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ABSTRACT 

Gauge invariance and the vector nature of the photon are exploited 

in order to factor expressions for cross-sections of photon induced 

reactions into a purely kinematical part and a purely dynamical part. 

Detailed studies of two and three body final states are considered 5 

and it is shown how this.separation.into kinematical and dynamical 

aspects provides a useful and general procedure by which to compare 

. expertient and theory. 
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Since the electranagnetic current is conserved we have that 

PP TPv = qv TPv = 0 

where QP is the four momentum 

from its definition that 

of the photon. Furthermore it follows 

T = T* 
CIv vp (2b) 

In the case of photoproduction with unpolarized photons or with linearly 

polarized photons as well as in electroproduction the tensor multiplying TPV 

is real and symmetric in the indices p and V; Thus in these cases only 

the real and symmetric part of TPV will contribute. 

For the case of circularly polarized photons TPV need not be real 

but because ,of (2b) the imaginary parts must be antis-metric in the indices 

P and V, It will be shown below that to have a non-zero antisymmetric 

part there must be at least two independent vectors in the final state so 

that these antisymmetric parts arise in three body reactions when only 

momenta are measured or in two body reactions when momenta as well as at 

least one polarization are measured. 
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II. TVO-BODY FINAL STATES 

I 
Photoproduction and electroproduction are. shown in Figs. 1 and 2 where 

q and p are the momenta of the photon and initial nucleon respectively, 
1 

p2 and p, are the momenta of the produced particles respectively (say 

nucleon and pion) .and where k 
1 

and ks are the momenta of the initial and 

final electrons respectively. 

Consider the case when neither initial nor final nucleon spins are 

measured; then T P'v 
depends only on the various momenta. Making use of 

the requirement of gauge invariance, T PV 
can be cast into the form 

T 
$%J 

pv 
= A bo,to,q2) +, - - 

1 
. [ I 

q2 

+ 

+ 

+ 

. 

A3-bo,to,q2) P,,, - 
[ 

(P$ $ 

I[ 
P - 

(P/l) 9, 

q2 1V q2 I 

A,( so> 
(P2*9) qcI 

P - 
(P2.9) % 

2 2v q2 1 
iq(so,to,q2) fPlp - hyq) qp/q2] [P, - (P2*q) qJq2] 

(3) 

The five real functions or form factors' Axs..s are functions of the energy 

S o = (Px + q)2, the momentum transfer to = (p, - p2)2 and the photon mass q2. 
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In (3) we have performed the separation into the dynamical aspects Of 

the problem which are incorporated in the form factors and the kinematical 

aspects which are ex-plicitely displayed by the functions which multiply the 

form factors. 

In order that there be no singularity4 as q2 --t 0 the form factors A,, 

A4 and As must be proportional to q2 in the limit as q'+ 0,. i.e., 

lim 
q2 + O A3,4,5 = q2 a3,4,5 

and also 

q21zo Al = (Ipl*q~~) a3 + 6p2*qF)a4 

(4) 

(5) 

A cannot be singular as q 
2 

2 --) 0 since the Coefficient of A2 in (3) is non , 

zero in this limit. Thus only A and A contribute to photo-production 
1 2 

(since q 2 = 0 for real photons) and will be the leading terms in electro- 

production for small q2. 

Because A and A depend on both so and to averaging over initial 
1 2 

photon polarizations in.photoproduction yields only one linear combination 

of these form factors. Another equation is needed to solve separately for 
-. 

both Ai and A2 and this can be provided by electroproduction. The form 

factors Ai and A2 will appear differently in photoproduction and electro- 

production because of the factor k k in the lepton.term multiplying T 
lp 1%' PV' 

This factor k k provides the virtual photon.-tiith a linesr polarization 
1p IV 

whose effects are measurable if the final electron is measured in "coincidence' 

with one of the final strongly interacting particles. 



More explicitly we have for photoproduction with unpolariied photons in 

the so center of mass 3 
6; 

where in T 
w . 

only the form factors A, and A2 are non-zero and are evaluated 

8t Q2=o. 

