y)dy
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The sought for relation between G(x,y;xp) and G(X,y;xq) is

i
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Now the iteration scheme may be outlined. Suppose we add to B(x) an

extra pole,

B(x) = B(x) + (11.12)
X - X
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Equation II.3 for an arbitrary subtraction point Xp becbmes:
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If we choose Xp =X, the kerne.. of Eg. (II.13) reduces to the kernel

of Eq. (II.3). Thus
E(X,y;xl) = 6(x,y5x )

The iteration scheme we propose is as follows: Given G(x,y;xp) we ob-
tain via Eq. (II.11) G(X,y;xl) which equals E(X,y;xl) which we may again

via Eq. (II.11) transform to another subtraction point X, and add a

pole at x_. If we denote by G(n)(x;YSXO) the resolvent kernel with n
extra poles located at xj, with residues 7., 1 = 1l...n, the scheme may
i

be outlined as:

G(D)(

n—+
X,Y5%, ) -+G(n)(x,y;xn+l) - l%x,y;xn+l)

—>G(n+l)(x,y;x ) = G(n+2)(x,y;x )

n+2 n+2

where the arrows indicate application of ‘Eq. (II.1l) with appropriate
B(x), namely in going from G(z)(x,y;xz) to Gz(x;y;xz+l) the B(x) that

enters into Bq. (II.11) is

2
74
B(x) + }; -—_ .
i=1

X - X,
1

Thus each step of the iteration procedure is reduced to guadratures and
at no point do we encounter a problem of malrix inversion.
Before proceeding further we show that the amplitude N(x;xp)/D(x,xp)

is independent of xp. By definition .

(x;x,) = L/NG(x,y5xp)B(y)dy

D(xp;xq) =1 - &/\H(y5xp,xq) B(y)dy -
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From Eq. (II.11) we obtain
N(x;xp) = N(x;xq)/D(xp;x )

q

As D(x,xq)/D(xp,xq) is one for x = X, and its imaginary part equals

- p(x)N(x;xp) it satisfies Eg. (I1.2) with the subtraction point at xp,

and thus N(X;gp»ﬁXx;xp) = N(x;xq)/D(x;Xq).4

III. ITERATION OF THE N-POLE PRCBLEM

If Bn(x) consists entirely as a sum of pole terms

B (x) = ji ’
i=1 * -~

the iteration scheme and especially Eg. (II.ll) take on a much simpler

form. In this case Eg. (11.3) may be reduced to

1 & oy (x-x) (z)N (z3x_)
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where the ni(gp) are the solutions of a linear algebraic system;

X - X,
1
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There exists a resolvent matrix

ni(xp) =

o{n) (x,) such that

J

n

Z 615055075

=1

o(z)f(z)
(z-xp)(z-xj)

(111.4)

dz

Going through a proéedure analogous to that of See. II we derive a transfor-
mation between Gij(xp) and Gij<xq)
: G, (x )7y K(x ,x ) G a(x ) .
6y4(x,) = e (x) + AUl A WA D , (111.5)
1- K(xp,xq)ZGﬁk(xq)yk
where
1 Ydz
K(Xp’xq)ﬂ T ox )u/\ (z-x )(a -X )(z -X, ) (111.6)
and the summation convention has been adopted. The iterative scheme ana-
logous to Bg. (II.15) is
(x), (k)
G (xp) =G (x )
(x+1) _ o(x)
¢ (x40 () @1
(k+1) (k+1)
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where the arrow indic
A ® 1 means that i

ratrix with

(A@l)ij = 4

ates an application of Eq. (III.5), and the ~otation

f A disa kxXk matrix, A ® 1 is a (k+1) x (x+1)

(%35 i,j <k
0 ; 1i=k+1, <k or J = k+1l, i<k
1 ;1= o= ket 1 (111.8)
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IV. APPROXIMATION OF CUTS BY SEQUENCES OF POLES®

The functions B(x) eppearing in the previous equations are analytic
functions cut along curves in the complex plane which are disjointed from
the right-hand unitariﬁy cut. In the equal mass case it is generally a
single cul running élong the negative real axis. More generally it may
have additional cuts along finite curves.® In most applications B(x) has
at least one cut extending to infinity. To discuss any approximation

technique it is convenient to make a change of variables such as

X = B (1v.1)

which makes all integration ranges finite. Such a change leaves the in-
tegral equations (I1.1)-(II.3) of the same form. Now the problem is to
approximate the transformed kernel B(u) by a sequence of pole. The

general expression for B(u) will be of 'the form,

B = (wev) ) [ wif) iz . (1v.2)

Baker, Gammel and Wills” have suggested a scheme using the Padé approximants.

-1

Thelr scheme consists of expanding B{u) as a power series in u , end
writing each partial sum as a Padé approximant. These authors have shown
that the sequence of approximants converges to the desired funtion under
very general conditions. The cuts of Eg. (IV.2) are approximated by a
seqguence of poles whose positions approach the cuts themselves.

We shall present a method, which, although much more tedious, has the
advantage that it makes few assumptions on the function B(u) and likewise

snows that the poles of the approximating sequences are not on the unitarity

cut. In actual practice the scheme of Ref. 7 is strongly recommended.

-8 -



Although both methods are derived from the analytic structure of continuous
fractions, the exact relation between them is not investigated.

The assumptions we shall make on the function B(u) is that the con-
tours Cj' are rectifiable; that there exists a convex region containing
each cj,8 such that it does not intersect the unitarity cut, and that the
functions wj(z) are of bounded variation. Under these assumptions, let

us rewrite Bq. (IV.2) as

v.(z)idzg
s = 3, [ (575
q d C. u - z
J J

where .dz} is the arc length along the curves cj, and the factors nj
are chosen so that vj(z) is a non-negetive real function.

Now we are in a position to approximate each Term in Eg. (Iv.3) by
a sequence of poles. As V.(z) is a non-negative function, we may define

d

a set of orthogonal polynomials with vj(z) as a weight functidn, i.e.,

[ el v et = 5, (19.1)

mn
c.
J

The coefficients of the péj)(u) are real, and tle zerces lie in the least convex
region containing the curve Cj , and approach Cj fqr n sufficient;y
large. Tae zeroes of pgj)(u) do not lie along the end points of ¢

for any finite n.

et

u/\ vj(u)u*num]dul =c . (1v.5)



and

(3) (3)
. p o (w) = p27(x)
Q.r(lw(x) = fcj £ o Xn vj(u)ldu| d

The QﬁJ)(;d are palyromials of degree n - 1 . By a theorem due to Markoff

we have our result:

ol BRI

which by partial fractions may be expressed as a sum of poles.
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