
SPSIC-~~73-28 
my 1964 

EMPIRICAL PARTIAL WAVE ANALYSIS OF n+p ELASTIC SCATTERING 
ABOVE 1 GeV/c* 

Martin L. Per1 and Mary C. Corey 

Stanford Linear Accelerator Center 
Stanford University 
Stanford, California 

(Submitted to Physical Review) 

* 
Supported in part by the U.S. Atomic Energy Commission and 
in part by the U.S. Office of Naval Research. 



I 

ABSTRACT 

The partial wave equation 

da/d..Q = [1/2ik] 1 (A f l)(l - a1 
a=0 

PJCOS 6) 
2 

has been used to fit most of the recent sr+p differential cross section 

measurements above 1 GeV/c. The a1 were determined by the method of 

weighted least squares, with the further requirement that they be real and 

they satisfy either constraints of the form 12 1 - a1 > 0 (which allows 

the scattering to be interpreted as purely absorptive) or the more relaxed 

constraints 2 > 1 - aQ > 0. This equation with the requirements does not 

allow the scattering amplitude to have a spin-flip part or a real part, but 

for one set of data further terms were added to allow these additional parts 

of the scattering amplitude. For each differential cross section at the 

various energies, a set of aQ values was determined which in almost ail 

cases fit the measured cross sections quite well. These sets of a1 para- 

meters have two properties in common. First, all aQ except a0 satisfy 

l>l- aazO. The a, parameters (s-wave amplitudes) required 1 - a0 2 1 

except for the higher energies where l>l-a,- > 0 was obtained. Second, 

graphs of 1 - aQ versus 4 ( one graph for each different cross section 

measurement) show that 1 - a1 decreases rather smoothly with increasing 4 

and that the slope is roughly either linear or concave upward. No striking 

variations in the aa parameters are observed when the energy is close to 

one of the r+p total cross section resonances. The aQ parameters are 



interpreted using 1 - aj as a measure of the absorption of the cth 

partial wave by inelastic processes. Differential ross section measure- cl 

ments of Tf'+p at 2.01 GeV/c and of ?i-+ip at 2.02 GeV/c previously pub- 

lished only ..*& graphical form are given in the appendix. 



I. INTROXKJCTION 

In the last few years a large amount of data on eiementary particle 

elastic scattering above 1 GeV/c has been pr0duced.l Most of it has 

been analyzed from the standpoint of the simpler form of the Regge 

theory of elastic scattering in which the data was to be fitted with 

only a few parameters, some of these parameters having physicai signifi- 

cance.2J3 The hope that such a simple theory would be satisfactory has 

not been fulfilled. More parameters were required than first thought 

necessary, 4,5,10,15 and the theory was found to be much more complex 

than first supposed. Therefore, it is desirable to look at this recent 

data from some other theoretical viewpoint. Ideally one would like a 

theory of elastic scattering derived from a general form of quantum 

field theory or S-matrix theory, this theory at the same time containing 

only a few parameters to be determined by experiment. It would be even 

more satisfactory if at some level the theory, or its parameters, had 

direct physical significance or gave some physical insight. No such 

theory exists and, therefore, we have turned back to some older concepts 

which while not directly related to any profound theory at least pro- 

vide a way of fitting the data so that the values of parameters provide 

physical insight. These concepts are the partial wave analysis of 

scattering theory combined with the assumption that at high incident 

momenta, most of the elastic Scattering is absorptive. 

We have analyzed the 7f+p elastic scattering above 1 GeV/c using 

empirical partial wave amplitudes with two purposes in mind. First, 

looking upon this analysis as a generalization of the optical 
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model, we wished to discover how well a generalized ootical model cou!.d 

fit not only the diffraction peak part of the elastic scattering, but 

also the entire differential cross section. 

Secondly, the resonances recently discovered above 1 GeV/c in 

~+p total cross sections are sometimes related to a particular angular 

momentum state, whose identity is sought by studying the elastic differ- 

ential cross section at the resonance energies. Thus, the large peak in 

the back hemisphere in T'+p elastic scattering at 1.5 GeV/c has been 

related by both V. Cook et a1.6 and J. Helland? to the 7r+p total cross -- 

section maximum at 1.4 GeV/c; and the second peak in the n-+-p differ- 

ential cross section at 2.02 GeV/c has been related by Damouth et a1.a -- 

to the 2.1 GeV/c IT-+p total cross section maximum. However, L. M. 

Simmons9 has shown that this second peak in ~--tp differential cross 

section at 2.07 GeV/c can be explained by a simple optical model. We 

have investigated this point further. 

In this paper the analysis is almost completely restricted tc 

purely absorptive scattering; that is, we usually neglect the effects 

of non-absorptive elastic scattering and spin-flip elastic scattering. 

Originally we intended to include these effects, but as will be de- 

scribed later the fitting problem becomes very complex when these 

effects are included, and we have found no solution to the problem. 
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II. TmORY AND MEI'HOD 01 ANALYSIS 

A generai discussion of theories of elastic scattering has been 

given by Perl, Jones, and Ting?' and the reader is referred to that 

paper and its references for the background. We begin here immediately 

with the partial wave analysis of TSP scattering. For spinless 

particles when no inelastic processes occur, Schiff'l shows that the 

differential cross section in the barycentric system ds(B)/dR is 

given by 

d@)/dR = IA(Q 

where 

A(8) = [1/2ik] 1 
a=0 

(2&l .) (exp (2i6Q) - 1) PQ(cos 0) 

Here & is the orbital angular momentum quantum number of the partial 

wave, k is the wave nwnber in cm-' in the barycentric system, d IS 

the scattering angle in the barycentric system, P,(cos 6) is normalized 

so that Pi(l) = 1, and sj is the phase shift always taken to be 

-fl'<8Q <3-c. For the remainder of this paper all quantities will be 

in the barycentric system and P,(cos Q) will always be normalized 

as above. 