Similarly the differential cross section for electroproduction in the limit 

as q2 -+O can be determined in terms of A, and A2 and takes the form 

d3a ='($r (q-4) (M2;kJi(80 - M; - q2)2 - &M; q2]-’ 
dtodsodq2 

X [h2/2) g,,,, + 2klp klvl TClv (7) 

where "r and % are the initial electron energy and momentum respectively. 

To first order in q2 and neglecting the lepton mass the two terms g 
w TPv 

and k lcI klvTc;ir.,can:be :easily evaluated, 

In the so center-of-mass system we have directly from (3) that 

Qpv Tpv = a, - A2so$ 2: sin2 8 
p2q 

78) 
-. 

as 
kkT =' 

- M:)b - so) 
1P 1v pv (so - Me,' 

q2 A, + so ;2$ sin2 8 k2 sin2 8 
k1q 

cos2 
P,Q 4 

(pp A, (9) 
2 

where 6 is the angle between the photon momentum and the outgoing nucleon; 
. . P2Q 

e 
klq 

is the angle between the photon momentum and incident electron in the so 

center-of-mass system; $,p P 4 
and q are the initial electron, final nucleon 

w 
and photon momenta in the so center-of-mass system respectively5 and where 

the lepton mass has been neglected. The angle 
F"p2 

is the azimuthal 
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angle of the final nucleon with respect to the plane containing &i and 3 

(or ~CC and k2) in the so center-of-mass system 1 The above angles are shown 

in Fig. 3. 

The fact that ok q vanishes in the limit q2 3 0 means that the term '1 

k: sin2 eklq will be tf order q2 in this limit. In fact to order q2 and 

neglecting the lepton mass we have that 

k 
kf sin2 eklq = q2 q2 A (q4 - kl) = 

q2bo, - s)b - ":! 
( 

6 - 
0 

M2)2. 

:4 
1 

00) 

where q is fourth component of qu in the so,center-of-mass system and 
4 

s = (pL + k1)2. 

A simple proportionality between photoproduction with unpolarized 

photons and electroproduction is obtained by averaging overthe azimuthal 

angle Cp This means no'coinciden'ce"between scattered electron p in .(9)6e 
2 

and produced strong particle. By averaging over qp we have from (8) and 
2 

(9) that 

q2/2 gPV TCIV + 2klPkl,, T&= q2/2 ‘. 1 1 + 
2(s - so)(s - $1 

I 
01) 

(so - M;)'. 
gpv TpV 

and that electroproduction in the limit q2+ 0 and neglecting lepton mass 

is related to photoproduction with unpolarized photons by the equation / -I 
2(s - M;)(s;- so) 

(so - $1' 

Separation between the two form factors . . 
A1 and A2 can be accomplished 

by not averaging over the azimuthal angle Cpp . This requires a%oincidence* 
2 

(12) 
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experiment between the scattered electron and strongly produced particle. 

This~coincidence"defines a plane in which the vetiiual photon is linearly 
. 

polarized. Thus a comparison'of the azimuthally averaged cross section' 

with theScoincidenc& cross section allows for the separate determination 

' of both Al and A . * 
2 

Note that since q2, to and so are all independent variables, one 
, 

can check that q' was indeed small enough to be in the q2 $0 limit by 

keeping so and to fixed, then varying q2 in the vicinity of q2 = 0 and 

checking that one has the ssme Al. A second and perhaps simpler way for 

checking that one is in the q2 ZJ 0 limit is to note that (9) has no linear 
L 

term in cos Cp 
P29' 

We show below that the terms linear in cos Cp 

IJ- 
p2q 

are 

proportional to q6 and thus the absence of such a term guarantees that 

one is indeed in the limit of small q2. 

As a simple example of a model we note that in the q" 3 0 limit the 

one-pion exchange approximation for the reaction yp 4 S+n would predict 

A1 = 0 and A2 f Ob7 This ssme prediction also prevails if all particles 
f 

but the photon are treated as spin zero particles. For the.reaction 

y$ 3 nop with one vector meson exchange both A and A are non-zero and in 
1 2 

general independent, while . . 

