Hadronization at the Amplitude Level

\[\tau = x^+ \]

Capture if \(\zeta^2 = x(1-x)b^2_\perp > \frac{1}{\Lambda^2_{QCD}} \)

i.e.,

\[M^2 = \frac{k^2_\perp}{x(1-x)} < \Lambda^2_{QCD} \]
Baryons in AdS/CFT

- Baryons Spectrum in "bottom-up" holographic QCD

- Action for massive fermionic modes on AdS$_{d+1}$:

 $$S[\bar{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \bar{\Psi}(x, z) \left(i \Gamma^{\ell} D_{\ell} - \mu \right) \Psi(x, z).$$

- Equation of motion:
 $$\left(i \Gamma^{\ell} D_{\ell} - \mu \right) \Psi(x, z) = 0$$
 $$\left[i \left(z \eta^{\ell m} \Gamma_{\ell} \partial_m + \frac{d}{2} \Gamma_z \right) + \mu R \right] \Psi(x^\ell) = 0.$$
Baryons

Holographic Light-Front Integrable Form and Spectrum

- In the conformal limit fermionic spin-$\frac{1}{2}$ modes $\psi(\zeta)$ and spin-$\frac{3}{2}$ modes $\psi_{\mu}(\zeta)$ are two-component spinor solutions of the Dirac light-front equation

$$\alpha \Pi(\zeta) \psi(\zeta) = M \psi(\zeta),$$

where $H_{LF} = \alpha \Pi$ and the operator

$$\Pi_L(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} \gamma_5 \right),$$

and its adjoint $\Pi_L(\zeta)$ satisfy the commutation relations

$$\left[\Pi_L(\zeta), \Pi_L(\zeta)^\dagger \right] = \frac{2L + 1}{\zeta^2} \gamma_5.$$

- Supersymmetric QM between bosonic and fermionic modes in AdS?
• Note: in the Weyl representation $(i\alpha = \gamma_5 \beta)$

\[
i\alpha = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.
\]

• Baryon: twist-dimension $3 + L \ (\nu = L + 1)$

\[
O_{3+L} = \psi D_{\ell_1} \ldots D_{\ell_q} \psi D_{\ell_{q+1}} \ldots D_{\ell_m} \psi, \quad L = \sum_{i=1}^{m} \ell_i.
\]

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

\[
\psi(\zeta) = C \sqrt{\zeta} [J_{L+1}(\zeta M)u_+ + J_{L+2}(\zeta M)u_-].
\]

Baryonic modes propagating in AdS space have two components: orbital L and $L + 1$.

• Hadronic mass spectrum determined from IR boundary conditions

\[
\psi_\pm (\zeta = 1/\Lambda_{QCD}) = 0,
\]

given by

\[
\mathcal{M}_{\nu,k}^+ = \beta_{\nu,k} \Lambda_{QCD}, \quad \mathcal{M}_{\nu,k}^- = \beta_{\nu+1,k} \Lambda_{QCD},
\]

with a scale independent mass ratio.
Fig: Light baryon orbital spectrum for $\Lambda_{QCD} = 0.25$ GeV in the HW model. The 56 trajectory corresponds to L even $P = +$ states, and the 70 to L odd $P = -$ states.
<table>
<thead>
<tr>
<th>$SU(6)$</th>
<th>S</th>
<th>L</th>
<th>Baryon State</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N^{\frac{1}{2}+}(939)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$\Delta^{\frac{3}{2}+}(1232)$</td>
</tr>
<tr>
<td>70</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$N^{\frac{1}{2}-}(1535)$ $N^{\frac{3}{2}-}(1520)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>$N^{\frac{1}{2}-}(1650)$ $N^{\frac{3}{2}-}(1700)$ $N^{\frac{5}{2}-}(1675)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\Delta^{\frac{1}{2}-}(1620)$ $\Delta^{\frac{3}{2}-}(1700)$</td>
</tr>
<tr>
<td>56</td>
<td>$\frac{1}{2}$</td>
<td>2</td>
<td>$N^{\frac{3}{2}+}(1720)$ $N^{\frac{5}{2}+}(1680)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>2</td>
<td>$\Delta^{\frac{1}{2}+}(1910)$ $\Delta^{\frac{3}{2}+}(1920)$ $\Delta^{\frac{5}{2}+}(1905)$ $\Delta^{\frac{7}{2}+}(1950)$</td>
</tr>
<tr>
<td>70</td>
<td>$\frac{1}{2}$</td>
<td>3</td>
<td>$N^{\frac{5}{2}-}$ $N^{\frac{7}{2}-}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>3</td>
<td>$N^{\frac{3}{2}-}$ $N^{\frac{5}{2}-}$ $N^{\frac{7}{2}-}(2190)$ $N^{\frac{9}{2}-}(2250)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>3</td>
<td>$\Delta^{\frac{5}{2}-}(1930)$ $\Delta^{\frac{7}{2}-}$</td>
</tr>
<tr>
<td>56</td>
<td>$\frac{1}{2}$</td>
<td>4</td>
<td>$N^{\frac{7}{2}+}$ $N^{\frac{9}{2}+}(2220)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>4</td>
<td>$\Delta^{\frac{5}{2}+}$ $\Delta^{\frac{7}{2}+}$ $\Delta^{\frac{9}{2}+}$ $\Delta^{\frac{11}{2}+}(2420)$</td>
</tr>
<tr>
<td>70</td>
<td>$\frac{1}{2}$</td>
<td>5</td>
<td>$N^{\frac{9}{2}-}$ $N^{\frac{11}{2}-}(2600)$</td>
</tr>
<tr>
<td></td>
<td>$\frac{3}{2}$</td>
<td>5</td>
<td>$N^{\frac{7}{2}-}$ $N^{\frac{9}{2}-}$ $N^{\frac{11}{2}-}$ $N^{\frac{13}{2}-}$</td>
</tr>
</tbody>
</table>
Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