If inelastic processes can occur, then Eq. (2) is modified by the 

addition of quantities aa where OzaB <l and - 

A(8) = [1/2ik] 
c 

(A+ 1) (aj exp ,(2i.se) - 1) PQ(cos 0). 

I=0 

(1) 

(2) 

(3) 
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If there are no inelastic processes in the -?.-th wave, then aa = 1; if 

the &th wave is completely absorbed by inelastic process, then aa = 0. 

Thus, aa is the degree of elasticity. 

Finally, if one of the particles has spin l/2 and the other spin 0, 

as in the T+p system, then for each 4 there are two possible total 

angular momentum states j = 4 +- 1; Eq. (3) becomes 

A(8) = [1/2ik] f [(t + 1) (ad exp (2i6k) - 1) 

a=0 

+ &(a; exp (2iZj) -1) 
J 

Pi(COS 0) 

But a second amplitude appears also, B(8), where 

co 

B(8) = [1/2ik] 
u ai 

ai exrp (2iSd) - a; exp 

sin 8 G)/d(cos 0) 
I 

and da(e)/dQ is now given by 

do(@)/dS1 = j A(B + /B(e)\’ 

(4) 

(5) 

(6) 
This B(8) results from that part of the elastic process in which the 

orientation of the spin of the proton is changed. BW is referred to 

as the spin-flip amplitude in this paper. 
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Equation (4) may be rewritten 

A(B) = [1/2ik]( 1 [(& + l)(ai cos 2s; - 1 

po 

n, - 

) + &(a1 cos 2Ze - 1 ); P (COS e) A': 

> 

+i 
L 

[(t + l)(a; sin 26:) + & (a; sin 2&i)] PQ(cos e)) 
a=0 J 

= Ai + A,(0) . 

If all 6; and 6; are zero then the real term A,(e) is zero and 

A(@) is then referred to in this paper as purely absorptive. This name 

simply indicates that there is no phase shift of the partial waves, only 

absorption of them. When some + hj or bj are not zero, then some 

non-absorptive scattering is said to be present. When this phrase ncr,- 

absorptive is used, one should recall that it means not only that the 

real part A,(Q) is non-zero but also that the imaginary part Ai@) 

is modified. 

Just as A(8) can be separated into real and imaginary parts, SO 

can B(0). Thus Eq. (6) is rewritten 

da(e)/dn = IA&e+ + IA,(B) I 2 + jB&e) j2 + jBr(i3)j2 

where 

Ai = [1/2ik ] 1 [($ + l)(ai cos 26; - 1) + &(a, cos 28; - 1)] PL(cos e) i 

A,(e) = [1/2k] c [(t + l)(ai sin 26;) + &(a; sin 28,)] Pe(cos e) 
a=0 

&a: 

m 

3i(e) = [1/2ik] 
c 

[a: cos 26; - ai cos 2Se] sin 8 [dPe(cos e)/d(cos @)] / 
.2=0 

B r (a) = [1/2kl 2 [a; sin 26; - aa sin 28; ]sin B[dPp(cos Q)/d(cos 6)] 
a=0 

t (6a 
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Now the partial wave analysis is useful only if a small number of 

& values contribute to the scattering. This has been the basis of its 

very extensive use at low energies for T-+P and pi-p scattering. How- 

ever, for elementary particle scattering above 1 GeV/c, partial wave 

amplitudes at least through 4 = 4 must be used; and since for each & 

value there are four numbers to be determined, at least twenty parameters 

should be determined. When one considers that the data is usually not 

of sufficient statistical accuracy to determine twenty parameters, that 

there are ambiguities, and that these are non-linear equations, it is 

clearly not possible simply to go ahead and evaluate these parameters 

without any restrictive assumptions. 

In fact, it has been customary to make some very specific physical 

assumptions in order to solve this problem, and the most often used 

assumptions lead to the optical model. In this model one assumes that 

+- 
% = 0 and that ai = aa . In the simplest case of the optical model 

one goes further and sets 

a.8 =a<l, O<&<L - - 
? 

which leads to the result, 

A@) = [(1 - a)/2ik 

B(B) = 0 

! where L >> 1 

(2& + ~)P~(COS e) 

d&)/dQ = [(l - a)2/4k2] (2X.+ l)P&m 

(7) 

(8) 
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Physical significance is given to this model by thinking of a spheri- 

cal interaction region of radius R, where R is the range of the inter- 

action force. Then if the wavelength of the particle being scattered is 

small compared to R one can think of the scattering as a semi-classical 

process in which the distance of closest approach of the scattered parti- 

cle to the center of the scattering force is &5/p =qk. Here p is the 

momentum of the particle and & is the orbital quantum number of a par- 

ticular angular momentum state. Then for qk< R or & < Rk the incom- 

ing waves are partially absorbed and aa <l. For -e/k>R or &> Rk, 

there is no interaction and a4 = 1. With this reasoning Eq. (8) becomes, 

with L = Rk, 

da(e)/dQ = (1 - a)2 k2R4 

which is the usual form. This very simple model has only two parameters, 

R and a, .and it does not fit the data at all well. 