A 
4 

= Alq= [(p2d2 - pzq2 ] -' 

sndA =O. However if the vector meson is coupled to nucleons with only 
3 

charge coupling non-zero then'A 
1 

and A are relat'ed by the equation 
2 

A 1 = (pl - PS), 
.[ 

q"p; - (p2.q)2 1 A2 

where p and p3 are the final pion and nucleon momenta respectively. 
2 

-8- 



Another application of this method arises when the fin+ p2p3 state 

is in resonance. In'such cases the explicit to dependence of Ai and A2 

can be given since this dependence is ccmpletely'determined by the spin 

of the resonsnce. This follows immediately from the fact that the most 

general couplings between photon, nucleon and spin J and baryon resonance 
. . 

-are functions only of the masses of these particles respectively. For 

example for S 
l/2 

and P 
12 I 

resonances only A is non-zero (in the q2 -+O 
1' 

limit) while for a P or D 
32 / / 

resonance .both A and A are non-zero. 
32 1 2 

Thus analyzing the second pion-nucleon resonance N*(lj12) in terms of the 

form factors Ai and A2 could shed light bn whether this resonance is 

either P1/2 or D3/2. In particular if the resonance is pure P 
l/2'"' s1/2) 

the differential cross section is given by Eqs. (6) and (7) with A2 = 0 

and with A having no to dependence and evaluated at So = M *2 where M* is 1 
the nucleon resonanc'e mass. 

For pure.D 1 (or 91,) the form factor A1 factors into a function 
32 

. of s o and a function of cos 8 
P29' 

* Parity conservation and the fact that 

the resonance has spin 3/2 means that the cos 8 dependence must be of 

the form a + b cos2 6 
P29' 

Thus for pure D 3/2 2qP3,21 we have 

Al(so,to) = a(s,) + b(so) cos2 8 
p2q 

while A reduces to a function of 
2 

so alone. Interfering P and D 
12 / / 32 

resonances give rise to both Al and 

A and fu'rthe'rmore allow a linear term in cos 8 for A i.e., in this 
2 

p2q 
1' 

case Al is of the form a(s,) + b(so) 00s~ 8 + p(so) cos e 
p,9 ,' p2q 

sndA is 
,2 

again a function of so only. If the production, in terms of multipoles, 

is pure M1(3/2) then Al and A2 are simply related in order that (8) take 

the forms 2 + 3 sin2 8 
l p,9 1 
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Also, since the to .dependence for the production of a baryon resonance 

is explicit, both form factors A and A2 can be determined from either . 
1 

unpolarized photoproduction or non&oincidence"electroproduction alone by 

a study .of the final xN angular distribution. 

The next order term, of order -II-- q6, can be determined in a straight- 

forward manner.similar to (8) and (9). To this order there will be 

L. contributions from A A no contribution from A while the contribution of 
1' 3 2 

A4 can be related to A3 and Al by using (j). Thus keeping terms to order 

-r 'a6 we add to (9) the expression linear in cos Cp . 
p2 

This expression is of order 7r q6 since kl sin 8 
9 

is of order q2 and v-- 

the term in brackets is of order q2. Measurementlof this'term leads to 

the determination of A3 which cannot be measured with real photons and 

which could be interesting in its own right. 

We conclude this section by remarking that in terms of the more con? 

ventional language the form factors A and A can be thought of as -. 
1 2 

arising from transverse photons, while A may,be thought of as the inter- 
4 

ference between transverse and longitudinal photons and A3 pure longitudinal 

photons. I 
r 
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III. THIiEE BODY FINAL STATES 

In this section we consider processes where there are three strongly 

interacting bodies in the final state which we label according to moment8 

as 9 + P, +p2 + p, + p4. Special cases of interest might be.where there 

are two fIna plans In resonance or one final pion and one final nucleon 

in resonance. 

The most general form for T 
w 

for the case of three final bodies 

of four momenta p,,p,,p, can be cast into the form 

T 
W 

= B1 
I: @;pv - qp9v/q2] + B271qAEVpiJT s, p3p p4lL qp p,, *p47 

i-B 
3 

+B 
5 

+B 
7 

+ iB 
9 [ ECICIBX evPoT %PlS PBh qp p,, P3-T - Epq3X .%qm scr p2p p3x p 

q’ P,, p&r 1 

. 