- We write the Dirac equation

\[(\alpha \Pi(\zeta) - \mathcal{M}) \psi(\zeta) = 0,\]

in terms of the matrix-valued operator \(\Pi\)

\[\Pi_\nu(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta} \gamma_5 - \kappa^2 \zeta \gamma_5 \right),\]

and its adjoint \(\Pi^\dagger\), with commutation relations

\[\left[\Pi_\nu(\zeta), \Pi^\dagger_{\nu'}(\zeta) \right] = \left(\frac{2\nu + 1}{\zeta^2} - 2\kappa^2 \right) \gamma_5.\]

- Solutions to the Dirac equation

\[\psi_+(\zeta) \sim z^{\frac{1}{2} + \nu} e^{-\kappa^2 \zeta^2 / 2} L_n^\nu(\kappa^2 \zeta^2),\]

\[\psi_-(\zeta) \sim z^{\frac{3}{2} + \nu} e^{-\kappa^2 \zeta^2 / 2} L_n^{\nu+1}(\kappa^2 \zeta^2).\]

- Eigenvalues

\[\mathcal{M}^2 = 4\kappa^2 (n + \nu + 1).\]
- Baryon: twist-dimension $3 + L$ \quad (\nu = L + 1)

\[\mathcal{O}_{3+L} = \psi D_{\ell_1} \cdots D_{\ell_q} \psi D_{\ell_{q+1}} \cdots D_{\ell_m} \psi, \quad L = \sum_{i=1}^{m} \ell_i. \]

- Define the zero point energy (identical as in the meson case) $\mathcal{M}^2 \rightarrow \mathcal{M}^2 - 4\kappa^2$:

\[\mathcal{M}^2 = 4\kappa^2(n + L + 1). \]
Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors
 \[
 F_+(Q^2) = g_+ \int d\zeta J(Q, \zeta) |\psi_+(\zeta)|^2, \\
 F_-(Q^2) = g_- \int d\zeta J(Q, \zeta) |\psi_-(\zeta)|^2,
 \]
 where the effective charges \(g_+\) and \(g_-\) are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have \(S^z = +1/2\). The two AdS solutions \(\psi_+(\zeta)\) and \(\psi_-(\zeta)\) correspond to nucleons with \(J^z = +1/2\) and \(-1/2\).

- For \(SU(6)\) spin-flavor symmetry
 \[
 F_1^p(Q^2) = \int d\zeta J(Q, \zeta) |\psi_+(\zeta)|^2, \\
 F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q, \zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],
 \]
 where \(F_1^p(0) = 1, F_1^n(0) = 0\).
• Scaling behavior for large Q^2: $Q^4 F_1^p(Q^2) \rightarrow$ constant

Proton $\tau = 3$

Dirac Neutron Form Factor
(Valence Approximation)

\[Q^4 F^n_1(Q^2) \] [GeV^4]

Prediction for \(Q^4 F^n_1(Q^2) \) for \(\Lambda_{QCD} = 0.21 \) GeV in the hard wall approximation. Data analysis from Diehl (2005).
Scaling behavior for large Q^2: $Q^4 F_1^n(Q^2) \rightarrow \text{constant}$

