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ABSTFWT 

An iterative.scheme is presented for solving the N/D equations in 

the case.the left-hand cut consists entkely as a sum of poles. At no 

step is recourse to a matrix inversion of an algebraic system required. 

A scheme for approximating arbitrary cuts by sequences of poles is also 

presented. 



I. INTRODUCTION 

In many applications of the partial wave dispersion relations one is 

faced with nonlinear integral equations which may be linearized by the N/D 

meth0d.i A left-hand cut discontinuity for the amplitude is assumed t0 be 

of some given i'orm, and iikewise some assumptions are made about the uni- 

tarity on the right-hand cut; usually elastic unitarity is assumed or the 

inelastic contrib.utions are approximated by several two-body channels. 
2 

Z'he resulting integral equations are either of the Fredholm type or have 

a kernel which is singular due only to infinite integration ranges. This 

ii-! ,.ffic.Qlt;y is usually overcome by the introduction of a cutoff and the re- 

sulting eq-uations iend themselves to standard numerical solutions, which 

in practice usually require the use of a high-speed computer. 

Often a more drastic assumption is made about the left-hand cut, and 

it is replaced by a series of poies.3 Tiie integral equations are then re- 

ducible to a linear algebraic system. If the number of poles is iarge, we 

are then faced with the inversion of matrices OI? large order, which, even 

if the problems are solved with the aid of computers, it is the matrix in- 

version which consumes most of the time. 

In this article an iterative method is presented by which we may go 

from an p pole to an n+l pole problem directly without ever introducing 

the necessity of matrix inversion. This method is also applicable to the 

following case. Suppose that we have the solution for a certain ieft-hand 

gut, then we may immediately obtain the solution for a new cut which is 

eqtial to the old one plus a finite number of pole terms. This method is 

possible due to the fact that we have a freedom of choosing arbitrarily a 

subtraction point where the D function is normalized to unity. 
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Section II is devoted to the derivation of the iteration scheme 

starting from a general left-hand cut, and adding an arbitrary number of 

poles. In Section III this scheme is specialized to the left-hand cut 

consisting entirely of poles. In Section IV a discussion is given on how 

to obtain a sequence of poles approximation to any cut. All the results 

are given for a single channel case, although they may easily be genera- 

lized to a many channel problem. 

II. ITERATIGN ON THE XESOLVENT KEFtiECLS 

In the N/D method we write the amplitude as a ratio of two functions 

N and D which have 

cuts only. We choose 

in terms of N. 

discontinuities on the left, respectively right-hand 

to write an integral equation for N and express D 

1 dz)Nb;x > .- 
N(x;xp) = B(x)+- 

Tl 
-??- jB(z)(z-xp) 

7 

(z-x)(2-x,, L 
- B(x)(x-xp) dz 

i 

x,- x 
D(x;xp) = 1 - P ddNhxp) dz J x b-4b-x,) 

w&re B(z) is a known function with only left-hand discontinuities and 

p(z) is a phase space factor, which is a known kinematical function. The 

integrals in the above equation run over only the positive real axis from 

the start of the elastic cut. 
"P 

is an arbitrary point at which we may 

normalize D(x;xp) to unity. The ratio N(x;xp)/D(x;xp) is independent 

of x .J 4 and in terms of the function 
P 

p(x) equals exp[iG(x)/p(z) . 

(11.1) 

(11.2) 
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Nf(x;xp) = f(x) -?- 5 
s 

p( z)Nf(x;x2) 
5(z) 

(z-x,(z-xp' L 
(z-xp) - B(x)(x-xp) dz 

lt 1 

Instead of II.1 let us consider an equation with the inhomogeneous 

term B(x) replaced by an arbitrary function, f(x) . 

We assume that the above integral equation has a solution; namely, there 

exists a resolvent kernel, G(xJy;xp) such that 

Nf(X;xp) = s G(x,Y;Xp)f(Y)ti - 

The first step in this iteration procedure is to find the transfor- 

mation between a resolvent kernei G(xJy;xp) for a subtraction point at 

X and tine resolvent kernel G(x,y;x ) for another subtraction point x . 
P 9 9 

Adding and subtracting to .Eq.(II.3) 

i 

s 

ddNfb;xp), 
-- 

si ( z-4 ( z-xq) 
B(x)(x-xq)dz , 

(11-3) 

(11.4) 

(11.5) 

we obtain: 

Nf(x;xp) = f(x) -I- i 
s 

P(Z) 
~-i(z)(z-xq) - B(x)(x-x 7 ):dz 

3-f (z-x,(z-x,, L sj 

B(x) 
+ - 'xp-"9' s 

ddNfb;xp) 
dz . (11.6) 

