Paper delivered at IUPAP Conference in Dubna, Aug, 1964

A High-Resolution $20-\mathrm{BeV}$ Spectrometer

Resolving Momentum and Production Angle Independently
by
W. K. H. Panofsky, D. Coward, K. L. Brown

The extension of magnetic spectrometer techniques to high erergies involves several new problems. The principal factors, aside from minimizing cost for a given momentum acceptance $(\Delta p / p)_{\max }$, solid angle $(\Delta \Omega)$, and momentum resolution $(\Delta p / p)_{\min }$ are:
(1) At high energies, cross sections are rapidly varying functions of production angle θ, and therefore, information on θ within the solid angle accepted must be preserved.
(2) Liquid or gas targets are in general horizontal line sources of small vertical height.
(3) The spectrometer must permit reliable particle identification consistent with large ratios of rejceted to accopted particle fluxès.

At these high energies physical dimensions of beam transport equipment are lange and therefore it is highly preferable to confine the plane of bend of momentum-dispersive elements to the horizontal plane. In this paper we will compare the properties of a magnetic analyzing system of novel design meeting these requirements with those of a more conventional design in which θ information is displayed in the horizontal plane while the mo-. mentun dispersion plane is vertical.

A proposcd spectrometer which illustrates the principle operates as folloris (Fig. 1): In the horizontal planc a quadrupole Q_{1} focuses a horizontal linc source to a point, thus giving dispersion in the focal plane correspondiag to the production anglc θ. A dcfocusing quedrupole Q_{2} is placed at this intermodiatc focus but has no cffect on the final image in the horizontal plane. The remaining part of the spectrometer, two bending magnetis M_{1} and M_{2} and a focusing quadrupolc Q_{3}, images the intermediate focel point at the final focal planc. This final image (in the horisontal planc) is displaced from the central trajectory by a distance which is
inneariy groportio to both production angle and morentum. In the vertical plane, the poj:-to-point focal properties are determined by the quadrupoles, Q_{1}, Q_{2}, and i_{3} respectively.

Now if the s quadrupole, Q_{2}, is rotated about the beam axis through an angle α, the production angle θ in the horizontal plane will be dispersed in the vertical plane. Since Q_{c} is at a horizontal focus, the rotation will have no effect on the first-oran. inorizontal optics. Thus the production angle θ is determined by the vortical position of the image and the particle momentum is found from the horizontal position.

It should be emphasized that the rotated quadrupole is the only novel concept in the example just presented. Any other combination of magnetic elements preceding or following the rotated quadrupole will function in a similar manner provided that
(a) an intermediate focus of the line source exists at the principal plane of the rotated quadrupole
(b) point-to-point focusing exists from this intermedjate focus to the final image point in the horizontal plane
(c) point-to-point focusing exists in the vertical plane from the target to the final image point
(d) all monentum dispersion occurs in the horizontal plene.

Briefly, the principal of operating the proposed system is as follows: Let x and x_{f} be the horizontal coordinate at the target and the final focal plane respectively, y and y_{f} the vertical coordinates and θ, θ_{f} and $\varphi, \varphi_{\text {e }}$ be the corresponding angular variables. Let $\delta=\Delta p / p$ be the deviation from the central momentum. To first-order in these variables it follows from the above discussion that

$$
\begin{gather*}
x_{f}=\left(x_{f} \mid \theta\right) \theta+\left(x_{f} \mid \delta\right) \delta \tag{I}\\
y_{f}=\left(y_{f} \mid \theta\right) \theta+\left(y_{f} \mid y\right) y \tag{2}\\
-2-
\end{gather*}
$$

are the only non-vanishing coefficients determining the focal coordinates X_{f} and y_{f}. We thus find that constant values of δ and constant θ are independently focused in the focal plane, but the lines of constant θ and comstant δ in general are not orthogonal in the focal plane. From the above equation:

$$
\begin{align*}
& \delta=\frac{x_{f}}{\left(x_{f} \mid \delta\right)}-\frac{\left(x_{f} \mid \theta\right)}{\left(x_{f} \mid \delta\right)}\left[\frac{y_{f}}{\left(y_{f} \mid \theta\right)}-\frac{\left(y_{f} \mid y\right)}{\left(y_{f} \mid \theta\right)} y\right] \tag{3}\\
& \theta=\frac{\left(y_{f} \mid y\right) y}{\left(y_{f} \mid \theta\right)} \tag{4}
\end{align*}
$$

Herice, neglecting second-order effects, the attainable momentum resolution is limited by the source height y through the last term of Eq. (3):

$$
\begin{equation*}
\delta=\frac{\left(x_{f} \mid \theta\right)}{\left(x_{f} \mid \delta\right)} \frac{\left(y_{f} \mid y\right)}{\left(y_{f} \mid \theta\right)} y \tag{5}
\end{equation*}
$$

The matrix $\left(y_{f} \mid \theta\right)$ is proportional to $\sin 2 \alpha$, where α is the rotation angle of Q_{2}.