Neutron $\tau = 3$

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Harmonic Oscillator
Confinement
Normalized to anomalous moment

$F_2^p(Q^2)$

$\kappa = 0.49 \text{ GeV}$

G. de Teramond, sjb

Trieste ICTP
May 12, 2008

AdS/QCD
97

Stan Brodsky
SLAC & IPPP
AdS/CFT and Integrability

- Generate eigenvalues and eigenfunctions using Ladder Operators
- Apply to Covariant Light-Front Radial Dirac and Schrodinger Equations
Algebraic Structure, Integrability and Stability Conditions (HW Model)

- If $L^2 > 0$ the LF Hamiltonian, H_{LF}, can be written as a bilinear form

$$H_{LF}^L(\zeta) = \Pi_L^\dagger(\zeta)\Pi_L(\zeta)$$

in terms of the operator

$$\Pi_L(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} \right),$$

and its adjoint

$$\Pi_L^\dagger(\zeta) = -i \left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta} \right),$$

with commutation relations

$$[\Pi_L(\zeta), \Pi_L^\dagger(\zeta)] = \frac{2L + 1}{\zeta^2}.$$

- For $L^2 \geq 0$ the Hamiltonian is positive definite

$$\langle \phi | H_{LF}^L | \phi \rangle = \int d\zeta \left| \Pi_L \phi(z) \right|^2 \geq 0$$

and thus $M^2 \geq 0$.

Trieste ICTP
May 12, 2008

AdS/QCD
99

Stan Brodsky
SLAC & IPPP
Ladder Construction of Orbital States

- Orbital excitations constructed by the L-th application of the raising operator
 \[a_L^\dagger = -i\Pi_L \]
 on the ground state:
 \[a_L^\dagger |L\rangle = c_L |L + 1\rangle. \]

- In the light-front ζ-representation
 \[
 \phi_L(\zeta) = \langle \zeta | L \rangle = C_L \sqrt{\zeta} (-\zeta)^L \left(\frac{1}{\zeta} \frac{d}{d\zeta} \right)^L J_0(\zeta M) = C_L \sqrt{\zeta} J_L(\zeta M).
 \]

- The solutions ϕ_L are solutions of the light-front equation ($L = 0, \pm 1, \pm 2, \cdots$)
 \[
 \left[-\frac{d^2}{d\zeta^2} - \frac{1 - L^2}{4\zeta^2} \right] \phi(\zeta) = M^2 \phi(\zeta),
 \]

- Mode spectrum from boundary conditions: $\phi(\zeta = 1/\Lambda_{QCD}) = 0$.
Non-Conformal Extension of Algebraic Integrability (SW Model)

- Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce smooth cutoff which depends on the profile of a dilaton background field $\varphi(z)$.

- Consider the generator (short-distance Coulombic and long-distance linear potential)

$$\Pi_L(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} - \kappa^2 \zeta \right),$$

and its adjoint

$$\Pi_L^\dagger(\zeta) = -i \left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta} + \kappa^2 \zeta \right),$$

with commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^\dagger(\zeta) \right] = \frac{2L + 1}{\zeta^2} - 2\kappa^2.$$

- The LF Hamiltonian

$$H_{LF} = \Pi_L^\dagger \Pi_L + C$$

is positive definite $\langle \phi | H_{LF} | \phi \rangle \geq 0$ for $L^2 \geq 0$, and $C \geq -4\kappa^2$.

- Orbital and radial excited states are constructed from the ladder operators from the $L = 0$ state.
Holographic Connection between LF and AdS/CFT

- Predictions for hadronic spectra, light-front wavefunctions, interactions
- Deduce meson and baryon wavefunctions, distribution amplitude, structure function from holographic constraint
- Identification of Orbital Angular Momentum Casimir for SO(2): LF Rotations
- Extension to massive quarks
New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level

- Holographic Model from AdS/CFT: Confinement at large distances and conformal behavior at short distances

- Model for LFWFs, meson and baryon spectra: many applications!

- New basis for diagonalizing Light-Front Hamiltonian

- Physics similar to MIT bag model, but covariant. No problem with support $0 < x < 1$.

