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dtot(sl) is the iotal cross section for the pion-nucleon system and is
approximately 30 mb for s, > 4 BeV®. The contribution of (15).1in the
o .

strict forward direction 6, = 0" is negligible as

P ex.
[ V"
\fw dn 9 =0° |
R >> 10 (17)

d.5C.
Qw dﬂ) J

Finally, we consider electromsgnetic plon-pair photonro&uction. As

nmstof the pair prod40ulon at this energy rang@ takes place w1+h t < %-mf 5

MrES

we can apply the Pauli-Weisskop? cross section®® (see Fig. 8):

(ng/w )* + sin* 8, K ~w, . 4o
25 = 723 A 1 . 414 _L (4o B - §> r dw, (i)
(1-p cos 6,) ERS © g
N 1 :
where
. o
B, iql{/“’l
[ Y1 |
— for a point charge ‘ (&)
. m_ ~

12 WL<K - WL)

for & uniform charge distribution. (b

m, X z’-/;" .
4 . over a sphere nucleus
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This cross section is extremely pesked st 51 = 0, and may be neglected -
for higher Ql velues. For K = 6 BeV the differential cross section
at o7 is about 3 X 1072 mb/BeV-sr under sssumption (&), and about

7% 1077 mb/BeV-sr inder assumption (b). The correct value for a Be

‘target is between these values and may Le calculated by inserting the

known electromagnetic form fectors of Be.

Contributions to electromsgnetic pion pair production with a p  in
: ) 22
. : 34 S " 1 sq Sony . .
the intermediste state (Fig ) can be neglected since o is of the
e

order of @ or smaller?® and mi > mi
‘Po summarize the results: we see that the main contribution to photo-
production.of charged pions in the strict forward diTectién.prcbably comes
from & £ photoproduced via a p exchange mechanism. A much smaller
contributiom-is due to electromsgnebic pion palr productién. The other
" contributions that‘h&ve been discussed gave either & zero or a negligible

cross sschicn et 8, =0

Iv. DISCUSSIO

Thz analysisz, presented ;n this paper suggests that the production of
a high energy charged éiyn at very small angies in the BeV region is mainly
sontributed by & photo ¢ production via a Reggelzed o exchange proéess.
Keeping in mind thez crder of magnitude of the electromagnetic cross section

o s ' =R . \ GO
(18), eny cross section bigger than 10 2 mo/BeV-sr at 81 = 0~ would

support “this conclusion. However, this conclusion depends very crucislly

on two unknown factors: the magnetic moment end the coupling constant of

the 0 meson,

e

nd the extrapolation of b{t) from the physical region to

the pole & = ml .



A very clean expe

,_1.

U B B P . 4
5 result msy ba obta;

[N

ned in a
deuterium bubble chamber experiment. Since only p exchanges may con-
tribute to a £ phovenroduetion, the forwerd directlon chasrged =t is

accompanied by a nesutrsl =, the sngulsy distribution of which can be

deduced from {11). Tie zssumed total cross section for the reaction

Y+ D=0 +yp+ (5]

in the very narrow forward cone, is of the crder of 0.0L mb. Reaction (19)
can be easily detected wiih a geood @

rec01l =4 proton

o By _ _ .
to determine L ~ and . slmultenecusly. san be determine
bt o

{19) may serve as a clue in
i

oment of the o.

s
m
d»
Fode
o
L“i

it was shown that the experimental results do not agree
with tﬁe pole approximation for the p  exchange process, whereas the
Regéeized expression {7} zives a much better fit. The interesting point is
that if the o exchange process plays any apprecisble role in double pion
photepréduction, the parameters of the p‘ exchange amplitude can be

determlned from the very rough behavior of the differential cross section

' e P Y ~ ~ P & L3 3
at small angles. 'The values 0.2 < & (0} < 0.5, te m'mg , obtained in

our analysis, are in very good agresment with phenomenclogical analyses of

: \ ' & ; s o . - Ll,12
p-n. charge exchange- and #-p scabtitering. Dynamical caleulations™™?"
of the =n-xn ca*tvﬂing smplitude consistently yield a different result:

Qb(O) 2 0.5. It should be noted, however, that the dynsmical calculations

K

(19)



of Ob(@) are very sensitive Lo I'y and were performed for the s-n

elastic channel only.

in this Taper 1s not sensitive to
Fp (see Fig. it); naither sre the pe-n  cherge exchange and w-p scattering
analyses.

Let us novw examine the consequences of the present snalysis for hig

m—
i oed
s‘E-'
=3

—t
>

photon energies Due to the choice 0.2 <o (0) < 0.5, the

P exchange contribution to double wmion whotoproduction drops slowly with
increasing energy. Hence, the differentisl cross ssction to photoproduce
3 ! t T 3 5 o s b}
a high energy (K - w. = 2 BeV) charged pion at &, = 07 will be about
D \ 5t » & 1

1072 mb/BeV-sr for K = 20 BeV. This crcss section is comparanle to the

electromagnetic &iffe 'nnb lal ecross

of photoproduction cross section

lative to compare these numbers with the Dr

rel An un-
Reggeived = exchange process contributes a aboul

O.B‘mb/BeV—sr at O, = mﬂ/wﬂf Reggeizstion of this contribution reduces
this number by one order of magaitude.j Comparison »f these éross sectlons
is given in FigJ 10 for K'= 20 3eV, w; = 18 BeV. As can be seen, detection
of ﬁhe P exchange cross section at &, = 07 is more complicated for

higher energies since the angular resolution needed is one-tenth of a degree,

as comparéd with half a degree at ¥ = 5 BeV.

&

The considerations given in this tag“v mey be applied to K photo-

. N -2 R
production if the corressondence =n —+X, o K ig made.
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FIGURE CAPTIONS

Some peripheral contributions to single pion photoproduction
(a) One pion exchange

(v} » exchanée

(é) Multi-peripheral model

p ‘exchange mechanism leading to a p photoproduction

' (a) The exchanged p treated as a perturbative pole

(b} The exchanged p treated as a Begge-pdle

The gaiculated cross sectlons as compared with experiment

Pp dependence of the differentlial cross section contributed by

p exchange

Double pion photoproduction

High-energy photo-pion production from a nucleon (a) or an isobar (b)
High-energy photo-pion production via a diffraction scattering process -
Elec?romagnetic pion pair production

Electromagnetic pion pair production with an intermediate p

Cross sections for high-energy photo-pion production at small angles

(a) OPE in the pole approximation

(b} Reggeized OPE

(e¢) Reggeized p exchange
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I'p =100 Mev
0 =150 MeVv

~——1p =150 MeV

FIG. 4

'e:g\‘f//
a \11?\&/ —T'p =100 Mev ]
\’x/ —Tp= 50 MeV
K =4.85 BeV
W, = 4.0 BeV
| |
0 2 4 6

48-4-4




i

e

.5 . 4B-5-A



el - {a)

(b)

FIG. 6 . 4B-g-A



L BVVANAAAAAN e e B

e

H

FiIG. 7 48-7-a



43-8-A



"ZT ”MM"? ql
=
o
; e
z
P
P
2
(=
FIG. © 28-9-4



Js-A°g / QU

0.001




