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ABSTRACT

Gauge invariance and the vector nature of the photon afe éxploited
in order to factor expressions for cross-sections of photon induced
reactions into & purely kinematical part and & purely dynamical part.
Detailed studies of two and three body final states are considered
and it is shown how this  separation.into kinematical and dynamical
aspects provides a useful and general procedure by which to compare

experiment and theory.



Since the electramagnetic current is conserved we have that

q, Ty = ay Ty = O

where q is the four momentum of the photon. Fu;thermore it follows

from its definition that
T =T (2b)

In the case of photoproduction with unpolarized photons or with linearly
polarized photons as well as in electroproductiop the tensor multiplying Tuv
is real and symmetric in the indices u aﬁd ¥Y. Thus in these cases oniy
the real and symmgtric part of .Tuv will contribute.

For ﬁhe case of circularly polarized photons Tpv need not be real
but because of (2b) the imaginary parts must be antisymmetric in the indices
f and v, It will be shown below that to have a non-zero antisymmetric
part there must be at least two indepeﬁdent vectors ih the final state so
that these antisymmetric parts arise in three body reactions when only
momenta are measured or in two body reactions when momenta as well as at

least one polarization are measured.



II. TWO-BODY FINAL STATES

Photoproduction and electroproduction are shown in Fige. 1 and 2 where
q and pl are the momenta of the photon and initial nucleon respectively,
p2 and p3 are the momenta of the proddced particles respectively (say
nucleon and pion) .and where k1 and k2 are the momenta of the initial and
final electrons respectively.

Consider the case when neither initial nor final nucleon spins are
measured; then Tuv depends only on the varioué momenta. Making‘use of

the requirement of gauge invariance, Tpv can be cast into the form

qq
= 2 eV
Tuv Al(so’to’q ) guv - qa
t ,q%) [ :
* Aé(so’ o’ ) L€Pa°T qapicpzfevﬁlpqﬁp1kp2p]
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+ A (s ;00,07 |, - || B, -
Has q ] q
i (e_-a) o, |[ (p_-2) q
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A (s ,t_,q% - (p.- 2] [ - (p - 2]
+ 14 (st ,a%)( 2, - (B -a) 1,/a%| |z, - (2,-0) 3,/a

22, - (pz-é) 2,/9°] [szi; (pl-q))qv/qz] | (3)

The five real functions or form factors® Al- 5 are functions of the energy

5, = (p1 + q)z, the momentum transfer to = (p1 - p2)2 and the photon mass q2
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In (3) we have performed thé separation into the dynamical aspects of
the problem which are incorporated in the form factors and the kinematical
aspects which are explicitely displayed by the functions which multiply the
form factors.

In order that there be no singularity4 as q2 ~+ 0 the form factors AS'

A eand A5 must be proportional to q2 in the limit as qaa 0, i.e.,
4 A

lim
e® =0 A =q®a ‘ (4)
314,55 35455
and also
zlim . o 2
—»0 A = . + . a P,
q X (pl a) 8, (p, a) ’ (3)

A2 cannot be singular as qZ — O since the coefficient of A2 in (3) is non
zero in this limit. Thus only Al and A2 contribute to photoproduction
(since q® = O for real photons) and will be the leading terms in electro-
proauction for small g=.

Because A1 and A2 depend on both S, and to averaging over initial
photon bolarizations in- photoproduction yields only one linear combination
of these form factors. Ahother equatién is needed to solve separately for
both A1 and A2 and this can be provided by electroproduction. The form
factors %1 and A2 will appear differently in photoproduction and electro-.
production becausg of the factor klp kiv in the lepton. term multiplying Tuv'
This fa.ctor’k1u klv provides the viftual photonfﬁith a linear polarization

whose effects are measurable if the final electron is measured inv”coincidence"

- with one of the final strongly interacting particles. -



Mére explicitly we have for photoproduction with unpolarized photons in
the 8o center of mass:

. ‘ | S | I .
&) - e |- s (o 25 - )" - wE ] - (6)

, o ) [

where in Tw only the form factors A, and A2 are non-zero and are evaluated
at q2 = 0.
Similarly the differential cross section for electroproduction in the limit

as . q2 —+0 can be determined in terms of A, and A, and takes the form

a>c /F1\® a \ 2 4
= ( ) (@) [(s_ - M2 - q®)" - LM 7]
2 2 o 1 1
dt ds,dq 16x M k; /-

x [(q®/2) gy + 2k k] Tw‘ ' - (7

where @ and kL are the initial electron energy and momentum respectively.