II b-x,)b-x,1 

As the last term ofEq.(II.@isCB(x), where C is independent of x, we 

may write 

Nfhp) = s G(x,Y;x~) [f(y) + CB(y) Idy (11.7) 
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I 

where 

c= xp - xq s 
dz)Nfhp’ 

dz 
37 b-x,)(z-xp) 

Substituticg Eq. (11.7) into Eq: (11.8) we obtain C. 

l- 
J H(Y3p~Xq)B(Y)dy 

H(Y; xpJ xc_) = "P - xq J P(Z) 
G( Z,Y; Xq)dZ l 

II (z-xp)(z-xg) 

The sought for relation between G(x,Y;x~) and G(xJy;xq) is 

Ghy’; xa )B(Y’ h’ 1 H(Y; xp, x4) 
G(x,y;xp) = G(xJy;xq) + I 

* -1 . n 
l- 

J H(Yr~~pJ~q)B(~' NY' 

Now the iteration scheme may be outlined. Suppose we add to B(x) an 

extra pole J 

g(x) = B(x) + 
Yl . 

x - x 1 

Equation II.3 for an arbitrary subtraction point 
"P 

becomes: 

1 
~,(x;xp) = f(x) -I- - 

PM I- 

IT b-x)b-g) 
iB(z)(z-xp) 
L - B(x)(x-xp) 

fz - x 
.l 

+ y, I 
P- 

x-x 

!z \ - x x-x 
gf(z;xp)dz . 

1 

(11.8) 

(11.9) 

(Ii.10) 

(11.11) 

(Ii.12) 

(11.13) 
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If we choose 
"P 

=x 1 the kerne:. of Eq. (11.13) reduces to the kernel 

of ~q. (11.3). PUS 

E(xJ,y;xl) = G(xJy;xl 

The iteration scheme we propose is as follows: Given G(xJy;xp) we ob- 

tain via Eq. (I1.U) G(x,y;xi) which equals E(xJy;xl) which we may again 

via Eq. (II.ll) transform to another subtraction point x and add a 
2 

pole at x3. If we denote by G(n) (x,y;xp) the resolvent kernel with n 

extra poles located at xiJ with residues yiJ i = l...n, the scheme may 

be outlined as: 

(11.11;) 

G(n) 
cxJyJx ) -fG("+x,y;~,+~) = &+‘(~,y;~ n n+i 

) 

-‘G(n+1+xJy;xn+2) = G(n+2)(x,y;Xn+2) -> “. . J (11.15) 

where the arrows indicate application of*Eq. (11.11) with appropriate 

B(x) J namely in going from G 0(xJy;x2) to G'(x,~;x~+~) the B(x) that 

enters into Eq. (11.11) is 

. (11.16) 

Thus each step of the iteration procedure is reduced to'quadratures and 

at no point do we encounter a problem of matrix inversion. 

Before proceeding further we show that the amplitude Nx;x~)/D(x,x~) 

is independent of x . 
P 

By definition 

N(x;xp) = i‘ " G(x,YXp)B(Y)dY 

D(xp;xq) = 1 - 
s H(Y;x~,x~) B(y)dy . 

(X.17) 

(11.18) 
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From Eq. (11.11) we obtain 

Nx;xpl = N(x;x~)/D(x~;x~) 

As D(xJxq)/D(xpJxq) is one for x = xp and its imaginary part equals 

- dx)N(x;xp) it satisfies Eq. (11.2) with the subtraction point at x , 
P 

and thus 1\T(x;xp)/ax;xp) = N(x;xq)/D(x;xq).* 

III. I!I'ERAl'ION OF THE N-POLE PROBLEM 

If Bn(x) consists entirely as a sum of pole terms 

ii 
B"(x) = c Yi J i=l x - xi 

the iteration scheme and especially Eq. (11.11) take on a much simpler 

form. In this case Eq. (II.3) may be reduced to 

’ n Yi(xi-x~) 
Nf(x;xp) = f(x) - - 

x - s 

dz)Nf(z;xp) 
dz 

fi i=l : x-xi (z-xp)(z-xi) 

= f(x) - 7 Lie J 
L-J 

i=l x- X i 

where the ni(xp) are the solutions of a linear algebraic system; 

1 

s 

PWfW 
niCxp) = - Y&X-Xp) dz 

2-c (z-xp)(z-xi) 

(11.19) 

(111.1) 

(111.2) 

1 Pb> 
- - Yi(xi-xp) 

3l s 

n nj(xp) 

c 
dz o (III. 3) 

(z-xp)(z-xi) j=l z - xj 
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Ihere exists a resolvent matrix such that 

n 

niCxp) = c 

byx,, ddfb) 
Gij(xp)yj L- dz . 