Our extension of the simple optical model is based on two observa- 

tions. First, we observed as several authors 
L-2,13 have, that it is not 

necessary to use conditions (7). Rather, a more general condition can be 

used: 

8; = 6; = 0 

+ = a- 
&a a = "a 

aQ x 0 (or at least < 1) for small & 

(9) 
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Thephysical significance of this generalization is that the idea 

of an interaction region of range R and uniform strength has been 

replaced by an interaction region of non-uniform strength. We assume 

only that the interaction is purely absorptive and that there is zero 

absorption at very large & values. Remembering that the interpreta- 

tion is still semi-classical, we associate the a1 at small $ values 

with the strength of the interaction at small distances a/k, the aa 

at large & values with the strength of the interaction at large 

distances qk. Thus a sudden rise of a1 from nearly 0 to 1 at some 

4, would be interpreted as a sharp drop in the interaction force at 
1 

distance r =.tl/k. On the other hand, a slow rise of a1 from 0 to 

1 would mean no sharp boundary to the interaction region. Finally, 

if aa for small & were larger than aa for some intermediate 

& values, this would be interpreted as a hollow core. 

A way of visualizing this is to use a graph in which 1 - ab is 

plotted versus & as shown in Fig. 1. Usually the sharp cutoff of 

the simplest optical model (curve A in Fig. 1) is replaced by a gradual 

cutoff such as the decline of a Gaussian curve (curve B in Fig. 1). 

If one assumes that the variation of a4 with & is smooth, then 

approximate analytic methods can be used to calculate da(Q)/dQ. 

Two informative papers, one by Greider and Glassgold12 and the other 

by Frahn and Venter,13 use approximate analytic methods to discuss 

the generalized optical model, even with EL # 0 and B(8) # 0 in 

some cases. 
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Our second observation is that these approximate analytic methods 

which are very useful for understanding the behavior of da(Q)/dQ for 

various assumptions as to a& behavior, are not appropriate or necessary 

for r+p elastic scattering in the 1 GeV/c to, say, the 10 or 20 GeV/c 

range. They are not appropriate because in many cases the maximum & 

value at which a R is still significantly less than 1, is only 4 or 5, 

and thus the sum cannot be replaced by an integral. They are not 

necessary because it is possible to calculate the exact da(a)/dn for 

any set of aE values. 

But more important, with a computer it is possible to do the re- 

verse problem. Namely, given an experimental differential cross sec- 

tion, one can find the set of real a E values which gives the best 

fit to the equation for the differential cross section with purely 

absorptive scattering 

T, 

do(B)/dQ = t1,k’i-d 
c 

(2&+ l)(a, - l)P&cos e) 

a=0 

2 

. (10) 
,The purely absorptive scattering demands that 0 5 aQ < 1 but with 

some loss of consistency one may require -1 5 a1 < +l. This is 

equivalent to allowing gg f 0, so that (ae - 1) 3 (aa cos 2Ej - 1). 

The loss of consistency comes from not including the (aa sin 2Ej) terms. 

If there were no constraints on the a1 values then the fitting 

of the equation 

L 

[do(f3)/dJ+ = [l/m] 1 (243X+1 .>(a, - 1 P,<COS 0) ., 
a=0 
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which is linear in the parameters aE7 can be treated by the standard 

weighted least squares methods. The constraints on aQ make the 

problem much more difficult and we were fortunate in having available 

a program written by C. Moore,14 entitled CURVE, which fits parameters 

by the standard method of minimizing the weighted sum of the squared 

residuals. 

Given an initial estimate of the parameters al, the program 

evaluates the function and obtains the residuals at each of the data 

points. It is these residuals which are then fitted by using matrix 

inversion to solve the standard system of normal equations, formed by 

taking the derivatives with respect to each of the parameters. This 

procedure yields the correction increments to be applied to the origi- 

nal values of the parameters. In the linear case without constraints, 

only one iteration is sufficient. However, in the non-linear case, 

the function having been first expanded by means of a Taylor series, 

repeated iterations are required, always fitting successive residuals 

to obtain smaller and smaller correction increments to be applied to 

the previous set of values of the parameters. 

In the case of constraints, the situation becomes slightly unpre- 

dictable, since a constraint equation is added to the system if,and 

only if, the parameter to be constrained falls outside the designated 

range due to the fact that it was adjusted by too great an amount on 

the previous iteration. A test on all the constraint cases is made 

at the end of each iteration, and if a constraint is violated, the 

appropriate constraint equation is added to the system, and another 

iteration is required. 
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III. EMPIRICAL PURELY ABSORPTIVE r'+p PARTIAL WAVE AMPLITUDES 

BELOW 3 GeV/c 

In order to make a meaningful application of the least squares 

method described at the end of the last section, it is necessary to 

have data on the differential cross section at all angles. Above 

3 GeV/c existing n+p differential cross-section measurements con- 

cern only the diffraction peak; there are no large angle measurements. 