To first order in qa and neglecting the lepton mass the two terms guv Tpv

W klv$gvhcan:bereaslly evaluated.

In the s, center-of-mass system we have directly from (3) that

and k
.. ’ l

g. T =2A -~ A250q2 P

2 . 2
sin® 6 8
MY TRV 1 o 2 P.q . (&)
2s - Mf)(s - SO) 2 2.2 .2 2 2 2
T = A, + 8 sin© @ k i 8 A
vy (o - 37 Q" Ay + 80 4P sin pq S sin” 6, o cos @PZ > (9)
o] by e
where 6 is the angle between the photon momentum and the outgoing nucleon;
oo 2 .

ek a is the angle between the photon momentum and incident electron in the 5o

1

center-of-mass system; &1, P, and gq are the initial electron, final nucleon
wh wn .

and photon momenta in the s, center-of-mass system respectively5 and where

the lepton mass has been neglected. The angle wp - is the azimuthal
. 2 )



angle of the final nucleon with fespect to the plane containing k and g
(or 51 and 52) in the Sy center-9f-mass system; The above angles are shown
in Fig. 3. |

. The fact that Gk q vénishes in the limit q2 - 0 means phat the term =

. 1
kf sin® 6k q will be of order g2 in this limit. In fact to order q® and
h 8

neglecting the lepton mass we‘have that

K a¥(s_ - s)(s - M2)
K2 sin® 6 o =¥ S (q - k)= ‘ —— (10)
1 a N (s - Ml) '

(¢]

where q is fourth component of qp in the so,cénter-of-mass system and
4
s = (p + k)2
1 1
A simple proportionality between photoproduction with unpolarized
photons and electroproduction is obtained by averaging over the azimuthal

angle Qp in (9)€. This means no "coincidence” between scattered electron
-

and produced strong partlcle. By averaglng over @ we have from (8) and
2
(9) that
. : . 2(s - so)(s - Mf)
2 + 2k k T . = 211 + T 11
[ o/ guV uV Ip 1v] pv ¥/ (s - M2)2- Buv “uv (11)

and that electroproduction in the limit qae 0 and neglecting lepton mass

is related to photoﬁroduction with unpolarizéd photons by the equation

) 1 . é(s - Mf)(s,e so) do(so,to)

Mz)z lqﬂ 1+ (s - Mi)z, d‘to\

dq2ds at .

Separation between the two form factors A1 and A2 can be accomplished

by not averaging over the azimuthal angle QP . This requires a“coincidence®
2

—y
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. term in cos @ . We show below that the terms linear in cos P

experiment between the sc'attered glectron and strongly produced particle.
This "coincidence" defines a plane in which the vertiual photon is linéa.rly
polarized. Thus a comparison of the azimuthaliy averaged cross section’
with the “coincidence® cross section allows for the separate determination
of both Alland A .

Note that since qa, to and s, are all independent variables, one
can check that qe was indeed small enough to be in the @ — 0 limit by
keeping CR and tc fixed, then varying q2 in the vicinity of q2 = 0 and

checking that one has the same A A second and perhaps simpler way for

4
checking that o;'xe is in the qzv'—#» 0 limit is to note that (9) has no linear
P4 pa
proportional to _‘\/:1? and thus the absence of such a term guarantees that
one is indeed in the limit of small q2. .
As a simple example of a mo.del we note that in the ¢° —;O limit the
one-pion exchange approximation for the reaction 7p - nt+n would predict
Al = 0 and ‘Az',‘é 0.7 This same prediction also prevails if all particles
but the photon are treated as spin zero ;;)articleé. For the reaction

ﬁ) - nop with one vector meson exchange both A1 and A2 are non-zero and in

general independent, while .

A = A q2 .2_22]-1
LS ha [(p2 q) _pzq‘

and Az = 0. However if the vector meson is coupled to vnucleons with only

charge coupling non-zero then A1 and A are rela.t}ed by the equation

A =(p - p})g'[quz - (pe-q)a] A

where p2 and p3 are the final pion and nucleon momenta respectively.

