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Abstract 

It is known that two general form factors depending on energy loss and 

momentum transfer characterize inelastic electron scattering from nuclei 

in first Born approximation in a = l/137. The same two form factors appear 

in all electrodynamic processes connected by one photon exchange with nu- 

clei. This observation is used to compute cross sections and to discuss 

experiments which are aimed at probing electrodynamics by scattering a pair 

producing electrons or muons from nuclear targets. 
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I. INTRODUCTION 

It is well recognized' that the nuclear part of elastic electron-nucleon 

scattering in first Born approximation in Q: = l/l57 can be summarized in 

terms of two scalar form factors, F, and F2 depending on the invariant 

momentum transfer q2. This is a consequence of the vector nature of the 

exchanged virtual photon in Fig. 1 and of electromagnetic current conserva- 

tion.. The nuclear part of this interaction can be isolated from whatever 

goes on at the other end of the photon line and therefore the same conclu- 

sion with the same form factors F and FZ can be drawn no matter what 1 
electrodynamic interactions occur at the lepton end of the photon line, be 

it scattering, bremsstrahlung, or pair production for electrons or muons 

as illustrated in Fig. 2. It was on the basis of this observation that 

various high energy tests of quantum electrodynamics were proposed.2 

More recently it has been realized and emphasized3 that there is an 

analogous general form for the single virtual photon exchange between in- 

elastically scattered electrons and a nucleon or nucleus, leading to any 

final state as' in Fig. 3. The two inelastic form factors F1 and F2 are 

now functions of two variables which may be taken as the invariant momen- 

tum transfer q" and the energy transfer 

where pi f is the invariant mass of the final nuclear "anything" emerging 

from the lower vertex in Fig. 3. 

The analogous extension to inelastic nuclear processes of the relation 

between the cross sections for Figs. 1 and 2 is the main point of the 

present note.* In reporting it here and presenting cross section calcula- 

tions we wish to further emphasize its very great utility in planning and 
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analyzing experiments at high energy electron accelerators. For experi- 

mental studies of eiectrodynamic behaviour of photons, electrons, and 

muons of high energies it frees one from both the limitations to proton 

targets and the difficult requirements of very high energy resolutions 

to assure that only elastic processes occur on the target. The same two 

general inelastic form factors appear in the pair production or bremsstrah- 

lung events in Fig. 4 as in inelastic electron scattering (Fig. 3) for the 

same target. Therefore, for example, between measurements of inelastic 

electron scattering and of large angle lepton pair formation from the 

same targets with arbitrary nuclear excitation and pion formation, the 

nuciear unknowns r1(q2,q . P) and y{<(q2,q . P) can be removed. All 

regions of the two dimensional piane in the phase space of the variables 

s2 and q*P that are accessible in the pair production or bremsstrah- 

lung experiments can be covered by inelastic scattering studies of Fig. 3. 

Moreover, if there are corrections to these assertions which we expect to 

' be valid to order w zCX = z/l37 where z is the nuclear charge, they can 

be detected by measuring any deviations from the Rosenbluth straight 

lines in the scattering analysis and by an analogous test given in the 

following for the Bethe-Heitler events of Fig. 4. It is expected that 

the present results will permit experimentai tests of quantum electro- 

dynamics to probe to regions of smaller distances because experiments 

can be performed 

a) with targets of iow z that are "easier" to work with 

than hydrogen, and 

b) with more comfortable 

different experiments 

even though inelastic 

are produced. 

energy resolutions; comparison of 

permits r, and r2 to be removed 

nuclear states are excited or pions 
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II. CALCULATION 

A. Nuciear Form Factors 

We adopt the following notations f : P denotes the initial four mo- 

mentum of the target, F? = -pi;. q is the four momentum of the virtual 

photon and P' = P - q is the final four momentum of the target. We 

shall assume that the target is initially unoriented and that experiment- 

ally all final nuclear states consistent with the given kinematic condi- -- 

tions (give q and P) are summed over. In this case, the contribution 

of -the nuclear part of the process indicated in Fig. 3 is given by 

‘1 ./.. ” 
f, pv 

$z!c 1, 8(*)(p - p’ - 9) <P’IJJP)IP>~~~ J,(o)[ p) (E) (1) 

initial final 
states states 

where R is the normalization volume, E is the initial energy of the. 

target, c indicates an average over the initial target states (i.e., 

MJ of the target), IB and IPI) are the Heisenberg state vectors of the 

initial and final nuclear states (that is they are eigenstates of the 

nuclear four momentum operator lPp) and Jy(0) is the electromagnetic 

current operator of the nucleus ati.the.space time point x =O. The 
P 

four-dimensional delta function summarizes the translational invariance 

of the theory. Lorentz invariance tells us that Fcv must be a second 

rank tensor since the current operator is a &-vector. Because of the 

sti over initial and final states, there are only two four vectors on- 

which this tensor can depend, P and q. Since Fe = -flt,,there are 

* 

f We use a metric such that a = 
I-I ( s:, Lao) and a l b =s * b- - aobo. 