+ iB 10 I[ 
P- - 1P (P$Qf~~cp2v - (P,*s)Q&q 

(P2dSJn2] [P,, - (P1'9)+q 
3 

{' 
3 

- p21J - i: 

+ iB 11 
c 

c 
P '- ICI (P,*P)sJs2] [p3y - (P3x&M] 

(P3.s)SJP2] [ PIV - (P1*&..$/s2] 
3 
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I 

+ iB,, 
c 

c P 
=cI 

- (P2'q)q,/q~][P3v - (P,q)s,/q=] 

-1 
P 3p - (P3'S>PJS2 IL- P2v - 

* 

(13) 

where, q and p, are the photon and initial nucleon respectively. 

The form factors Bi will in general depend on five variables, two energies 

and an angle in the final three body center of mass, the initial energy and 

the photon mass. It is convenient to take as these five variables the co- 

variant quantities 

x = (P, + P, - P,12j Y = (P, - qj2; z = (P, + p,j2; so = (P, + qj2; q2 l 

Just as in the two body case the requirement that TCIV be nonsingular 

:. * as 9 2 -+O assures that B 
5~6.,7 

are of order q2 as q2 +O and thus 

only B 
lr2>3r4 

contribute to real photoproduction with unpolarized or 

linearly polarized photons, and will be the leading terms in the limit of 

small q2 for electroproduction. Again the apparent singularity in 

will cancel out because of the relation 

lim B,= 
q2-+o 

[h',*d2/i'] B5 + '~p2*d2/q2] B6 + [b3d2/sf 

Bl 

B7 = 0 (14) 

which is the analogue' of (5). 

Redause of the possibility of coefficients like those of B, and B9 

it is possible to have, even in the q2 '0 limit, non-vanishing antisymmetric 

terms. However we see thatat least three strong particles are required in 

the final state if the nucleon polarization is not measured. Such imaginary 

antisymmetric terms can arise frcm the interference between resonance and 

background or between two different resonances and require circularly polarized 

photons in order to be detected.' 

- 12 - 



We next show, as in Section II, that if the final electron is undetedted , 

then electroproduction in the limit q2 +O is'proportional to .photoproduction 

with unpolarized photons. This is true regardless of the number of final bodies 

and the proof given below is valid for arbitrary final states. 

From (13) we see that the proof of this statement requires evaluating the 

;expression kf sin2 ek ,q in an'arbitrary coordinate system (not necessarily 
1 

the c.m. system as in Section II) when the final electron is undetected. Let 

PS 
be the four momentum in whose rest system k: sin2 Bk q is to be evaluated. 

1 
Then useing 2kl*q = q2 we have to first order in q2 

Ir: sin2 8 
p’b, l kl) 

k,q = (P;.q)= 
EPs.S) - (Ps*k&] (15) 

The quantity (p;k,) can be expressed in the overall center-of-mass system 

of 'the final strong particles (so c.m. system) as / 

p;k, = k,'[lEs - Igs 1 (cos Qklq cos Bp2q f sin Bkiq sin Bpsq'cos [ppsg 

Since only first order in ,q2 is .desired, sin 8k,q is negligible in the above 
I. 

expression and cos ,e 
klq 

can be taken to be unity. Using these facts in (15) 

gives .immediately that 

. 
k2 sin2 8 .k,q = q 

2. 2. 
.1 

(9, - q 

where k, and q are expressed in.the overail center of mass. This result 
4 

is the same as (10) and hence we have (11) independent of the number of final -m -- 

particles. 10 
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The differential cross-section for photoproduction of three final , 

bodies of foymomenta p,, p, and p, can,be expressed in terms of 

$nvariants as 

d3u 
dxdyaz .( > = k3 Ig&lvp+ [so -MF 

-2 

1 1 
so + y - q -&I 

1 

-1 
(16) 

where Tp,, is given by (13). Similarly the differential cross-section 

for electroproduction of the same process is given by 

d5u 

dxdydZds,dq= 
(17) 

where cpp is the azimuthal angle of p 
4 k-4 

with respect to the plane 

containing q and & in the 8, rest system; $, is the azimuthal 
(r 2 

angle of z2 with respect to the plane containing q and 5 in the 

'z rest system; ( pl/ and 1 Qj are the magnitudes of the initial nucleon and 
(c h 

initial photon three momenta in the 8, and z rest systems respectively. 