- Quark Interchange dominant force at short distances
Quark Interchange
(Spin exchange in atom-atom scattering)

\[\frac{d\sigma}{dt} = |M(s,t)|^2 \]

\[M(t, u)_{\text{interchange}} \propto \frac{1}{ut^2} \]

Gluon Exchange
(Van der Waal -- Landshoff)

\[M(s, t)_{\text{gluon exchange}} \propto s F(t) \]

MIT Bag Model (de Tar), large \(N_c \), ('t Hooft), AdS/CFT all predict dominance of quark interchange:

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP
AdS/CFT explains why quark interchange is dominant interaction at high momentum transfer in exclusive reactions.

\[M(t, u)_{\text{interchange}} \propto \frac{1}{ut^2} \]

Non-linear Regge behavior:

\[\alpha_R(t) \rightarrow -1 \]
Why is quark-interchange dominant over gluon exchange?

Example: \(M(K^+ p \rightarrow K^+ p) \propto \frac{1}{ut^2} \)

Exchange of common \(u \) quark

\[
M_{QIM} = \int d^2k_\perp dx \; \psi_C^\dagger \psi_D^\dagger \Delta \psi_A \psi_B
\]

Holographic model (Classical level):

Hadrons enter 5th dimension of \(AdS_5 \)

Quarks travel freely within cavity as long as separation \(z < z_0 = \frac{1}{\Lambda_{QCD}} \)

LFWFs obey conformal symmetry producing quark counting rules.
Comparison of Exclusive Reactions at Large t

B. R. Baller, (a) G. C. Blazey, (b) H. Courant, K. J. Heller, S. Heppelmann, (c) M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl (d)

University of Minnesota, Minneapolis, Minnesota 55455

D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973

and

S. Gushue (c) and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747

(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: $\pi^\pm p \to p\pi^\pm, p\rho^\pm, \pi^+\Delta^\pm, K^+\Sigma^\pm, (\Lambda^0/\Sigma^0)K^0, K^\pm p \to pK^\pm; p^\pm p \to pp^\pm$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

\[\begin{align*}
\pi^\pm p &\to p\pi^\pm, \\
K^\pm p &\to pK^\pm, \\
\pi^\pm p &\to p\rho^\pm, \\
\pi^\pm p &\to \pi^+\Delta^\pm, \\
\pi^\pm p &\to K^+\Sigma^\pm, \\
\pi^- p &\to \Lambda^0K^0, \Sigma^0K^0, \\
p^\pm p &\to pp^\pm.
\end{align*} \]
New Perspectives on QCD Phenomena from AdS/CFT

- **AdS/CFT**: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory

- New Way to Implement Conformal Symmetry

- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances

- Remarkable predictions for hadronic spectra, wavefunctions, interactions

- AdS/CFT provides novel insights into the quark structure of hadrons
Light-Front Wavefunctions

Dirac’s Front Form: Fixed $\tau = t + z/c$

$$\psi(x, k_\perp)$$

$$x_i = \frac{k_i^+}{P^+}$$

Invariant under boosts. Independent of P^μ

$$H_{LF}^{QCD} |\psi > = M^2 |\psi >$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space
Some Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role of ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
The position of the struck quark differs by x^- in the two wave functions

Measure x^{-} distribution from DVCS:
Take Fourier transform of skewness, $\xi = \frac{Q^2}{2p.q}$
the longitudinal momentum transfer

S. J. Brodskya, D. Chakrabartib, A. Harindranathc, A. Mukherjeed, J. P. Varye,a,f

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP
Hadron Optics

\[A(\sigma, \vec{b}_\perp) = \frac{1}{2\pi} \int d\xi e^{i\frac{\xi}{2} \sigma} \tilde{A}(\xi, \vec{b}_\perp) \]

\[\sigma = \frac{1}{2} x^- P + \xi = \frac{Q^2}{2p.q} \]

The Fourier Spectrum of the DVCS amplitude in \(\sigma \) space for different fixed values of \(|b_\perp| \).

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP

\(\Lambda_{QCD} = 0.32 \)

DVCS Amplitude using holographic QCD meson LFWF

\[|b_\perp| = 0.1 \]
\[|b_\perp| = 0.5 \]
\[|b_\perp| = 1.0 \]
Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

\[M \propto \frac{\partial^2}{\partial^2 k_{\perp}} \psi_{\pi}(x, k_{\perp}) \]

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus

Nucleus left Intact!
Two-gluon exchange measures the second derivative of the pion light-front wavefunction

\[M \propto \frac{\partial^2}{\partial^2 k_\perp} \psi_\pi(x, k_\perp) \]
Key Ingredients in E791 Experiment

Small color-dipole moment pion not absorbed; interacts with each nucleon coherently

QCD COLOR Transparency

\[M_A = A \ M_N \]

\[\frac{d\sigma}{dt}(\pi A \to q\bar{q}A') = A^2 \ \frac{d\sigma}{dt}(\pi N \to q\bar{q}N') \ F^2_A(t) \]

Target left intact

Diffraction, Rapidity gap

Trieste ICTP
May 12, 2008

AdS/QCD
115

Stan Brodsky
SLAC & IPPP
Color Transparency

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets
• Fully coherent interactions between pion and nucleons.