-8-




Another application of this ﬁethod'arises when the finﬁ; p2p3 state
is in resonance. In such cases the explicit to depepdence of A1 and A2
can be given since this dependence is completeiy'determined by the spin
of the resoﬁance. This follows immediately from-the fact that the moét
general couplings between photon, nucleon and spin J and baryon resonance
‘are functions only of the masseé of these particles respec£iyely. .For
example for Sl/2 and Pl/e resonances only A1 is non-zero (in the a® =0

limit) while for a P or D resonance both A .and A are non-zero.
- : s/ 3/ 2 1 2

2
*
' Thus analyzing the second pion-nucleon resonance N (1512) in terms of the
form factors A1 and A2 could shed light on whether this resonance is
either P or D ; . In particular if the resonance is pure P , (or S, )
. 1/2 3/2 1/2 1/2
the differential cross section is given by Egs. (6) and (7) with A2 =0
' ’ ' ' * *
and with A1 having no to dependence and evaluated at So =M 2 where M is
the nucleon resonance mass.
For pure D (or P ) the form factor A factors into a function
3/2 3/2 1 :
of Sq and & function of cos GP q_s Parity conservation and the fact that

the resonance has spin 3/2 means that the cos Gp q dependence must be of

the form & + b cos® 6_ . Thus for pure D (or P ; ) we have
‘ /2 s/2

P aq
2
A(s ,t) =a(s) +1b(s) cos®e while A reduces to a function of
1 0 0 o] : 0 qu -]
s alone. Interfering P and D resonances give rise to both A and
o 1/2 3/2 _ : 1

A2 and furthérmore éllow & linear term in cosvep q for Al, i.e., in this

2
v a +fp(so) cos szq
again a function of 8¢ only. If the production, in terms of multipoles,

case Al is of the form a(so) + b(so) ¢os® 6 and A is
2

is pure M1(3/2) then Al and A.2 are simply related in order that (8) take

the form |2 + 3 sin® 6 .
: B



Also, since the t dependence for the production of a baryon resonance
is explicit, both form factors A and A can be determined from either
unpolarized photoproduction or noan01ncidence¥electroproduction alone by
a study of the final =N angular distribution.

The next order tenn, of order \[;_; can be determined in & straight-
forward manner .similar to (8) end (9). To this order there will be
contributdons from Ai’ AS no contribution from A2 while the contribution of
A4 cen be related to A.3 and Al by using (5). Thus keeping terms to order

“Ja;r we add to (9) ﬁhe‘expression iinear in cos @p

2

(2s - s - M%) (s, - M?) kq® A
P sin 6_° k sin 6, . cos @ 1 Lo lA - ‘ 1
2 P 4 1 k q P a - M2)2

1 . 2 (SO + tO - Ml' - M2) (So Y

q® q® and

This expression is of order since kl sin Gk q is of order

the term in brackets is of order qzd Measurementlof this'term‘leads to
the determination of A3 which cannot be measured with real jhotons and
which could be interesting in its own right.

We conolude this section by remarking that in terms‘of the more con-
ventional language the form factors Al and A2 can be thought of as -
arising from transverse photons, while A4 may be thought of as the inter-

ference between transverse and longitudinal photons and A.3 pure longitudinal

photons. - j
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III. THREE BODY FINAL STATES

In this section we consider processes where there are three strongly
interacting bodies in the final state which we label according to momenta
as q + pl —+p2 + p3 + p4. Special cases of interest might be,wbere there
are two final pions in resonance or one final pion and one final nucleon
in resonance. |

The most general form for Tuv for the case of thrée final bodies

of four momenta pz,ps,p4 can be cast into the form

- . 2 ' '
T =By [guv quqv/ q ] *+ BE amCvpor Ga Pap Par Gp Pao Pux

+ 33 epaﬁlevaT Ay qu Pak qp Prg Par + B4 €uaBl€VpaT Ay Pzﬁ Pa qp Pzd P}T

%, [pl“ B ;l'qhu/qaj [P;v - (Pl‘Q)qv/qaj'
B6 [ézu'- (pa.é)qu/qzj] [%gv - (P%iQ)qV/Q%}
P [P.w ] (ps'.Q)qu/Aqaj [%v - (PB'Q)qV/q"]