Therefore, the least squares analysis is only applied to the data at 

3 GeV/c and below, which is listed in Table I. 

In the fitting of data by an infinite series, the question of 

how many terms to use always arises. We have used the criterion 

that the series be extended until the ratio of s2/D approaches a 

minimum and then levels off or rises again. Here X2 has the 

standard meaning of the sum of the squares of the ratios of the 

residuals to the errors at each data point. D is the degrees of 

freedom which we have taken as the sum of the number of data points 

and number of constraints used minus the number of parameters. 

Table II gives the values of the parameters (1 - aa) for each set of _ 

data for several maximum values of & around this minimum x2/D 

point. The parameters are also given for the kinds of constraints, 

0 < a1 < 1, which is designated by I, and -1 _< a1 5 1, which is 

designated by II. Constraint II, by allowing the additional range 

-1 5 aL < 0, implies that JI 1 iSj/ _' 7(/2 is being allowed, or that 

at least 2bj = x is being allowed. Thus Constraint II allows at 

least a 90' phase shift in addition to the 0' phase shift of Constraint I. 
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We first &serve that the II constraint always gives better fits, 

and sometimes substantially better fits, than the I constraint. How- 

ever, we also observe that it is only a0 which requires the II con- 

straint. That is, it is only the S wave which is not purely absorptive. 

There is no particular reason known for the S wave to be exempt from 

the I constraint, but it is probable that the improvement in the fit 

when 1 - a o > 1 is due to the S wave taking up some of the neglected 

non-absorptive and spin-flip scattering. 

We have taken the II constraint parameters as being most meaningful 

and Figs. 2 and 3 show the kinds of fits which are achieved. To simpli- 

fy the comparisons, experimental cross sections at each momenta are 

divided by the quantity (kotot/4fl)2. This is the 0' differential cross 

section given by the optical theorem if the scattering amplitude has no 

real part. Since the real part is small,this normalized do/dR goes 

roughly to 1.0 at 0'. The fitted curves follow the data quite well and 

in no case is there a deviation between the two which could not be 

taken account of by a small amount of non-absorptive or spin-flip 

scattering. These neglected scattering terms could also account for 

the low 3c2 probabilities which are listed in Table II. However, 

these %.' probabilites should not be taken too seriously because the 

errors used were purely statistical. No account was taken of system- 

atic errors in the instrument or the analysis. In many of the experi- 

ments it is reasonable to take the systematic errors as very roughly 

equal to the statistical errors, which immediately increases the 

probabilities drastically. These %L2 probabilities are also listed 

in Table II. 
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A few comments on Figs. 2 and 3 will now be made. All the plots are 

semilogarithmic so that the fluctuations of the cross section at larger 

angles (where statistics are poorer) are exaggerated. Similarly, the devi- 

ations of the fitted curves from the data at these larger angles seem to be 

more important than they really are. Conversely, the diffraction peak has 

a very strong effect on the aa values because of the relatively high 

statistics of the points on the peak. 

For ?r+p at 1.33 GeV/c the fit at large angles is poor; since this 

momentum is relatively low, the purely absorptive assumption may be quite 

poor here. However, some of the fluctuations in the data occur over such 

a small region of cos 8, that there is some possibility that there are 

errors in the data, or that higher & values are needed. For T++p at 

1.33 GeV/c the purely absorptive assumption is definitely wrong. The 

reason for the fitted curve lying almost always below the data is that 

1 - a0 ,< 2 was required. A further increase in 1 - a0 immediately im- 

proves the fit. This 1.33 ~++p data of Helland has been fit by him with 

an equation of the form 

% 
c&cos Ni 

i=o 

with no constraints on the CiO He obtains a good fit but this series can- 

not be resolved uniquely into our aR and 5 values, so we cannot inter- 

pret it. To see if small amounts of higher 4 states would improve these 

low momenta fits we have tried higher order fits which are the dashed curves 

in Figs. 2a and 3a. The a-+p curve for these higher orders fits the data 

well, but the -rr++p fit remains poor. This may be related to the resonance 

in the n++p total cross section at this momentum. 
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Whether the fitted du/dA turns up or down as 8 approaches 180' 

depends on the data near that point. In general, we find either large 

uncertainties or possibly unrealistic fluctuation in du/d.Q near 180'. 

Thus the da/dQ in 1.50 GeV/c 7r++p at 180' very probably turns up the 

way it does at 1.55 GeV/c .rr++p; however, the statistics of the last point 

at 1.50 GeV/c are not sufficiently high to force the turn up, unless trnU 

is increased. The backward peak in the 2.92 GeV/c 7T++p and 3.15 GeV/c 

'rr-+p data comes from the fit at smaller angles and there is no proof of 

its existence. 

Finally, in the 2.02 GeV/c r'+p we have also tried higher 4 max fits 

(the dotted and dashed curves) although the statistics do not warrant doing 

this. The dotted curve which has tmax = 10 turns up at 180' while the 

dashed curve which has tmax = 9 turns down, although both of these curves 

follow the data quite well. Once again this indicates the uncertainties at 

180' in do/dQ. 

Of course, there is no proof that the parameters of Table II are unique. 