• Emerging Di-Jets do not interact with nucleus.

\[\mathcal{M}(A) = A \cdot \mathcal{M}(N) \]

\[\frac{d\sigma}{dq_f^2} \propto A^2 \quad q_f^2 \sim 0 \]

\[\sigma \propto A^{4/3} \]

Nuclear coherence

\[F_A^2(q_{\perp}^2) \sim e^{-\frac{1}{3} R_A^2 q_{\perp}^2} \]
Measure pion LFWF in diffractive dijet production
Confirmation of color transparency

A-Dependence results: $\sigma \propto A^\alpha$

<table>
<thead>
<tr>
<th>k_t range (GeV/c)</th>
<th>α</th>
<th>α (CT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.25 < k_t < 1.5$</td>
<td>1.64 ± 0.06 -0.12</td>
<td>1.25</td>
</tr>
<tr>
<td>$1.5 < k_t < 2.0$</td>
<td>1.52 ± 0.12</td>
<td>1.45</td>
</tr>
<tr>
<td>$2.0 < k_t < 2.5$</td>
<td>1.55 ± 0.16</td>
<td>1.60</td>
</tr>
</tbody>
</table>

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber Theory Ruled Out!

Factor of 7

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP
E791 Diffractive Di-Jet transverse momentum distribution

Two Components

High Transverse momentum dependence $k_T^{-6.5}$ consistent with PQCD, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP
Fig. 22. The u distribution of diffractive dijets from the platinum target for $1.25 \leq k_t \leq 1.5 \text{ GeV/c}$ (left) and for $1.5 \leq k_t \leq 2.5 \text{ GeV/c}$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Narrowing of x distribution at higher jet transverse momentum

x distribution of diffractive dijets from the platinum target for $1.25 \leq k_t \leq 1.5 \text{ GeV/c}$ (left) and for $1.5 \leq k_t \leq 2.5 \text{ GeV/c}$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components:
Nonperturbative (AdS/CFT) and Perturbative (ERBL)

Evolution to asymptotic distribution

$\phi(x) \propto \sqrt{x(1-x)}$

Trieste ICTP
May 12, 2008

AdS/QCD

120

Stan Brodsky
SLAC & IPPP
\[\phi_{asympt} \sim x(1-x) \]

AdS/CFT:

\[\phi(x, Q_0) \propto \sqrt{x(1-x)} \]

Increases PQCD leading twist prediction
\[F_\pi(Q^2) \] by factor 16/9
\[F_\pi(Q^2) = \int_0^1 dx \phi_\pi(x) \int_0^1 dy \phi_\pi(y) \frac{16\pi C_F \alpha_V(Q_V)}{(1-x)(1-y)Q^2} \]

Normalized to \(f_\pi \)

\[\phi(x, Q_0) \propto \sqrt{x(1-x)} \]

\[\phi_{\text{asymptotic}} \propto x(1-x) \]

AdS/CFT: Increases PQCD leading twist prediction for \(F_\pi(Q^2) \) by factor 16/9
Measurement of Nuclear Transparency for the $A(e, e'\pi^+)$ Reaction

$$eA \rightarrow e'\pi^+ X$$

B. Clasie, et al, Jlab

PRL 99, 242502 (2007)

Trieste ICTP
May 12, 2008

AdS/QCD

Stan Brodsky
SLAC & IPPP
Particle ratio changes with centrality!

Open (filled) points are for π^{\pm} (π^{ν}), respectively.
Baryon can be made directly within hard subprocess

Coalescence within hard subprocess

\[uu \rightarrow p\bar{d} \]

\[\phi_p(x_1, x_2, x_3) \propto \Lambda_{QCD}^2 \]

Collision can produce 3 collinear quarks

\[qq \rightarrow B\bar{q} \]

Small color-singlet
Color Transparent
Minimal same-side energy

AdS/QCD

Trieste ICTP
May 12, 2008

Stan Brodsky
SLAC & IPPP
Power-law exponent $n(x_T)$ for π^0 and h spectra in central and peripheral Au+Au collisions at $\sqrt{s_{NN}} = 130$ and 200 GeV

Proton production dominated by color-transparent direct high n_{eff} subprocesses