These may be expressed covariantly as 

4s,p:.= (so - M; - q=)= - 4M;q= 
CI C 1 

. 4:2Q= = 
C 

The differential d(p; 

c (so.+ q= + y - M: - &- 4zq2 
! 

is readily expressed in'terms of the differential 

dqP 2 
where 'pp 

2 
'is the azimuthal angle %f p in the ti, system as 

wi? 

(d$2) = bp2) (18) 

- 14.- 
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In. the limits as q2 +O it is possible, just as in the case of a 
. 

two body final state; to separate the four form factors BL...4 by the 

azimuthal dependence6 of the differential cross-section. For each x, 

Y> z and so theedistribution in cp 
p2 

' gives one equation of the form 

a + b cos2 cp 
P2 

and the distribution in qp gives another equation of 
4 

I 

the form c + d cos2 (pp4,. The coefficients a, b, c, d are then linearly 

related to the B,..., thus completely determining these four form factors. 

Again as in Section II lack of a linear ‘OS ‘P2,P4 dependence is evidence 

that the region is indeed in the neighborhood of q2 m 0. 

Y As an example of a special three body final state consider the state 

xfiN where the two pions are in resonance. Similarly to the resonance 

case considered in Section II there will be a reduction in the number of 

variables that the various form factors Bi depend on. Instead of the 

general case of five variables the form factors will depend only on three. 

variables so, q2 and y, where for convenience p4 is taken to be the 

recoil nucleon momentum. The dependence on x is no longer arbitrary 

but depends on the spin of the BA resonance (x is linearly related to 

the cosine of the angle of the decay pion). 

In general there is no reduction in the number of form factors if -. 

the spin of the T[Z resonance is one or greater. For the special case 

of a spin zero resonance only B, and B, are non-vanishing in the limit 

as 9 ' '0 (in this case p2 is taken as the recoil nucleon momentum). 

Also if the two pion resonance is produced predominantly by one pion 

exchange there will be a reduction in the number of form factors. For 

example, if the xx resonance is. the o-meson then in the one pion exchange 

approximation only B, is non-vanishing in the q2 40 limit. 

. 
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I 

‘IV. THE GENERAL CASE 

The separation of the cross-section intothe kinematical functions 

and form factors for,the case of an arbitrary number of final particles 

can be easily accomplished following the case .of the.three body final 

state. We observe, that in order.to span the Mlnkowski space four linearly 

independent four-vectors are required one of which is space like.. For 

three or more bodies in the final state we may take as these vectors the 

momenta qj pl, p,> p,. From these vectors and the'tensor gP,, we can 

construct the most general covariant tensor T W 
which satisfies gauge 

invariance. But this tensor is precisely given already by (13). Thus 

is a second rank tensor in the four dimensional Minkowski because k - - - - - - 
space the most general decomposition into the kinematical and dynamical -e 

aspects is given b2 il3) regardless of the number of final bodies, momenta -- -- 

and polarizations included. The only difference for more than three bodies 

is that the form factors Bi will depend on more scalar variables, in- 

cluding polarizations, the exact number depending on the number of vari,ables 

which are measured in the reaction. Since (13) is the most general expres- 

sion for the tensor T 
P 

the argument used in Section III relating elec- 

troproduction at small q2 to photoproduction is valid for the general 

case and.we see that these two processes are proportional at small q2 

when the final electron angle is not observed. The factor of proportion- - I 
ately is given by (11) and is independent of the final variables of the 

photoproduced parti'cles and depends only on the energy loss to the 

scattered electron. 
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2. We use a metric such that a l b = aobo -& l Jz so that e2 = -1. Cross- 

sections are defined with ?A = c = 1; CX = l/137. E~,,~,, is the completely 

antisymmetric tensor of the fourth rank with eoLz3 = +l. 
3. For purposes of calculational convenience the coefficjent of A, has been 