. 
In this metric q2 > 0 for both scattering and pair production. 
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only two independent scaiars which can be formed from these four vectors, 

s2 and q * P. Thus the most generai form of the tensor ;pcv is 

-I”;V = A(q2, q l P)bpv + qq2, q * P's 9, + G(q2, q ' P)PVPv 
(2) 

+ Dh2, q - p> ‘\Pv + qvP,, + E(q2, q . P,(q& - qv’II’ . 

No term in 2 PVpUPPqU 
can appear since the current operator is a polar 

vector under spatial refiections. We know further that the nuclear 

current operator must satisfy the continuity equation 

(3) 

which implies that q&-, =yy q = 0. These relations are sufficient 
!Jv v 

to eliminate three of the invariant functions and one can thuswrite a 

symmetric tensor, with 7;: and 7T2 both > 0 according to the definition 

in Eq. (1) 

ivy = 7Y(q2,q * P) 

l/ 
+7/;(q2,q * P) - iP 

372 \ P 
(4) 

T \ 

This theorem is due to von Gehlen, Gourdin, and Bjorken.3 

Some special cases of the above result will be interesting to us later 

and we include them for completeness. In the case that we have only elas- 

tic scattering from the nucleus, PI2 = -;I'; and 24 s P = q', and a spin 
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zero target we have with the aid of Eq. (3) 

(5) 

with F(0) = 1. By substituting in the equation for w one finds 
PV 

7v = 0 1 

(6) 

in 3 case of a spin l/2 target, and elastic scattering one finds 

7 / \I Q2EE’ p’ , 
\ 

=P = i-%& (&[F,(q2)yp + F2(q2)~pvq$$~) (7) 

in the usual Dirac notation with F1(0) = 1, F2(0) = -& 276 the anomalous 
T 

magnetic moment. Again inserting in the equation for71J 
CL-J 

and carrying 

out the required sums,one finds 

y/; = q2jQ,(q2)- +i:;ITF2(q2)12 +(E - E' - q,) 

Calculations of the contributions to 7f1 and yii coming from nuclear 

excitation to discrete levels , quasi-elastic scattering from nucleons 3.n 

the nucleus, and the production of a pion can be found in references 5. 

B. 'Electron (Muon)Scattering 

In terms of y and Vi the electron or muon scattering cross section 

for fixed electron energy and angle but summing over all else can be 
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computed in standard fashion: 

cg 1 
du = 2z'ci - - 

2E' q* 
';.f-=v'2.v 

(p l P)2 - m2fi?g 
I 

3 

where 

Combining gives 

da= 
d2 1 

2&? - - 
25" q* 

@HP.+ 9) * PI 
-.*‘I 2 
ii‘ T- J 

(9) 

(10) 

J 

The three independent scaiar functions in electron scattering can be taken as 
/ ;-, c', 8 in the laboratory system or as the three scalar variables q', q. P, .c 

and p . P. Measurements at fixed q2 and q . P can separate y/1 and >f2 

and check the one photon exchange form. 

The cross section can be written in the laboratory frame as 

j$@Icos 8 m2)s2 1 
where 

These formula simplify if one can neglect the mass of the electron 

d2a 4z%? p 8 

I.. 1 j(>h2A 
6 

=--cos 2 - * P) + 2)S,(q2,q . P) tan2 1 - dfi'df' I q* 7xT 2, 
21 

We next, for completeness and convenience, give cross sections in some 

special cases, using Eqs. (6) and (8): 

(12) 

(13) 
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1.a) Elastic scattering, spin 0 target, laboratory system 

1.b) Relativistic limit (m = 0) 

-= 
dR 4E2sinz 

da z=c%= cos= s 
4 ; jP(q=)l= 

1 

sin2 2 \ 
(15) 

2) 

2.a) Elastic scattering, spin l/2 target, laboratory system 

da 
-= 
da' I F,(q2) + 27;:TF2(q2.)12(&~'-i~l/~11 cos 8 - 2m2) 

+ (~F,h=)~= t s= jF2(q2);2)(C~~1+l~j;~1/ cos 8 + m2) 

(16) 

b) Relativistic limit (rn = 0) - Rosenbluth Cross Section 

daR 
z=c? 