It is certainly possible by using large amounts of non-absorptive and spin- 

flip scattering to get drastically different answers. However, on the as- 

sumption that the scattering is mainly absorptive, the parameters of Table II 

provide a set of partial wave amplitudes which describe quite well all the 

varied shapes of the existing data. To visualize how these partial wave 

amplitudes vary with &-, 1 - aa is plotted versus & for 7;'+p in Fig 4 

and .rr-t-p in Fig. 5. 
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IV. EMPIRICAL PARTIAL WAVE AMPLITUDES ABOVE 3 GeV/c 

To fit the data above 3.15 GeV/c we have extended a method Of 

Minamil' in which the data is first expressed in the form 

da/dR = [A( 

A(8) = exp (a0 + al cos 0) + c + exp (- b. - b1 Cos 6) . 

This is a form suggested by the simple Regge theory in which the first 

term is the exponential diffraction peak, the last term is a possible 

peak for 180' scattering and c is a constant background term. Minami 

uses this form to show the effect of the possible, but so far unde- 

tected, backward peak on the partial wave amplitudes. For this simple 

form the partial wave amplitudes can be found analytically. For 7fr-+p 

at 4.13 GeV/c, Minami gives a1 for the case in which there is no 

backward peak and for the case in which the backward peak is l/24 of 

the diffraction peak in height. His values in the form 1 - aa are 

given in Table III. The major difference between the 1 - aJ values 

in the two cases is that if there is no backward peak, 1 - a1 de- 

creases monotonically, whereas if there is a backward peak, 1 - a e 

oscillates for small 4. This is a phenomenon which we frequently 

observed in the course of these fits at momenta above 2 GeV/c. The 

diffraction peak can be fit by a monotonically decreasing series of 

1 - a values or by a series in which either the even 4 or odd & 
a 

values of 1 - aR are larger. However, the second situation always 

leads to a backward peak. This can be understood by realizing that 

for 8 close to 0, all P (cos 0) are positive and the partial waves 1 

- 15 - 



add. For 8 close to l80', the Pe(cos 0) are posi.tive for even 3, 

and negative for odd &. If the amplitudes are monotonically decreasing, 

then there will be almost complete cancellation at 180'. But , if tii? 

even & or odd & amplitudes are unusually larger, there will be a 

residual backward peak. 

For 4.95 GeV/c, T-fp we have used the exponential fit of Per1 et - 

a1.i' - 

do/dR = exp (3.64 + 8.9t + 2.0t" + 0.1t3), 

where t is the square of the four momentum transfer in [GeV/c]'. 

The expansion in partial waves, 

kxp (3.64 + 8.gt + 2.0t2 + 0.1t3)]* = [1/2k] I(1 - aj)(2$ + l)P&cos s 
a=0 

was carried out by numerical integration. The 1 - aQ values are 

listed in Table IV. 

Figure 6 shows the 1 - ae versus 4 plots for the no backward 

peak case for 4.13 GeV/c and for 4.95 GeV/c. The 1 - ag versus ?, 

behavior is a clear continuation of the behavior at lower energies. 

For the very high momenta such as the measurement of Caldwell et - 

$., ' or of Foley et al.,* there is no pain> in writing down al1 the -- 

partial wave amplitudes at this time since the large angle d?fferential 

cross section is completely unknown. At higher energies i;i:e vi+;3 

differential cross section has very close to an exponential shape in 

t. Therefore, the 1 - aQ versus 4 behavior as exhibited at lower 

energies will continue, namely, there will be a 1 - ai \je rs*dj J, 

behavior such as in Fig. 6, with 1 - a0 < 1 and a slow decrease in 

1 -a ~ as $ increases. It is interesting to observe that below 
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3.15 GeV/c the best fit requires 1 - a0 > 1, but that above 3.15 GeV/c 

all 1 - a a are less than 1, so that above 3.15 GeV/c the fit can be 

purely absorptive. 

V. COMPARISON WITH OTHER MODELS 

The fits to 'the data found in Section III are much superior to the 

fits obtained using the standard optical models. To illustrate this, we 

have made the best fits to the data using the following models for a2: 

Sharp Cutoff Rectangular Model: 

1 e=l-a,O-<L_<&max - a 

1 ,=o - a ' ' ' 'inax 

Sharp Cutoff Gaussian Model: 

1 - a a = 3/amafi J 0 <J/<-t. - - max 

1 - a a = (3/J--max&hd- 9W - ~ma)2/&~axh Jf. > gmax 

Median Cutoff Gaussian Model: 

1 a - a = 3/2tmax@ , 

1 - a a = (3/2tm, $G)exp(- 9(& - tmaxj2/8+;ax 

Pure Gaussian Model: 

1 - a 

o<t.<-e - - max 

' ' "max 

all & 

The sharp cutoff rectangular model is self-explanatory: the co- 

efficients are constant up to some maximum value of 4, after which 

the 1 - aa are zero. In the sharp and medium Gaussian cutoff models, 
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we have held the parameters constant up to some maximum &, and then 

let them decrease by following a Gaussian curve in which the mean is 

%MX~ and the variance is &-/3 and 2$,/S, respectively. The 

pure Gaussian model represents an immediate Gaussian decrease in the 

values of the 1 - aa, with no constant sequence at the beginning; 

that is, the mean is equal to &-, which is equal to zero. 