defined in (3) in terms of the four dimensional antisymmetric tensor E 
rather than the more obvious form 

n 

k- P 1cI - (p1*q)qJq2 
11 

P,v - (Pp*q)9y/qz] + b2, - (P2*q)qv/q2] cpIy-(P1.9)9y/92~ 
i L 

The above form is equal to a linear combination of the coefficients of 

4. There can be no singularity in q2 as q2 40 since from (2a) TVv is 
defined in terms of the physical matrix elements of the current. Arguments 

similar to this in connection'with total cross-sections have been made by 

S.D. Drell and J.D. Wale&a (to be published in Annals of physics). 

59 The quantities lk.l 1, lz2 cos ep2ql and 1~1 can be expressed invari- 

antly as 

csO 
- M;)(so - 5) - q2(so + M;, - 5) - M;(so + M;) 

2sOl~l 

where 

4q2 = (so - MT - q2)' ,- 4M; q2 /so and 
- c 1 s = (p, + k,):! 

6. That no new information is obtained in comparing electroproduction at q2 FJ 0 
b with photoproduction for two body final.states was first stated by R.H. Dalitz 

and D.R. Yennie, Phys. Rev. ,105, 1598 (1957). See also the subsequent work 
of L.N. Hand, phjts. Rev.-a 1834’ (1963) and M. Gourdin, Nuovo Cimento 2l, 

1094 (196Q 
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7. Since photoproduction in the one pion exchange approximation is not gauge 
invariant we define the gauge invariant OpEmodel by adding to the simple 

OF'E term the minimum factor which makes it gauge invariant. The gauge , 

invariant OPE matrix element in the q2 -+C limit is then of the form 

[ 

2p2p - qp 2P1 +q 

(2P2'Q - q2> - (2p/q f q2) 
cL VI 

fbo, to, Q21 

where p 
2 

is the final pion momentum, and where f( so> to, q2) is an 

arbitrary function which is non-singular as 

[2(P2’d - a2 ,] +o and E(pl*q) + q2 1-0 

8. The most general gauge invariant coupling pcI between spin l/2 particle 
of,mass M, and four momentum p, with a particle of spin 3/2- mass 

M2 and four momentum pi and a photon (real or virtual) of four momentum 

q is of the form 

rp = s2~,h2h&--&,) [r, - q&M2 - M,)/s2]u(p,) 

+ F;(s2)(M 
2 

- Ml) [C&P~)~(P,) - q$&~&~u(P~)-j 

F,(q2&-&& + P,$ - (MI + M2)Y,, 1 u(p,) 

where uor(p2) is the free spin j/2 particle wave function and u(p,) the. 
free spin l/2 particle wave function. The form factors F, 2 9 are arbi- 
trary'functions of q!. The matrix element for 3/2' is obtkked by re- 
placing Y&, by IiaT5. See M. Gourdin and ph. Salin, Nuovo Cimento 3, 
193 (1.963) and 27, 309 (1963) . )I' 

9* These terms could also be detected in electroproduction if either initial 
or final electron polarization is measured. The contribution of these 
terms to the cross-section is, however, proportional to the lepton mass 
and would be very difficult to detect when'the initial energy of the 

leptons is high enough to have a three-body production. 
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10. The result is the same even if nucleon polarizations are included as mea- ' 

sureables. For example, in Section II if the initial proton is polarized 

one adds additional terms to (3) of the form 

where W 7 is the four vectdr which reduces to the target polarization - 

in its rest system. Applying the same procedure as in going from (15) 

to (10') yields the stated result. 
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FIGURE CAFTICNS 

Diagram showing photoproduction of a two-bo.dy final state by a photon 

of momentum q. 

Diagram showing electroproduction with'two strongly interacting particles * 

in the final state of momenta p and p . The initial and final electron 
2 3 

momenta are k 1 and k2 respectively. 

Kinematics for the two-body final state in the so center of mass system 

(q + -pl = 0). The angle 
r*L cpp is measured with respect to the plane con- 

2 

taining the vectors q and &. The unit vector G is taken as the P;olar 
w 

axis. 
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