-= 
4e dR' 4t2 sin 2 

i 
. 

(iF1i2 + q2 IF2i2) + z2 ,F1+2?qTF2i2tan28 q2 I 

'T 

It is also lnteresting to see what one'wo,:ld get if only the Coulomb inter- 

action is kept in the laboratory system. 

3:a) Coulomb scattering in the laboratory system 

(18) 
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3.b) Relativistic limit (m = 0) 

c) Relativistic limit (m = 0) and (qE/cs2)C< 1 

d2aC 4z20? 

= - cos 
d[$'ldR' q4 

c. Electron (Muon) Pair Production 

We now turn to the central problem of caiculating electron or muon 

pair production in terms of the two general nuciear form factors ?< and 

c, .T 
iJ.2’ First let us say a few words about some general properties of the 

process as pictured in Fig. 5. p- and p, are the outgoing four-momenta 

of the lepton pair and k is the incident photon four momentum. For the 

top part of the process, the production of a pair by a real and a virtual 

photon, there are three independent scalars. These can be taken as 

a2 = - (p- - k)', s2 = - (p+ - k)=, and q'. In computing the cross 

section for this process,' the upper part of this diagram will again enter 

as a tensor, M 
PV' 

just as does the nuclear part. There are three inde- 

pendent four vectors for constructing this tensor, which we take to be 

kP7 4-1 
and ~3 cI = (P- - P+)p. Only the symmetric part of the tensor will 

contribute since ?iY 
CLV 

is symmetric. Also, any term which goes as 
9-1 

will give zero since 
p$V 

qf;,s, = 0. Thus 'the most general form of 

M 
i.lV 

is (assuming parity conservation) 

(19) 

(20) 
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For the over-all process of pair production there are six independent 

scalars which may be thought of as jz/, E+, c'-, cos e+, cos e-, and cp . . 

in the lab where 8+ and 8 are the angles $+ and $- makewith k 

and cp is the angle between the ($+g), (p'-z) planes. (See Fig. 6) Alter- , 

natjvely, one can work with q2,'&2,&2,k * P, q . P, and.A s P. For sim- 

plicity, we.will rename them 

X 2 = A2 - m2 

X =k* 
3 PI 7;” ‘T 

x4 
=A* p/~;', 

(22) 

xS =9 l P/75'YT 

x6 
= q” 

The other variables in the problem can be expressed in terms of these by 

the reiations: l 

2P- - k = 6 : m2 = xi 

2p+ . k = s2 - m2 =x 2 

2P+ ' P,' q= + 4= + A2 =x 1+ “2 + x 

A-k= +(f - .p,=, = 3(x, - x2) 

A*q= g-f - t.=> = gx, - x1) 

A2 = - (2m2 + q2 + -fL2 + 5') = - (xl + x2 + x6 + 4m2) 
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The prediction of quantum electrodynamics for the cross section for pair 

production can again be evaluated by standard techniques. There are two 

Feynman diagrams to be considered. One finds f 

z=oiJ di;+ dk IL . .../ 1 7 da=----- 
3? 2g+ 2.5- q4 I” pvMpv [ (k . p)“]’ 

where 

e is the polarization of the incident photon. [Note M = MW is already P-J 

-. 
1 

Ycl + Yp -j($ _ $ 
-I- 

) + m + p + i'+l 

7, 

i 

(24) 
1 / i 

Y, + Y, i($ _ $) + m $1 im - i$-J 
- i - i 

s-ymmetric.] The result for MVv can be wrLtten in the general form dis- 

cussed 

Ml 

M2 

M3 

M4 

above with 

L 

4 
i- 

m2 =- xx 
1 2 LXlX2 

2 1n 

xx 
12 

m2 

I- , 
i m2 

+ x2) jx 
!- 12 

(x1 - x2)= \ 
J 

(23) 

(x1 f x2) + 1 1 J 

f One can immediately obtain the cross section for electron bremsstrahlung 
from Eqs. (25,26) by use of the substitution rule, 

dabrem = L - - . 

k +-k 

(25) 

where p' and p are the final and initial electron four-momentum and k 
becomes the outgoing photon four momentum. 
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and Eqs. (21) and (4) can be contracted together to form yfiFM in 
PV PV 

Eq. (23). More directly we form the product of Eq. (4) with Eq. (24), 

observing that the terms in 
".,,/- I:' clv proportional to 9.f 

or q,v vanish 

by current conservation, and obtain 
f 

-,::‘;, yppv = - 2m2)(xs + x1 + x2 + 2m2) + <XT +,$) 