If thevertical beam height $y= \pm 0.3 \mathrm{~cm}$, then for the spectrometer arrangement shown in Fig. l (with parameters listed below) the minimum momentum resolution is limited to about 0.1%.

Second-order coefficients (aberrations) for the system have been evaluated. In general terms the dominant aberrations are of two categories: (1) coefficients which are equivalent to tilting the normal to the focal" plene from the beam direction, ard (2) chromatic aberrations in the production arge, i.e., coefficients which relate x_{i} and y_{f} to the products of 08 and $\varphi \%$.

Depencing on the arrangement of counters, a tilt of the focal plane may be acoevtable; if not the tilt can be controlled by the introduction of appropriate sextupole correction lenses ahead of and following the dispersive raagnets. The "chromatic-angular" aberrations are basic properties Of strong Iocusing (quadrupole) lens-systems; they can be reduced but not eliminated by replacing the single input quadrupole Q_{1} by a doublet or triplet.

Since production angle and momentum are focused independently, a twodimensional array of counters can gate any subsequent detector over a predetermined range of kinematic production variables. Such a detector can then carry out a particle identification function with a minimum background from accidental coincidences arising from particles falling outside the range of kinematic interest.

It is of further advantage to replace the quadrupoles ahead of the rotated quadrupole by a system of alternating gradient bending magnets. This substitution does not change the principle of operation of the system, but permits rejection of low energy-charged particle fluxes at a point far from the detector and also makes it possible to operate the instrument at or near a production angle of zero degrees.

Ir dispersion in the vertical plane is not mechanically objectionable, then a system such as the one shown in Fig. 2 produces not only independent but also orthogonal separation in the variables θ and δ. In this case the first-order resolution is given by the expression

$$
\begin{equation*}
\delta=\frac{\left(y_{i} \mid y\right)}{\left(y_{i} \mid \delta\right)} \dot{y} \tag{6}
\end{equation*}
$$

where y is the vertical source height. The second-order aderrations of
this eyotem are of a simina nature to the previous case, but they are in gonextl sumewhai manlex than the comparivic "flet" system.

Gable I Gives the computed values for the first-order coefficients in the expansion of x_{f} and y_{f} as a function of the source variables x, y, o, θ, and φ. These are tabulated for the system shown in Fig. I with the following parameters:

$$
\begin{align*}
p & =20 \mathrm{GeV} / \mathrm{c} \\
\delta_{\max } & = \pm 2 \% \\
\Delta \Omega & =0.1 \text { millisteradian } \\
\text { Bend angle } & =2 \times 7.5^{\circ}=15^{\circ} \\
\alpha & =10^{\circ} \tag{7}
\end{align*}
$$

Table II gives the physical parameters of this system.
The assistance of Sam Howry in making the complitations is gratefully acknowledged.

TABLE I

Transfer Matrix Fran Target Coordinates x, θ, y, φ and Deviation in Momentum (dp / p) in percent to Focal Plane Coorainates

$$
x_{f}, \theta_{f}, y_{f} \text { and } \varphi_{f}
$$

Dimensions are in cm and angles in milliradians

	x	θ	y	φ	$\frac{a p}{p}$
x_{f}	0	-0.85	0	0	3.17
θ_{f}	1.18	-2.76	-1.06	-1.09	1.97
y_{f}	0	2.92	-3.16	0	0
φ_{f}	0	1.37	-1.79	-0.317	0

TABIE II

Physical Parameters of 20 BeV Spectrometer
with a 100 microsteradian Solid Angle and $\pm 2 \%$ Momentum Band

	Field Gradient $(\mathrm{kg} / \mathrm{cm})$	$\begin{gathered} \text { Field } \\ (\mathrm{g}) \end{gathered}$	$\begin{aligned} & \text { Iength } \\ & \text { (meters) } \end{aligned}$	Aperiture (approximate)
Q_{1}	0.385	-	2	$\pm 5 \mathrm{~cm}$
Q_{2}	0.466	-	2	$\pm 12 \mathrm{~cm}$
M_{2}	-	24,600	6	14 cm gap; 40 cm width
Q_{3}	0.410	-	2	$\pm 20 \mathrm{~cm}$
M_{2}	-	14,600	6	$18 \mathrm{cmigap} ;$ 40 cm Wicth