Figure 7 shows the fit for the Sharp Cutoff Rectangular Model 

(A), the fit for the best of the Gaussian Models (B), and the fit of 

Section III (C), for 2.01 7t-+p and 3.15 a-+~. In considering the 

goodness of fit of the models, one can neglect the points at which 

the calculated curves go to 0. These points look very bad because 

semi-logarithmic plots are being used, but a small amount of non- 

absorptive or spin-flip scattering can adjust these points. However, 

the important observations are first, that the Gaussian models are no 

improvement over the Rectangular Model in spite of the usually held 

idea that a Gaussian Model is more realistic. Secondly, both models 

deviate from the data at both large angles, and in the diffraction 

peak. Finally, they clearly need major modification (such as adding 

a constant term) to improve the fit, so that one might as well go 

directly to the fits of Section III. 
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VI. DISCUSSION OF THE PURELY ABSORPTIVE WAVE AMPLITUDES 

The conclusion from the last three sections is that we have found 

a set of aQ values which change in a smooth way with energy and which 

fit the data quite well. Except for the S-wave all the 1 - a& are 

less than one. The maximum & used is roughly 1.3 to 2 times kR 

if R is taken as lo-l3 cm. All of this is in accord with some opti- 

cal models which have been previously used. However, there is a very 

important difference between all previous models and these sets of 

parameters. In previous models the values of 1 - a1 are taken as 1 

upto some &',andthen l- a a drops to 0 quickly or slowly depend- 

ing on how sharp a cutoff is assumed. 

However, looking at Figs. 4 and 5, it can be observed that, for 

all our sets of parameters, 1 - a a decreases continuously to 0 with 

no indication of a 'break or change in the shape of 1 - a a versus 4. 

There is no evidence of a surface region. The shape of the 1 - ae 

versus & curve lies between linear and concave upward, and no in- 

elastic channel is completely absorbed except for the S channel. In 

terms of the pion-nucleon interaction this means that the rough picture 

is one in which the forces decrease smoothly with distance, and which 

indicates no surface region in which the forces change rapidly. 

Of course this is the picture given by field theory also, and 

the diffuseness of the pion-nucleon interaction is, therefore, no 

surprise. Perhaps the main point of this analysis is not the behavior 

of the large & value amplitudes, which have always been assumed to 

be decreasing smoothly to 0. The point is that even the low 4 states, 

such as p and d, are incompletely absorbed. 
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We now turn to the relation between these a& fits and the higher 

pion-nucleon resonances. As discussed in the Introduction, Simmons' 

has shown that the 

second peak at 2.0 

Reference to Table 

reproduce the data 

value; that is, no 

agree with Simmons 

Sharp Cutoff Rectangular Model can explain the 

GeV/c in the ?r'+p differential cross section. 

II shows that the fitted values of 1 - al, which 

quite well, exhibit no particularly large 1 - a$ 

4 state seems to predominate. Therefore, we 

that the '!~'+p differential cross sections give 

no evidence as to the angular momentum states which cause the 2.1 

GeV/c maximum in the n-+p total cross section. 

Furthermore, the several fits to the n'+p data in the 1.5 GeV/c 

region show no dominant high angular momentum state. Therefore, the 

large backward bump in the differential cross sections at these 

momenta may not be related at all to the nip total cross-section 

maxima at 1.4 GeV/c. As has been stated before, these fits may not 

be unique and there may be a set of amplitudes, particularly when non- 

absorptive and spin-flip scattering appear, which do show that a higher 

& state is particularly large. 

In connection with this,it is important to know that the sizes of 

the coefficients cn in an expansion of the form 

N 
da(e')/dn = cn[cos el" (11) 

are not directly indicative of the importance of a particular & state. 

For example, if one considers a Sharp Cutoff Rectangular Model of the 

- 20 - 



form 

1 - a ,=l , o<-e<3 - - 

1 a=o,t>3 - a 

then the relative sizesof the coefficients when da/da is expressed 

in the form of Eq. (11) are 

C = 1 
0 

C = 1 P-1 

C = 
2 

15.4 

c3 = -52.4 

C = 4 -91.2 

C s = 115.7 

C 

6 

= 136.1 

Thus, one might be tempted to ascribe particular importance to & = 2 

or & = 3 states since the c4, cs, and cs coefficients are so 

large, whereas all states actually enter with exactly equal absorption. 

As another example, consider a model with 

1 -a o=l 

1 - a ==1/3 

1 - a = l/5 2 

1 - = 117 
a3 

1 - a = l/P 4 

1 - a = l/11 5 

' - a = l/l3 
6 

1 - a a=~,&>6. 
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The relative cn coefficients are: 

C = 0 +l.O, 

C = 40.8 1 
C = -2.8 

2 

c3 = -4.6 

C = -8.4 
4 

C = -0.0 
5 

C = 
6 

-5.0 

c7 = t-41.5 

C = 8 +43.9 

C = 
9 

-71.4 

C = -64.0 
10 

C 11 = +38.5 

C = 12 +35*0 

Here again, the higher & states seem to predominate, whereas there 

is actually a smooth dropoff in the absorption as $ increases. 

VII. INCLUSION OF NON-ABSORPTIVE AND SPIN-FLIP SCATTERING 

Our original hope of being able to make complete fits using the 

full Eq. (6a) was not fulfilled for two reasons. First, the computer 

problem proved to be very difficult since Eq. (6a) is non-linear and 
z!z k there are constraints on aQ and Ej. Unless the program was given 

initial values for the parameters quite close to the best fit parsme- 

ters, the computation converged either very slowly or not at all. 
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Frequently, as the iteration proceeded, some constraints went in and 

Out Of the calculation repeatedly so that the iteration became cyclic. 