'B . -
+ E,EFgaak evch Rlo% p3B P qp Plo pgT epaBl eVpGT EYo plB P qp P;a p4€]

+

¥

+

+

+

iB € € ‘ - .
5 [ posr Svpor %o P1p P % Pao Par 7 Cuoh Sveor %o Pap Par b Fio paf]

iBL;{ [pl-p - (p1°q)qp/qaj'[l>2v. - (Pz'q)qv/qﬂ
[qu - (pa-q)qu/qgj [Plv - (pl;q)qv/qz] f'
1B [:Px#" (pl-q)qu/qzj [pw - (p_,"q)qv/q‘?]

[:P:u - (p3~q)qp/q2][pw - (pl'q)qv/qz:l

+

+
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+1B | [pzp - (pa'q)qu/qzj [p_w - (pB'q)qv/q‘?] .,
- [psp - I(p3°<1)qp/‘qa:] [pav - (pa‘q)qv/fj} | o (13)

ﬁhefe‘ q and 'pli are the photon and initial nucleon respectively.

TheAform factors Bi will in general depend‘on five varigbles, two energies
vand an anéle in the final three body center of mass, the initial energy and
" the photon mass. It is convenient t§ také as these five variables the co-

‘variant quantities

x=(p,+p, -p)% ¥y=(p, ~)% z=(p, +p,)% s5=1(p, +a)% ¢%.

Just as in the two body case the requirement that Tpv be nonsingular

as ‘q2 -0 assures that B are of order q2 as g2 —0 and thus

596,57

only VB1’2)3,4 contribute to real photoproduction with unpolarized or
linearly polarized'photons, and will be the leading terms in the limit of
small q2 fbr electroproduction. Again fhe apparent singﬁlarity in Bl
will cancel out because of the relation |
qé—iino B, = [(pl'q)z/qﬂ By + '[(pz'q)e/qz:! B, + [(pB'q)a/qﬂ B, =0 (14

which.is the analogue of (5).

Because of the possibility of'coefficiénts like those of B8 and By
it is poésibie to have, even in the g2 =0 l§mit, non-vanishing antisymmetric
terms. However we see tﬂat-at least thfee strong particles are required in
the final state if the nucleon polarization is not measured. Such imaginary
antisymmetric terms can arise from the interference between resonance and
background or between two different resonances and require cifcularly polarized

photons in order to Be detected.?

- 12 -



We next Show,‘ag‘in Section II, that if the final electren is undetected
then electroproduction in the limit q2 —0 1is proportional to photoproduction
with unpolarized photons. This is true regardless of the number of final bodies
and the proof given below is valid for arbitrary final states.

From (13) we see that the proof of this statement requires evaluating the
_expression ki sin® eki in an arbitrary coordinate system (not necessarily
-the c.m. system as in Section II) when the final electron is undetected. et
Pg be the four momentum in whose rest system ki sin® Gk is tb be evﬁluated.

1
Then useing 2kl-q = q2 we have to first order in q2

2 . qe(ps'kl)

The quantity (ps-ki) can be expressed in the overall center-of-mass system

of ‘the final strong particles (s, c.m. system) as

k. =k [E - cos @ cos 6 + sin 0 sin 6 cos
Py ¥y 1 s |£sl ( . kg Po9 “k;q P.q q)pss_]

2

Since only first order in qu is desired, sin ek‘q is negligible in the above
. 1

expression and c05'9k a can be taken to be unity. Using these facts in (15)
1
gives immediately that

~

(q» -k) (10")

k2 sin® 6, = ¢%
. ' 4 1

kq.q

% v

where Kk, and q4 are expfessed in .the overall center of mass. This result

is the same as (10) and hence we have (11) independent of the number of final

particles.lo

- 13 -



The differential cross-section for photoproduction of three final

bodiés of four momenta ©D,, P, and p, can be expressed in terms of

invariants as

-1
diz;d‘z = (l6n:) lgpv pv' L LS - Mz_] [SO +y -Ml_f -M;i:] - (16?

where Tuv is given by (13). sSimilarly the differential cross-section

for electroproduction of the same process is given by

S '
d°o i ( ) (2oz Lyy Tuy 80p  d9p_ (17)
dxdydzdsdq> 16x (s - M2)° g%, |p,|[a] | |

where Pp is the azimuthal angle of P, with respect to the plahe
: 4 S an

containing gq and ;&l “in the B, rest system; ¢§ is the azimuthal
2

™~

angle of P, with respect to the plane containing g and .El in the

z rest system; | p,[ and | Q| are the magnitudes of the initial nucleon and
A~ P :

initial photon three momenta in the 8, and 2z rest systems respectively.