j=l 
x 

(z-xp)(z-xj) 

(111.4) 

Going through a procedure analogous to that of Sec. II we derive a transfor- 

mation between "ij (Xp) and Gij (xs) 

Gij(xp) = Gij(xq) f 
Gim(Xq)Y,I((XpJXq)2G2 l(“ii) 

’ J 
1 - K(x p'Xq)~Gjk(Xq)Yk 

(111.5) 

where 

K(xp~Xq)2 = $ (xL3-xq) s d&z (z-x )( z-x z-x 
P P ax 

J 

and the summation convention has been adopted. The iterative scheme ana- 

iogous to Eq. (11.15) is: 

Gck+xp) -+ G(k’(xk+l) 

G(k+l)(x k+l) = G(k)(xk+l) @ 1 . 

G(k+l) (x k+i) + G(k+1+xk+2) 
. 
. 
. . 

where the arrow indicates an application of Eq. (1X.5), and the :,.:)tation 

A @ 1 means that if A 

matrix with 

A ij 

(A @ l)ij = { 0 

1 

is a k x k matrix, A @ 1 is a 

i,j < k 

i=k+l,j<k or j=k+l,i<k 

i=j=k:+l . 

(111.6) 

(III.7) 

(k+l) x (k+l) 

(111.8) 
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Iv. APPROXIMATION OP CUTS BY SEQUENCES OF POLES5 

The functions B(x) appearing in the previous equations are analytic 

functions cut along curves in the complex plane which are disjointed from 

the right-hand unitarity cut. In the equal mass case it is generally a 

sin,-le cut i-unning along the negative renl axis. More generally it may 

have additional cuts along finite curves.6 In most applications B(x) has 

at least one cut extending to infinity. To discuss any approximation 

technique it is convenient to make a change of variables such as 

a x=- 
u+b ' 

which makes all integration ranges finite. Such a change leaves the in- 

teg:al equations (II-l)-(11.3) of the ssme form. 7 Now the proolem is to 

approximate the transformed kernel B(u) by a sequence of pole. The 

general expression for B(u) will be of 'the form, 

B(u) = (u + 7;) 
IS 

pi 

i c z-u 1 

dz . 

(IV.1) 

(IV.29 

Baker, Gammel and Wills?have suggested a scheme using the Pad6 approximants. 
, 

Their scheme consists of expanding B(u) as a power series in u 
- l-i , and 

writing each partial sum as a Pad6 approximant. These authors have shown 

that the sequence of approximnnts converges to the desired funtion under 

very general conditions. The cuts of Eq. (IV.21 are approximated by a 

sequence of poles whose positions approach the cuts themselves. 

We shall present a method, which, although much more tedious, has the 

advantage that it makes few assumptions on the function B(u) and likewise 

shows that the poles of the approximatin. g sequences are not on the unitarity 

cut, In actual practice the scheme of Ref. 7 is strongly recommended. 
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Although both methods are derived from the analytic structure of continuous 

f?.actions, the exact relation between them is not investigated. 

The assumptions we shall make on the function B(u) is that the con- 

tours c 
J 

are rectifiable; that there exists a convex region containing 

each c 'J J 
' such that it does not intersect the unitarity cut, and that the 

functions u).(z) are of bounded variation. 1Jnder these assumptions, let 
J 

us rewrite Eq. (IV.21 as 

B(u) = c s '3 c 

V,j (2) id-z! 
3 J 

u-z ' 
(IV. 3) 

wke re ldzj is the arc length along the curves c., and the factors 
J 'j 

are chosen so that vj(z) is a non-negative real function. 

Row we are in a position to approximate each term in Eq. (IV.3) by 

a sequence of poles. As vj(z) is a non-negative function, we may define , 

a set of orthogonal polynomials with vj(z) as a weight function, i.e., 

(iv.4) 

The coefficients of the piJ)( u are real, and t're zerces lie in the ieast convex ) 

region containing the curve c. for n 
J 

, and approach c. 
J 

sufficiently 

large. Tie zeroes of pLJ)(u) d o not lie along the end points of c. J 

for ary finite n. 

Let 

s v.(u)u'numjduj = cmn 
n J 

(IV.9 
c. 

J 
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and 

p(j)(u) - &qx) 
Qp(x) = s,. n 

u-x 
Vj(u)/duI l 

J 

are pwonials of degree n - 1 . By a theorem due to Markoff 

we have our result: 

J 

"j(u) /du/ 
= - 4&n c2 00 

(c 
OOCll u-x n-t= 

which by partial fractions may be expressed as a sum of poles. 
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