Therefore, in many cases when we attempted a complete fit we found no 

solution and in no case could we be sure that we had found the solu- 

tion with the lowest X2. 

The second reason is that much more extensive data is required. 

Not only is there the obvious need for polarization data to give the 

spin-flip scattering, but for the differential cross section both good 

statistics and close data spacing are required. For example, we find 

at 2.01 GeV/c n-+p that the exact shape of the diffraction peak 

strongly controls the values of "a' This is the reason that the fit 

to the second peak is not exact. Also, even though there are 7000 

events in this measurement, the statistics at large angles are in- 

sufficient. On the other hand, in the 1.55 GeV/c 'rr++p data there are 

good statistics at large angles, but the diffraction peak was not 

measured at small enough angles, so its slope is relatively unsure, 

and the values of a a may be somewhat inaccurate. 

However, as a first look at more complete fitting, we have taken 

the 2.01 GeV/c n-+p data of Damouth et a1.8 This data, which has 

only been published previously in graphical form, is given in the 

Appendix along with the 2.02 GeV/c .rr++p data of Damouth et a1.8 

The differential cross section is written in the form 

da(Q)/dfi = [l/'+k21 

2 i 
(2X.+ l)(l - aa)Pj(cos 6) I - + 

c 
bi(cos 8 

i=o 
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I 

The bi series is designed to allow for spin-flip scattering and the 

sin 26~ part of the non-absorptive scattering. The a1 were constrained 

so that 0 5 1 - a1 < 2 and the bi were constrained SO that 

i max 

c 
bi(Cos e)i > 0 ) for all 8. 

i=o 
(13) 

Figure 8 indicates the improved fit to the data, given by the solution 

in Table V. Table VI lists da(e)/dn and the contribution of the b; 

series for a selection of cos 8 values. In the very small angle region 

the bi contribution is always less than lo%, which agrees with the 

requirement that the real part of the scattering amplitude and the spin- 

flip scattering amplitude be small in this region. For some of the large 

angles, however, the bi contribution is the major part, but here there 

are as yet no theoretical ideas with which to compare these predictions. 
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APPENDIX 

Pion-proton differential cross section in barycentric system. 

The errors are statistical and do not include an overali nor- 

malization error of 28% for Tr-+p and +l@$, -20s for 7rrrf-tp. 

cos 8 

-935 

a925 

-915 

*vo5 

.8go 

.870 

.850 

.83 

.81 

-79 

.77 

*75 

.73 

.7l 

.69 

.66 

.62 

.58 

.54 

-50 

IT--tp scattering at 2.01 GeV c 

da/dfi.(mb/sr) 

6.04 * .28 

5.28 + .27 

4.74 t .25 

3.92 f .24 

3.16 + .15 

2.54 * .14 

2.13 -t .13 

1.86 2 .12 

1.45 * .ll 

1.02 2 .og 

.7g I .08 

.63 * .07 

.54 + .07 

-35 + .06 

.25 + .05 

.20 k -03 

.14 + .03 

.06 I .02 

.lO t .02 

.05 k .02 
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I 

&pendix (cont'd) 

~-+p scattering at 2.01 GeV c 

cam 8 

.46 

.42 

.38 

.34 

.30 

.26 

.22 

.18 

.14 

.i '0 

.06 

.02 

-.02 

-.06 

-.lO 

-.16 

-.24 

-.32 

-.40 

-.48 

- .56 

-.64 

-.72 

-.80 

-.88 

- .94 - 26 - 

do/dR (mb/sr) 

.08 2 .02 

.ll k .03 

.17 * .03 

.15 + .03 

.18 + .03 

.23 2 .03 

.25 k .04 

.18 i .03 

.23 k .03 

,14 t .03 

.16 2 .03 

.ll 5 .02 

.16 k .03 

.14 + ‘03 

.og + .02 

.08 _+ .oi 

.06 t .oi 

.06 _+ .oi 

.05 k .Ol 

.06 t .01 

.04 k .Ol 

.02 L .Ol 

.Ol + .Ol 

.Ol + .Ol 

.02 -i. .Ol 

.03 t . 02 



Appendix (cont'd) 

ti+p scattering at 2.01 GeV/c 

cos 8 

*93 

*PI 

-89 

.86 

.82 

,775 

l 725 

.650 

-55 

-45 

-35 

-25 

-15 

-05 

-.05 

-.15 

-.25 

-.35 

-.45 

- -55 

-.65 

-.75 

-.85 

-.93 

(mb/sr) da/d.0 

6.54 i .74 

4.89 rt .64 

3.42 + .38 

3.35 + .27 

2.35 rf: .23 

1.56 + .17 

1.06 -f: .14 

-43 1. .07 

.29 + .05 

.18 Ifr .04 

.25 + .05 

.26 rf: .05 

.32 + .05 

.og + .03 

.13 + .04 

.1'4 + .04 

.12 + .04 

.18 1 .04 

.07 5 .03 

.12 2 .04 

.og + .04 

.03 + .03 

.04 + .03 

.06 + .05 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

6. 

7. 

Values of 1 - aQ for 7~~+p systems. The vertical bars indicate the 

statistical errors in the coefficients. These coefficients apply only 

to the solid curves of Fig. 3. 

Values of 1 - aa for r-+p systems at 4.13 GeV/c and 4.95 GeV/c. 