These ﬁay be expressed covariantly as

héopf. [(:so - Mf - 'q u.quZ]

u;'z.Qf‘ [_SSO +q%+y -M - Mi)a - “Zqzj

The differentiél dm; is readily expressed in terms of the differential

dcpp2 where q>p2 "is the azimuthal angle -of B? in the &,

system as

.
(aph ) = (ap, ) | er Tae & fyo P
2

(18)
€uvor Pap Gy K

10 PZT
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In the limits as qa —+0 it is possible, just as in the case of a
two body final state, to separate the four form factors BJ.“.4 by the
azimuthal dependences of the differential cross-section. For each X,

¥y, z and s

o ‘the-distribution in ¢P " gives one equation of the form

a8 + bcosz‘cpPz and the distribution ii ¢P4 gives another equation of
the form c¢ + d cos® @P47 The coefficients a, b, ¢, 4 are then linearly
related to the Bl“,4 thus completely determining these four form factofs.
Again as in Secﬁion II lack of a linear cos ¢P2,P4 dependence is evidence
that the region is indeed in the neighborhood of q2 = 0.

As an example of a special three body final state consider the state
nxN where the two pions are in rescnance. Similarly to the resonance
case considered.ih Section II there will bé a reduction in the number of

variables that the various form factors B; depend on. Instead of the

i
general case of five variables the form factors will depend only on three
variables s, q2 and y, where for cénvénience P, is taken to be the
recoil nucleon momentum. The dependence on x i1s no longer arbitrary
but depends on the spin of the =nx resonance (x is lineariy related to
the cosine of the angle 6f the decay pion).

In general there is no reduction in the number of form factors if
the spin of the =n resonance is one or greater. For the special case
of a‘spiﬁ»zero resonance only B, and B2 are noﬁ-vanishing in the limit
as g2 —0 (in this case p, is taken as the reéoil nucleon momentum).
Also if the two pion resonance is produced predominantly by one pion
exchange there will be a reduction in the number of form factors. For

example, if the nx resonance is the p-meson then in the one pion exchange

approximation only B, 1s non-vanishing in the q? —=+0 limit.

.15 -



'IV. THE GENERAL CASE

The sepération of the cross-section into the kinematical funqtions
and form factors for,the~case of an arbitrary number of final particles
can‘be eaéily aécomplished following the case .of the three body final
state. We dbserve, that in order to span the Minkowski space four linearly
independent four-vectors are required one of which is space like. For
three or more bodiés in the final state we may take as théée vectors the
momenta g, P,, pé, p3. From these vectors and the~tensor g“v Qe can
construct the most general covariant tensor Tw which satisfies gauge
invariance. But this tensor is precisely given already by (13). Thus

because T is a second rank.tensor in the four dimensional Minkowski

‘v —— —

space the most general decomposition into the kinematical and dynamical

aspects is given by (13) regardless of the number of final bodies, momenta

and polarizations included. The only difference for more than three bodies

is that the form factors B,

; Wwill depend on more scalar variables, in-

cluding polarizations, the éxact number depending on the number of variables
which are meésured in the reaction. Since (13) is the most general expres-
s;on for the tensor Tuv the argument used in Section III relating elgc—
troproduction at small qa tb photoproduction is valid for the general
case and.we see that theée two proceéses are proportional at small q2
when the final eleétron angle is not observed. ?he factor'of proportion-
ately is given by (11) and is independent of thé final’variables of the.
photoproduced particles and depends only on the energy loss to the -

scattered electron.
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ACKNOWLEDGEMENTS

The author is indebted to Professor J.S. Bell, Professor S.D. Drell
and_Dr. M. Veltman for their very valuable comments and informative

criticisms.