;:,:"i(x5x6) , 

+ xZ)(- X6 - x’5 + p + Q+(xy$) (26) 

- (X6 + <)(x1 + x2 + x6 + 2m2) - 4'(x= + XE) - x3x5(x1 + x2) 1 

+ x4x5(x1 - x2) +x:(x6 - al=)+ x:(x6+ a=) 
1 I 

xp&) 

The dependence on x3 and x4 comes from joining the electrodynamic and 

nuclear parts of the process together and can be used to experimentally 

establis‘n the validity of the one photon exchange mechanism just as in 

electron scattering. It is most concisely exhibited by re-expressing 

Eq. (26) in terms of the Ml . . . . M4 constructed in Eq. (25) and which 

depend only on the energy, momentum transfer, and virtual photon mass 

in the Compton scattering at the upper vertex through the variables 

x > x 1 2’ 
and x : 

6 I 

i 

(x1 + x2)= 
4x6 

M2 , -1x1+x2 +x6+4m2 

i 
i- 

x5(x1 + x2>\: 
2 - 
: M 

f Although some of the individuai factors are dimensional, their product, 
W M 

CLV PV 
is.dimensionless. 
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The invariant scalar products can be evaluated in the laboratory 

system to give 

x =- 
6 

IC\-E+- f ) -. r 
2m2 -x -x - 2E+E il- 

$+i;iq 
1 2 - i (cos e; cos e- + sin e+ sin es cos cp) . 

I c, Em 
J 

(27) 

These variables are iliustrated in Fig. 6. 
I 

Of special interest is the "symmetric case" where $+ = c and 

e+ = 8 since interference terms with two photon exchange corrections 

identically vanish for this condition.2 

In terms of the general scalars this situation is characterized by 

i symmetric case 
A* p=0 i 

I 

or 

X =x 
) 

1 2 

i 
X 

4 =o j 

symmetric case 

(28) 
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The formula simplify considerably in this case and one has 

1 + x6(x6 + 4m2> I’ 
4x 

4 
x6 + 4m2) 

1 

Mq= 0 

4 [;,, \ 
-q- Ii &&, = 7 ;\' 6 - 2m2)(x 6 + 2x1 + 4m2) + 2x2 : 7i;(x5x6) 

l [L 
II 

I a (30) 

+ I 
1 

-(x6+x$)(2x1+x6+4m2)-xt- 2x,x3x5+ x6x$ 

1 I 

s"s,(x5x6) 

For fixed q' and q * P (x 5 and x6) so that the nuclear physics 

doesn't change, the entire dependence on incident energy k a P (x,) * 23 

i xx 2 
15 contained in the term a: .x - - \ 

$1' x7 i 
7;;' . 

2 
This dependence can be.used 

to test the validity of the one photon exchange mechanism and to separate 

the form factors T?z and r;i:: In order to test electrodynamics one again 

programs experiments at fixed x5 and x6 but with variable x 1 = -t2 -m2, 

which is j,ust the mass of either virtual 

symmetric case. The kinematic variables 

are : 

intermediate.lepton line in the 

in the lab in the symmetric case 

\ 
X 

-t,.- ' - m2.= - 21k,~ ;l iP’i - - 
5 cos 8) 

1 
x3 ‘= P - k/?$T,= - $1 

X 
5 
1 = P * q/j7fT = $1 - 2& 

/ 
x =qL- 

6 
4G2 sin28 sin2 ;1 - - Ia 

; 6 

(31) 
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W$ again discuss some special cases of the symmetric case: 

1. Relativistic limit (m = 0), lab system 

x 
5 

= $1 - 25 

x6 = 8E sin2 g [[I/ - 26 co$ $ sin2 E] = q2 
.- 

da = dg ,+dE mp - - 

-2.a) Elastic scattering from Fixed Spin Zero Target - Bethe-Eeitler 

Cross Section 

In this case, from our previous disctission 

and we have for a fixed target 1;': = 25 and x5 = P * q = 0: 
,- I 

S(Z++E --jii /)dL ,dE 
z2cz 2 ]F(;;2)j2 

._ T‘ - dsqd" - - 
- 42 s"; /;I ., 

- 2X6X1 - x6(x6 + 4m2) + x,plii 

I /: 
I 

z2$ $2 

's(~++E_--l~l)dE+dt._dSl+dR_ - - 
jF(q2) 1' 

2’ 

da&H. =I 42 s" 151 2 - 7 \ 
I 

-it cos cp) -I- B(l + cos cp)J 
I 

(32) 