Data and fitted curves for the Sharp Cutoff Rectangular Model (A), the 

best of the Gaussian Models (B), and the fit of Section III, for r-r-p 

systems at 2.01 and 3.15 GeV/c. 

8. Data and plot of curve for 2.01 GeV/c r-t-p system, fitted with inclusion 

Two possible models for the dependence of 1 - aR on &. Curve A is 

the Sharp Cutoff Rectangular Model and curve B is the Medium Cutoff 

Gaussian Model, both defined in Section V. 

Data and fitted curves for ?T+++P systems. dcr/d.Q is normalized by 

dividing the experimental differential cross section by (kotot/4fi)2. 

The vertical bars indicate the statistical experimental errors. The 

meaning of the solid and dashed curves is given in Table II and in 

the text. 

Data and fitted curves for ~r-+p systems. du/dQ is normalized by 

dividing the experimental differential cross section by (kotot/4fl)2. 

The vertical bars indicate the statistical experimental errors. The 

meaning of the solid and dashed curves is given in Table II and in 

the text.. 

Values of 1 - aa for T++p systems. The vertical bars indicate 

the statistical errors in the coefficients. These coefficients apply 

only to the solid curves of Fig. 2. 

of terms for non-absorptive and spin-flip scattering. 



TABLE! I 

List of experimental differential cross sections below 

and at 3.15 GeV/c which are analyzed in Section III. 

System 

7T-+p 

7f++p 

n+p 

n-++p 

7r++p 

T-i-p 

?r*+p 

n--+p 

ir++p 

7T++* 
7J++p 

7T-+p 

Initial Laboratory Momentum in GeV/c 

1.33 

1*33 

1.50 

1.50 

1.55 

1.59 

2.00 

2.01 

2.02 

2.50 

2.92 

3.15 

Reference 

a 

b 

cd 

e 

b 

f 

e 

Q 

g 

e 

h 

h 
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-. . 2 i _ ._ - __._ -..cs. L 
h-2 :~I~xLe:;tuii 
@V/c > 

?J-4-p 

2.x 

TT +p 

j.15 

--. . 

3. -: 

Plot 

Constraint Tyye 

Max-e 

n 

p 

P(X "> 

PC% “i2) 

i-a 
0 

l-a 
1 

l-a 
2 

l-a 
3 

tioiid curve soiid curve none 

II II II 

6 8 9 

39 i5 14 

103.69 36.42 34.42 

< .005 < .005 < .005 

.iC .25 -25 

1.365 5.013 1.09 2.04 1.06 k.04 

0.6344+.0084 0~688~022 O.718f.O3'L 

0.3581+.0076 0.515+ .022 OJly7+.02~ 

l-a 
4 

IL 5 
-Et 

i-a 
6 

l-a 
7 

i-a 
6 

l-a 
9 

l-2. 
I.0 

1-Q 

0.2739~0062 

0.2094t.0060 

0.0935~.0048 

0.0279*.0047 

0.352'.Ol. 

0.28p+.Oip 

0.171~.014 

0.116+-a13 

0 .oyzn ,011 

o.o36t .012 

0.383k.028 

0.272k.022 

0.1pfk 022 

O.l02'.Oi6 

O .O6!iL ,015 
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TABLE III 

IL L - a values for 7Tr-t-p at 4.13 GeV/c, given by Minami. 16 

5 

6 

7 

8 

9 

10 

11 

12 

IL a -a 

No Backward Peak 

1.00 

0.73 

0.61 

0.50 

0.48 

0.27 

0.18 

0.11 

0.06 

0.03 

0.02 

0.01 

0.004 

l a - a 

Backward Peak 

0.76 

0.95 

0.44 

0.62 

0.31 

0.30 

0.16 

0.12 

0.06 

0.04 

0.02 

0.01 

0.004 



TABICEIV 

IL a -a 

-t 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

values for ~--tp at 4.93 GeV/c. 

1 .i? -a 

0.89 

0.82 

0.69 

0.57 

0.46 

0.35 

0.24 

0.18 

0.13 

0.09 

0.07 

0.05 



5 
0 

1 

2 

3 

4 

5 

T%BI;E V 

l-a a values and bi values for ~-+p at 2.01 GeV/c 

1 - a a i bi - 

0.99 0 0.50566 

0.689 1 -0.29936 

o-383 2 -3.12056 

0.172 3 -0.5424 

0.226 4 5.8152 

0.117 5 4.11546 



TABIE VI 

Fitted values of Eq. (12) given by solution in Table V for n--t-p data 

at 2 .Ol GeV/c. Both terms have been normalized to show relative size 

of bi term. 

cos Q do/dQ bi(cos Q)i 

i=o 

o-935 0.36740 0.03565 

0.850 0.12990 0.02025 

o-750 0.03650 o .oo8g4 

0.620 0.00822 0.00183 

0.540 0.00499 0.00026 

0.460 0.00538 0.00000 

0.380 0.00754 0.00052 

0.300 0.01014 0.00014 

0.220 0.01194 0.00240 

0.140 0.01220 0.00324 

0.060 0.01085 0.00383 

-0.020 0.00847 0.00410 

-0.100 0 * 00595 0.00406 

-0.240 0.01268 0 so0339 

-0.400 o-00335 0.00215 

-0.560 0.00257 0.0010g 

-0.720 0.00064 0.00058 

-0.880 0.0013g 0.00030 
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