- 17 -



" FOOTNOTES

G. Chew, M. Goldberger, F. Low and Y. Nambu, Fhys. Rev. 106, 1345 (1957).
We use a metric such that a = b =agb, - & * &L 8o that e2 = -1. Cross-
. 1; o=~ 1/137. €ygy 18 the completely
antisymmetric tensor of the fourth rank with e = ¢1.

o123
For purposes of calculational convenience the coefficient of A has been

sections are defined with % =

defined in (3) in terms of the four dimensional antisymmetric tensor €

rather than the more obv1ous form

The above form is equal to a linear combination of the coefficients of

A, A, 1-\:5 and A . '

There can be no singularlty in q® as q® =0 since from (2a) Tpv is
defined in terms of the physical matrix elements of the current. Arguments
s1m11ar to this in connection with total cross- sections have been made by
S.D. Drell and J.D. Walecka (to be published in Annals of Physics).

The quantities lkll, p_ cos GP and Iq l can be expressed invari-
. A w

qu dad I

[pm - (pl'q)qu/qﬂ [sz - (p;'q)qv/qzj + [pau - (pz'q)qv/q’f"] [plv-(Pl-q_)qv/qzj

antly as
2|k, = (® + s - MI\[5,
: - . . ] )
-2|p, | cos'epzq - (to/lil) + (s - ¥)(s, - M? - Z (s, + M - Mi) - 15, + 1P
Solﬁ;l
where
ugf = [}SO - Mf - q2)2,— th q%]/so and s = (pl + ki)z

That no new information is obtained in comparing electroproduction at q2 =~ Q

with photoproduction for two body final-stétes was first stated by R.H. Dal
and D.R. Yennie, Phys. Rev _92, 1598 (1957) See also the subsequent work

of L.N. Hand, Phys. Rev. 129, 1834 (1963) and M. Gourdin, Nuovo Cimento 21,
1094 (1961).

- 18 -
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Since photoproduction in the one pion exchange approximation is not gauge
invariant we define the gauge invariant OPE model by-addiﬁg to the simple
OFE term the minimum factor which makes it gauge invariant. Thg gauge
invariant OPE matrix element in the ¢ —0 1imit is then of the form

- £(s0s tos qa)
(2p,-q - e®) (ap -q + ¢%)

where pz‘-is the final pion momentum, and where f(so, tos qz) is an

arbitrary function which is non-singular as
[2(p2'q) - q® :] =0 and E(pl'q) + g% ] —~0

The most general gauge invariant coupling P“ between spin 1/2 particle

-of mass M, and four momentum p, W1th a particle of spin 3/2 mass

M, and four momemtum p_, and & photon (real or virtual) of four momentum

q 1is of the form

L, = a°F (a%)qiy(p,) [7u -q,(M - Ml)/qzju(pl)
AT PR LCRICREEERCN A CRY
F (e e, + ), - 01, v10)7, | u(e)

where ua(pz) is the free spin 3/2 particle wave function and u(pl) the.

free spin 1/2 particle wave function. The form factors F, , are arbi-
=0 :

. trary  functions of q?. The matrix element for 3/2+ is obtained by re-

placing ua by uay . See M. Gourdin and Ph Salln, Nuovo Cimento 27,

193 (1963) and 27, 309 (1963).

- These terms could also be detected in electroproduction if either initial

or final electron polarization is measured. The contribution of these
terms to the cross-section is, however, propoftional to the lepton mass

and would be very difficult to detect when the initial energy of the

leptons is high enough to have a three-body production.
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10.

The result is the same even if nucleon polarizations are included as mea-

sureables. For example, in Section II if the initial proton is polarized

~ one adds additional terms to (3) of the form

€L103}~€V-DO T qﬂplﬁpalqppmw'r

where WT is the four vector which reduces to the targét polarization
in its rest system. Applying the same procedure as in going fram (15)
to (10') yields the stated result. ’

»



FIGURE CAPTIONS

ﬁiagram showing photoproddction of a two-body final state by a photon

of momentum q.

Diagram showing electroproduction with two strongly interécting particles
in the final state of momenta p2 and p3. The initial and final electron
momenta are ki and k2 respectively.

Kinematics for the two-body final state in the s center of mass system

e}

A

(q + pl = 0). The angle ¢b is measured with respect to the plane con-
~ 2
taining the vectors ¢q and -gl' The unit vector § is taken as the polar

axis.
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