(33) 

(34) 

b) Relativistic limit (m = 0) 
f 

! 

d"B.H. = s(E 

j, 
i2 

z2a3 (F(&!2cos2 ; 
+ - - 1; b-6, dE _ d.Q+dfl- 645r2 ik 13 

sin6 2 2 !- J L. 
1 

c()$ 2 
2 . 

f 4 sin2 E sin2 g (1 - cos2 g sin2 z 

6 4 

/ 2 (35) 
i i 

A” 
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c) Relativistic limit (m = 0) Cp = 5[ 

du B.H. = S(& +:- -id] )dC+d; dR+dR 

D. Regions of Kinematic Variables 

'Since the main argument of t‘ne present paper is that one can use the 

general inelastic form factors as measured in electron scattering to elimi- 

nate the nuclear physics in pair production experiments, one must face the 

question of what regions of kinematic variables q2 and q * P are covered 

in each of these experiments. It turns out that exactly the same regions of -- 

kinematic variables can be covered in both experiments. This is indicated 

in Fig. 7. 

We have used the fact that 2q . P = q' + Lij;'g _ 7;/2 LT. Elastic scattering 

is a straight line P . q =*q2. There will be a series of discrete lines 

corresponding to the excited bound states OI q the nuclear system with dis- 

crete ?lig and then a continuum of values corresponding to particle emission 

from the nucleus. To see that the above is the allowed region, one can ask 

what values of q' i 2 are accessible for a given ‘il:;? - I!( cf T' In both electron 

scattering and pair production q' is space-iike so q2 2 0. In both 

cases, q2 can go to infinity merely by fixing all angles at finite -values 

and ietting the incident energy go to infinity. The only question then is 

what is the minimum value of q2. In electron scattering q2 goes to 

zero if one looks in the forward direction and lets the incident energy 

go to infinity. In pair production one can also have q2 going to zero 

in the case where all the particles come off in the forward direction and 

the incident energy goes to infinity. 
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III. PHOTO ABSORPTION ON THE NUCLEUS 

The same general nuclear tenser ?ir can be used to calculate the 
CLV 

cross section for the absorption of a resi photon. This process is 

indicated in Pig. 8. k is the incoming four momentum of the incident 

photon and corresponds to -q with our previous definitions. Thus, in 

this case , *he form factors are evaluated for *q' = k2 = 0 and 

p-q -P’k,lT’kl = -.- . /;, .T /.' ;T 

-is+ kl. is the polarization of the incident photon. The cross section is 

The question now 

We recall 

is what ,is yJ’* under -the conditions q' = 0, - = 'I'$. p- 9 
w -0) "L T 

(37) 

(38) 

-s,.. = 
/. bv TeY(k2,-k 

I kpkv\ / 
-.-I +y;$+k . p) ip _ 

k2 ! lP 
(39) 

/ \ 

There are no singularities when one sets 13 = 0 as can be seen from Eq. (l), 

since the matrix elements are just the physicai amplitudes for photo- 

absorption to individual final states. TIhe apparent singularities in Eq. (39) 

must then cancel as @ --f 0 which gives the following relations on the 

inelastic form factors 

y/;(@,-k . P) - 
(P - ;.1)2 

.2 K 
;/(6,-k .P) = O(k2) 

k2 +O 

y-(9,-k l P) = O(ki) 

k2 3 0 
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Therefore one finds 

(1$,-k l P) = 3';;;(k2,-k l P) + ':',);(k2,-k l P) 

k2 40 

(P - k)' 
kz 

or 

y$$O,-k * P) = 2;,;(0,-k l P) . 

This leads to 

(41) 

. 

7 

Photo absorption thus measures the form factor '~*~~~('o,i~j7I~T). This rela- 

tion together with Eq. (40) above gives a useful approximation to the form 

factors which includes all the inelastic processes contained in the photo- 

absorption process. Thii is3iL) 

(43) 

The exact range of validity of these formulas is not so easily established. 
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FIGURE CAPTIONS 

L. Electron-nucleon scattering (in first Born approximation). 

2. Lepton pair production and bremsstrahlung from nucleons. , 

3. Electron scattering from a nucleus leading to arbitrary final nuclear 

states. 

4. Lepton pair production and bremsstrahlung from a nucleus leading to 

arbitrary final nuclear states. 

5* General diagram for pair production with single photon exchange to the 

nucleus. 

6. Kinematic variables in the laboratory system. 

7. Ranges of invariant kinematic variables in scattering and pair pro- 

duction experiments. 

8. Photo-absorption on a nucleus. 
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